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Introduction

e study a self—gravitating system
— formation of singularities, horizons
— extract radiation

— global structure
e modelled as isolated system

e space-time is asymptotically flat <= can be conformally compactified



Conformal compactification of Minkowski space—time
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has the form
g= Q_zg — ¢= ng”.

e /" and .# form a 3-D boundary

e points on .# are at infinity wrt ¢
e conformal factor Q = cosT +cosR =0on .¥

e physical space-time (M, §) is smoothly
embedded into a larger space-time (M, g) with

the same light—cone structure.
— #1s an abstract concept which allows us to talk about radiation



Conformal field equations

e express G, = 0in terms of (M, Q, g.)

e conformal transformation
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e read as equation for Q (G, = —2® ., — 6Ag.)
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e need equation for @, — Bianchi identities in M and M
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Conformal field equations
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gauge source functions
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Analysis
Friedrich (1979-)
e Split into constraints and symmetric hyperbolic evolution equations
e evolution propagates the constraints
e hyperboloidal IVP is well posed
e (semi)—global existence for small hyperboloidal data

e cluing techniques give global existence for asymptotically flat
manifolds

e initial data on hyperboloidal hypersurfaces can be constructed



Waveforms on hypersurfaces in Minkowski space
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o = tp—surface ‘collects” all waves emitted up to t = t
e hyp. surface ‘selects’ waves emitted in a finite interval before t = g
e | = tp—surface is ‘instantaneous’, hyp. surface ‘slows down’

e spatial succession turns into temporal succession



Waveforms on hypersurfaces in conformal Minkowski space
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e piling up of oscillations on asymptotically euclidean hsf
‘all waves at once’

e smooth across null-infinity




Numerical implementations of CFE

P. Hiibner (1994)

e spherical symmetry with conformally coupled scalar field
e parameter study of collapse
e numerical generation of conformal diagrams

e investigation of the causal nature of the singularity
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Numerical implementations of CFE
JF (1998)

e frame based vacuum code in 2 4 1 dimensions

e space-like non—vanishing Killing vector with closed orbits: ‘toroidal” ./
e ‘generalized harmonic’ time coordinate [t = F, shift components free

e Fermi transport of the frame

e Investigate radiation extraction

Several gauge choices, ‘scri-freezing’




Numerical implementations of CFE

radiation extraction on .¢
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Numerical implementations of CFE
JF (1998)

e spectral solver for hyperboloidal initial data
following Andersson, Chrusciel, Friedrich

e choose conformal 3-metric /1,

e solve Yamabe equation for conformal factor so that hy, = Q7 2h,, has
SR =—6

e all other initial data can be computed

e draw-backs: numerical differentiation, 0/0-terms, nasty



Numerical implementations of CFE

P. Hiibner (2000)

e Metric based 3+1 code, no symmetries

e MOL with 4th order space discretisation and 4th order Runge-Kutta
e Outer boundary outside .# treated by transition zone to static state

e gauge sources: densitised lapse, shift and scalar curvature A

e numerically integrated generators of .#




Numerical implementations of CFE

S. Husa (2002)

e Further development with Hiibner’s code

e Parameter studies

e Variations in the gauge sources

e weak Brill data compared with perturbative analysis
e problems with transition zone



Numerical implementations of CFE

JE and M. Hein (2003)

e Frame based axi-symmetric code

e MOL with RK4 and space—discretisation using Cartoon method
e Outer boundary treated by eigen—field method

e gauge sources: F¥, Fj, A

Effect of .7 as a one-way
membrane

Minkowski space-time with

meole Ve —f

white noise as a boundary
condition

norm of the Weyl tensor
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Numerical implementations of CFE

Fodor and Racz (2005)

e Yang-Mills-Higgs system in spherical symmetry

e spherically symmetric perturbation of BPS monopole
e Conformal compactification and hperboloidal slicings
e breathing solution found

e ¢ood interaction with analytical community (Forgécs, Volkov)
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Other developments

Development of 3+1 code within the Cactus framework

Extension of Friedrich—-Nagy boundary treatment to CFE
Thin—sandwich approach for hyperboloidal initial data

Initial data close to Kruskal data

Perturbative analysis of constraint propagation for the Weyl system
Preliminary work on the General CFE

Exploration of conformal Gauss gauge on Schwarzschild and Kerr

Need a way to solve the conformal constraints directly!



