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Numerical relativity using generalized harmonic
coordinates — a brief overview

e Formalism

— the Einstein equations are re-expressed in terms of generalized harmonic
coordinates

e add source functions to the definition of harmonic coordinates to be able to choose
arbitrary slicing/gauge conditions

— add constraint damping terms to aid in the stable evolution of black hole
spacetimes

e Numerical method

equations discretized using finite difference methods
directly discretize the metric; i.e. no “conjugate variables” introduced

use adaptive mesh refinement (AMR) to adequately resolve all relevant
spatial/temporal length scales (still need supercomputers in 3D)

use (dynamical) excision to deal with geometric singularities that occur inside of
black holes

add numerical dissipation to eliminate high-frequency instabilities that otherwise
tend to occur near black holes

use a coordinate system compactified to spatial infinity to place the physically
correct outer boundary conditions




Generalized Harmonic Coordinates

e Generalized harmonic coordinates introduce a set of

arbitrary source functions HY into the usual definition of
harmonic coordinates

o When this condition (specifically its gradient) is
substituted for certain terms in the Einstein equations,
and the HY are promoted to the status of independent
functions, the principle part of the equation for eac/;
metric element reduces to a simple wave eqguation




Generalized Harmonic Coordinates

The claim then is that a solution to the coupled Einstein-harmonic
eguations
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which include (arbitrary) evolution equations for the source
functions, plus additional matter evolution equations, will also be a
solution to the Einstein equations provided the harmonic constraints

and their first time derivative are satisfied at the initial time.
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An evolution scheme based upon this
decomposition

e The idea (following Garfinkle [ PRD 65, 044029 (2002)] ; see also
Szilagyi & Winicour [PRD 68, 041501 (2003)] ) is to construct an
evolution scheme based directly upon the preceding equations

— the system of equations is manifestly hyperbolic (if the metric is non-
singular and maintains a definite signature)

e the hope is that it would be simple to discretize using standard numerical
techniques

— the "constraint” equations are the generalized harmonic coordinate
conditions

e simpler to control “constraint violating modes” when present

— one can view the source functions as being analogous to the lapse and

shift in an ADM style decomposition, encoding the 4 coordinate degrees
of freedom




Coordinate Issues

e The source functions encode the coordinate
degrees of freedom of the spacetime

— how does one specify HY to achieve a particular
slicing/spatial gauge?

— what class of evolutions equations for A/“ can be used
that will not adversely affect the well posedness of
the system of equations?




Specifying the spacetime coordinates

e A way to gain insight into how a given A“ could affect the
coordinates is to appeal to the ADM metric decomposition
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Specifying the spacetime coordinates

e Therefore, Ht(H’) can be chosen to drive a (B') to
desired values

— for example, the following slicing conditions are all designed to
keep the lapse from “collapsing”, and have so far proven useful

in removing some of the coordinate problems with harmonic
time slicing
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Constraint Damping

Following a suggestion by C. Gundlach ([C. Gundlach, J. M. Martin-
Garcia, G. Calabrese, I. Hinder, gr-gqc/0504114] based on earlier work
by Brodbeck et al [J. Math. Phys. 40, 909 (1999)] ) modify the Einstein
equations in harmonic form as follows:

For positive K, Gundlach et al have shown that all constraint-
violations with finite wavelength are damped for linear perturbations
around flat spacetime



Effect of constraint damping

A

e Axisymmetric simulation of a
Schwarzschild black hole,
Painleve-Gullstrand coords.

Left and right simulations use
/dentical parameters except
for the use of constraint
damping

with constraint damping, A=h
without constraint damping, A=h
with, A=h/2

without, A=h/2

k=1/(2M)




Effect of constraint damping

With constraint damping, K=0, C=1.737 M§ With constraint damping, K=0, C=1.737 M2

c h=h,/2
— h=h,/4
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Merger of a close binary system

Initial data

at this stage I am most interested in the dynamics of binary systems in general
relativity, and not with trying to produce an initial set-up that mimics a particular
astrophysical scenario

hence, use boosted scalar field collapse to set up the binary

choice for initial geometry and scalar field profile:
o spatial metric and its first time derivative is conformally flat

e maximal (gives initial value of lapse and time derivative of conformal factor) and
harmonic (gives initial time derivatives of lapse and shift)

e Hamiltonian and Momentum constraints solved for initial values of the conformal factor
and shift, respectively

advantages of this approach
e “simple” in that initial time slice is singularity free

o all non-trivial initial geometry is driven by the scalar field—when the scalar field
amplitude is zero we recover Minkowski spacetime

disadvantages
e ad-hoc in choice of parameters to produce a desired binary system

 uncontrollable amount of “junk” initial radiation (scalar and gravitational) in the
spacetime; though a//present initial data schemes suffer from this




Merger of a close binary system

e (Gauge conditions:
a-1_
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— Note: this is strictly speaking not spatial harmonic gauge, which
ics defined in terms of the “vector” components of the source
unction

e Constraint damping term




—— high res. 7
med. res.
——-low res. —

Simulation (center or mass) coordinates

o Initi

ally:

equal mass components

eccentricitye ~ 0 - 0.2

coordinate separation of black holes ~ 13M
proper distance between horizons ~ 16M
velocity of each black hole ~0.16

spin angular momentum = 0

ADM Mass ~ 2.4M
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--med. res. _..;;jjjf,»'_-_-_' -
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Reduced mass frame; heavier lines are position
or BH 1 relative to BH 2 (green star); thinner
black lines are reference elljpses

e Final black hole:
- M~ 1.9M
— Kerr parameter a ~ 0.70
— error ~ 5%
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Scalar field @r, uncompactified coordinates




Scalar field @r, compactified (code) coordinates

X =tan(X71/2),y =tan(y7n/2),Z = tan(z7n/?2)

t=0M




Summary of computation —
medium resolution simulation

e base grid resolution 333

— 9 |evels of 2:1 mesh refinement (effective finest grid
resolution of 81923) ... switched to 8 levels maximum
at around 150M

— ~ 50,000 time steps on finest level

— ~550 hours on 48 nodes of UBC’s vnp4 Xeon cluster
(26,000 CPU hours total)

— maximum total memory usage ~ 10GB, disk usage ~
100GB (and this is very infrequent output!)




Scalar field ¢. r, z=0 slice
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Scalar field ¢. r, z=0 slice
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Scalar field ¢. r, z=0 slice
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Scalar field ¢. r, z=0 slice
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Scalar field ¢. r, z=0 slice
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Waveform extraction

e Can we extract a waveform in light of

— unphysical radiation in initial data

— Compactification; i.e. poor resolution near outer
boundaries

— AMR “noise”: finding the waveform typically requires
taking derivatives of metric functions; enhances noise

e Answer seems to be yes, though the caveat is
how accurately does one need the waveform.




Waveform extraction

Real component of the Newman-Penrose scalar %, times r,
z=0 slice of the solution




Waveform extraction

Real component of the Newman-Penrose scalar %, times r,
x=0 slice of the solution




Waveform extraction

Imaginary component of the Newman-Penrose scalar %,
times r, x=0 slice of the solution




Waveform extraction
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Energy radiated ?

e On some sphere of radius R, a large distance from the source:

dE _ R’
dt 4w

t t o,
p(t.6.9) = | W,(t.6.pdt ] W,(t',6,pat

— [ p(t,6,9)dQ

Difficult to integrate accurately from a humerical simulation:

— R=25M : 4.7% (% relative to 2M)
R=50M : 3.2%
R=75M : 2.7%
R=100M : 2.3%

e Other estimates:

Horizon mass : 5%

From comparison of wave amplitudes from boosted, head-on collision with
similar simulation parameters, and known estimates from the literature, also
suggests total is around 5% [Hobill et al, PRD 52, 2044 (1995)];




What does this wave represent?

e Scale the system to M, = 10 solar masses ~ 2x103! kg

radius of each black hole in the binary is ~ 30km
radius of final black hole is ~ 55km
distance where the wave was extracted from the final black hole ~ 750km

frequency of the wave ~ 600Hz

fractional oscillatory “distortion” in space induced by the wave transverse to the
direction of propagation has a maximum amplitude AL/L ~ 3x103

e a2m tall person will get stretched/squeezed by ~ 6mm as the wave passes

e LIGO’s arms would change ~ 12m. Wave amplitude decays like 1/distance from source;
e.g. at 10Mpc the change in arms ~ 3x10-8m (which is in the ballpark of what LIGO is
trying to measure!!)

despite the seemingly small amplitude for the wave, the energy it carries is
enormous — around 3x103% kg c2 ~ 2x10% J ~ 2x10°% ergs




Not-so-close binaries

e A couple of questions

— the waveform seems to be dominated by the
collision/ringdown phase of the orbit. Is this generic?
l.e. will the last few cycles of a waveform carry away
as much as 5% of the energy of the binary?

— how generic is this plunge/ringdown signal to
changes in initial conditions?




Not-so-close binaries

o Initially:

— boost parameter k=0.19

. k=D.2087E — equal mass components

—— k=0.2125 ~TTT — proper distance between horizons ~ 22M

e NOTE:

— Simulations do n70t have identical
gauge/evolution parameters

t=0M

Lapse function a, k=.21
example, orbital plane




Waveforms

Total energy radiated,
measured at r=30M, integrating

— k=0.21, r=30M, till t=320M
k=0.205, r=30M, i ~ k=.21:4%

=0

- k=.205:5.7%

So, ~3-4% energy in
plunge-ring down??

NOTE:

— not convergence tested,
though previous single
orbit example suggests
“low” resolution
simulations over-estimate
energy by ~20%

the fact that the two orbit
case starts to separate
could be entirely due to
numerical error; even so,
the hint at ratio of
energies of orbit/plunge-
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Genericity of waveforms?

Merger from “scattering” initial data
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Lapse function a, orbital plane
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Waveforms

—— k=0.205 example, r=30M,, initial sep. ~ 22M,
.- scattering example, r=30M,, inital sep. ~ 56M, —
— — - first orbit example, r=256M,, initial sep. ~16M,—
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Note: different M,’s, and shifted in time




Summary -- near future work

o \What physics can one hope to extract from
these simulations over the next year or so?

— very broad initial survey of the qualitative features of
the last stages of binary mergers

e pick a handful of orbital parameters (mass ratio, eccentricity,
initial separation, individual black hole spins) widely
separated in parameter space

— computational requirements make it completely impractical to

try to come up with a template bank for LIGO at this stage
(ever?)

o try to understand the general features of the emitted waves,
the total energy radiated, and range of final spins as a
function of the initial parameters, etc.




