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Introduction

Solve Einstein’s equations on a spatially compact domain with smooth
boundaries.

Boundary conditions should

(i) be compatible with the constraints (constraint-preserving)

(ii) be physically reasonable (e.g. minimize reflections)

(iii) yield a well posed initial-boundary value formulation
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Introduction

A well posed initial-boundary value formulation was given by
Friedrich & Nagy, 1999 in terms of a tetrad-based formulation
involving the Weyl tensor as a dynamical variable.

Numerical implementation for related formulations is underway
(Reula, Bardeen, Buchman, S,...)

For metric-based approaches, only partial results are available
(reflection symmetry, linearization about Minkowski space).

Relevant for: Outer/interface boundary conditions; Cauchy
characteristic/perturbative matching, constraint projection, elliptic
gauge conditions, boundary of a star,...
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Introduction
The IBVF for Einstein’s equations

Possible to write Einstein evolution equations in first order
symmetric hyperbolic (FOSH) form
u̇ = A(u)u + F(u), where A(u) = Ai(u)∂i = −A(u)†.

For such systems the specification of maximally dissipative
boundary conditions (uin = Suout + data) leads to well posed
initial-boundary value problems.

Standard discretization techniques which guarantee numerical
convergence of the linearized system.
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Experiments

Einstein evolution equations (Einstein-Christoffel formulation)
(Frittelli & Reula, Anderson & York, ...)

£nα = −αK,

£ngij = −2Kij ,

£nKij =
1

2
gab

(

−∂adbij + 2∂(id|ab|j) − ∂(idj)ab − 2∂(iAj)

)

+ γ gijH + l.o.

£ndkij = −2∂kKij + η gk(iMj) + χ gijMk + l.o.

£nAi = −KAi − gab∂iKab + ξMi + l.o.

with some parameters γ, η, χ ξ.
Constraints: H = 0, Mj = 0 (Hamiltonian and momentum),
dkij = ∂kgij , Ai = ∂iα/α.
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Experiments

Boundary conditions:

Three constraint-preserving (differential) boundary conditions.

One boundary condition that is related to a gauge degree of
freedom.

Two boundary conditions that control the “physical” degrees of
freedom.

Numerical implementation in spherically symmetry with scalar field
seems stable (Calabrese, Lehner, Tiglio, PRD 65, 104031 (2002)).
Also used for the numerical evolution of bubble spacetimes
(Lehner & S).
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Experiments
Consider linear hyperbolic system with constant coefficients
(high-frequency limit),

∂tu = Au, t > 0, x > 0,
where Au ≡ Ax∂xu + Ay∂yu + Az∂zu with differential boundary
conditions

M(∂x, ∂y, ∂z)u = h(t, y, z).
Look for solutions of the form u(t, x, y, z) = est+i(wyy+wzz)f(x), where
Re(s) > 0, wy, wz real.
Test: If h = 0 there should be no such solutions. Otherwise the system
is ill posed: Because if there is such a solution for some s, Re(s) > 0,
then there is also a solution uα for αs, α > 0 and for each fixed t

|uα(t, x, y, z)|/|uα(0, x, y, z)| = eαRe(s)t → ∞.

(i.e. the operator s −A is not invertible for all Re(s) > 0.)
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Experiments

This leads to a determinant condition.

Very effective in ruling out “candidate” constraint-preserving
boundary conditions (Calabrese, OS, J. Math. Phys. 44, 3888
(2003)).

Ill posed modes have non-trivial dependency in the directions
tangential to the boundary.
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Experiments

3D Brill wave evolutions (OS and M. Tiglio, gr-qc/0412115) with and
without constraint-preserving boundary conditions.
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CPBC without Weyl Control (determinant condition satisfied)
Weak Brill waves
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Maximally dissipative
Weak Brill waves

similar results by Kidder, Lindblom, Scheel, Pfeiffer, Phys.Rev.D71,
064020 (2005).
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Experiments
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OS and M. Tiglio, gr-qc/0412115
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Model problem
Model problem for the Einstein-Christoffel type of formulations of
Einstein’s field equations (u = (φ, Ai, Ej , Wij) ↔ (βi, gij , Kij , Γkij))

∂tAi = Ei + ∇iφ,

∂tEj = ∇i(Wij − Wji) + αCj ,

∂tWij = ∇iEj + ∇i∇jφ +
β

2
δijC,

with constraints C ≡ −∇kEk = 0, Cj ≡ δkl(∇jWkl −∇kWjl) = 0.
Constraints propagate according to

∂tC = −α∇jCj ,

∂tCj = −β∇jC.

Strongly hyperbolic if αβ > 0.
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Model problem

Cauchy problem well posed in L2(R3) if we adopt, for example, the
temporal gauge φ = 0.
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Model problem
Next, consider the case where we want to solve the equations on an
open subset Ω ⊂ R

3 with smooth boundary ∂Ω.

Constraint preservation:

∂tC = −α∇jCj ,

∂tCj = −β∇jC. C =

√
αβ

β
nkCk ,

where n denotes the unit outward normal to the boundary.

Nonincreasing of total energy flux through the boundary:

E|| + (Wn|| − W||n) = d
f]

E|| − (Wn|| − W||n)
]

+ h||,

where |d| < 1 and h|| is some boundary data (controls normal
component of Poynting vector).

IBVF of Einstein’s field equations – p.15/21



Model problem
Next, consider the case where we want to solve the equations on an
open subset Ω ⊂ R

3 with smooth boundary ∂Ω.

Constraint preservation:

∂tC = −α∇jCj ,

∂tCj = −β∇jC. C =

√
αβ

β
nkCk ,

where n denotes the unit outward normal to the boundary.

Nonincreasing of total energy flux through the boundary:

E|| + (Wn|| − W||n) = d
f]

E|| − (Wn|| − W||n)
]

+ h||,

where |d| < 1 and h|| is some boundary data (controls normal
component of Poynting vector).

IBVF of Einstein’s field equations – p.15/21



Model problem
Choose the gauge condition φ = 0 (temporal gauge ↔ fixed shift).

Is the resulting problem well posed in L2 (u = (Ai, Ej , Wij))? In
particular, are there constants a > 0 and b ∈ R such that

‖u(t, .)‖L2(Ω) ≤ aebt

[

‖u0‖L2(Ω) +

∫ t

0

‖h(s)‖L2(∂Ω) ds

]

.

for solutions with initial data u(t = 0) = u0 and boundary data h?

Let f be a smooth, time-independent, harmonic function and set

Ai = t∇if, Ej = ∇if, Wij = t∇i∇jf.

Evolution and constraint equations are satisfied. Initial and
boundary data only depend on first derivatives of f whereas the
solution depends on second derivatives of f .
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Model problem

Physically, these solutions represent an electrostatic solution with
nontrivial electric charge density at the boundary. They are
represented in a “bad” gauge because we adopted the temporal
gauge.

In asymptotically flat space, these solutions do not exist.

This motivates the following gauge condition:

∆φ = −∇kEk, with boundary condition ∂nφ = −En .

In this gauge, the above solutions are φ = −f + const, Ai = 0.

We are allowed to set nkAk = 0 at the boundary.

IBVF of Einstein’s field equations – p.17/21



Model problem

Physically, these solutions represent an electrostatic solution with
nontrivial electric charge density at the boundary. They are
represented in a “bad” gauge because we adopted the temporal
gauge.

In asymptotically flat space, these solutions do not exist.

This motivates the following gauge condition:

∆φ = −∇kEk, with boundary condition ∂nφ = −En .

In this gauge, the above solutions are φ = −f + const, Ai = 0.

We are allowed to set nkAk = 0 at the boundary.

IBVF of Einstein’s field equations – p.17/21



Model problem

Physically, these solutions represent an electrostatic solution with
nontrivial electric charge density at the boundary. They are
represented in a “bad” gauge because we adopted the temporal
gauge.

In asymptotically flat space, these solutions do not exist.

This motivates the following gauge condition:

∆φ = −∇kEk, with boundary condition ∂nφ = −En .

In this gauge, the above solutions are φ = −f + const, Ai = 0.

We are allowed to set nkAk = 0 at the boundary.

IBVF of Einstein’s field equations – p.17/21



Model problem

Physically, these solutions represent an electrostatic solution with
nontrivial electric charge density at the boundary. They are
represented in a “bad” gauge because we adopted the temporal
gauge.

In asymptotically flat space, these solutions do not exist.

This motivates the following gauge condition:

∆φ = −∇kEk, with boundary condition ∂nφ = −En .

In this gauge, the above solutions are φ = −f + const, Ai = 0.

We are allowed to set nkAk = 0 at the boundary.

IBVF of Einstein’s field equations – p.17/21



Model problem

Theorem (Reula & S, JHDE, Vol. 2, 2005)
“The resulting initial-boundary value problem is well posed in a Hilbert
space that controls the L2 norm of the main variables and the
constraint variables.
Furthermore, solutions satisfying the constraints initially automatically
satisfy the constraints at later times.”
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Model problem

Idea of the proof:

Estimate L2 norm Econs of constraint variables.

Estimate the physical energy,

Ephys =
1

2

∫

Ω

(

EjEj +
1

2
F ijFij

)

d3x, Fij = Wij − Wji :

Ėphys = α
∫

Ω
EjCjd

3x ≤ const(Ephys + Econs).

Estimate the symmetric part of Wij using the constraints, the
boundary condition niAi = 0 and the inequality

∫

Ω

∇iAj · ∇iAjd
3x ≤

∫

Ω

[

2∇[iAj] · ∇[iAj] + (∇iA
i)2

]

d3x.
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Model problem

Idea of the proof:

For existence, rewrite the problem as an abstract Cauchy problem

d

dt
u(t) = Au(t), u(0) = u0 ∈ H,

where A : D(A) ⊂ H → H is a densely-defined linear operator on
a Hilbert space.

Show that this operator (or its closure) defines a strongly
continuous semigroup P (t) = exp(tA) on H.
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Concluding remarks

IBVP for metric based formulations of Einstein’s equations not yet
understood Friedrich & Nagy solved the problem for a formulation
based on tetrads and the Weyl tensor.

One can propose constraint-preserving boundary conditions for
hyperbolic formulations of Einstein’s equations and perform
analytic (determinant condition) and numerical tests.

Determinant condition is not sufficient.

Model problem shows: Careful with the gauge choice near the
boundary. Problem solved with elliptic gauge condition and use of
“physical energy”; symmetrizer energy irrelevant.

Ongoing work with G. Nagy for the IBVP for Einstein’s equations,
linearized about stationary solutions.
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