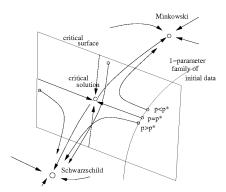
Critical collapse of a rotating radiation fluid

Carsten Gundlach (with Thomas Baumgarte) PRL 2016

Mathematical Sciences University of Southampton

GR21, Columbia University, 11-15 July 2016

- Fine-tune initial data to threshold of collapse
- (Approximately) scale-invariant physics
 - Arbitrarily small black hole mass
 - Universality and critical exponents
- Critical solution: self-similar with exactly one growing mode



• Continuous self-similarity in adapted coordinates (τ, x^i) and variables $Z(\mathbf{x})$

$$g_{\mu
u}(au,\mathbf{x})=e^{-2 au} ilde{g}_{\mu
u}(\mathbf{x}) \qquad
ho(au,\mathbf{x})=e^{2 au} ilde{
ho}(\mathbf{x}), \qquad \mathbf{v}=\mathbf{v}(\mathbf{x})$$

 \bullet τ indicates scale

any length
$$\sim e^{-\tau}$$
, $Ricc \sim e^{2\tau}$, $M \sim e^{-(D-3)\tau}$

- CSS if and only if $Z(\mathbf{x}, \tau) = Z(\mathbf{x})$
- \bullet but τ can also be the time coordinate

Consider 2-parameter families of initial data with "strength" p
 and "rotation" q

$$M(p, -\mathbf{q}) = M(p, \mathbf{q})$$

 $J(p, -\mathbf{q}) = -J(p, \mathbf{q})$

- Restrict to axisymmetry
- Can assume $p_* = 0$ for q = 0

• Critical solution Z_* , unique growing perturbation Z_0 , dominant l=1 axial perturbation Z_1

$$Z(\mathbf{x}, \tau) \simeq Z_*(\mathbf{x}) + P(p, q) e^{\lambda_0 \tau} Z_0(\mathbf{x}) + Q(p, q) e^{\lambda_1 \tau} Z_1(\mathbf{x}) + \dots$$

• From $q \rightarrow -q$ symmetry

$$P \simeq p - Kq^2$$

$$Q \simeq q$$

to leading order in p, q^2

When AH forms/dispersion starts

$$Z(\mathbf{x},\tau) \simeq Z_*(\mathbf{x}) + P(p,q) e^{\lambda_0 \tau} Z_0(\mathbf{x}) + Q(p,q) e^{\lambda_1 \tau} Z_1(\mathbf{x})$$

$$\simeq Z_*(\mathbf{x}) \pm Z_0(\mathbf{x}) + \delta Z_1(\mathbf{x})$$

• This happens at $\tau_*(p,q)$ defined by

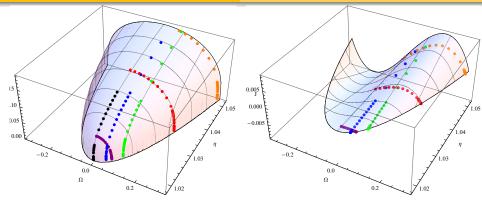
$$|P| e^{\lambda_0 \tau_*} = 1 \qquad \Rightarrow \qquad \delta := Q|P|^{-\frac{\lambda_1}{\lambda_0}}$$

• Black hole forms for P > 0, with

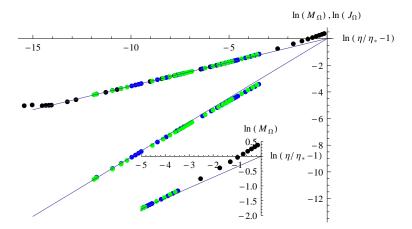
$$M \simeq e^{-\tau_*} F_M(\delta) \simeq P^{\frac{1}{\lambda_0}} 1 \simeq (p - Kq^2)^{\frac{1}{\lambda_0}}$$
$$J \simeq e^{-2\tau_*} F_J(\delta) \simeq P^{\frac{2}{\lambda_0}} \delta \simeq (p - Kq^2)^{\frac{2-\lambda_1}{\lambda_0}} q$$

Overview

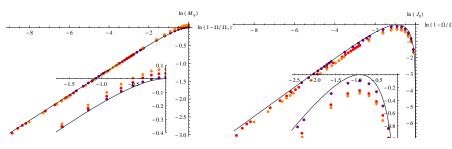
Scaling for constant Ω Scaling for constant η



- Black hole mass M (left) and angular momentum J (right), against η (strength) and Ω (rotation)
- fluid density $\rho \sim \eta e^{-r^2}$
- angular velocity $\sim \Omega/(1+r^2)$
- Same colour-coding of data points on next two slides



• In M (upper curves) and In J (lower curves), against $\ln(\eta/\eta_*-1)$



ullet In M (left) and In J (right), against In $(1-\Omega/\Omega_*)$

- For the fluid with $P = \kappa \rho$ with $0 < \kappa < 1/9$, the dominant roation mode Z_1 is unstable (ballerina effect)
- δ now **increases** as $P \rightarrow 0$
- A black hole now forms for

$$P(p,q)>0$$
 and $|\delta(p,q)|<$ some $\delta_{
m crit}$

- What is the universal value of J/M^2 at $\delta = \delta_{\rm crit}$?
- What is the universal maximum of J/M^2 ?