Naked singularity formation in vacuum gravitational collapse

Carsten Gundlach

Mathematical Sciences University of Southampton

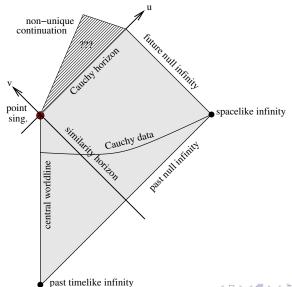
London PDE seminar, 21 January 2021

Plan of the talk

- 1. Critical collapse as a natural mechanism for forming naked singularities in general relativity
- 2. Mathematical work on naked singularity formation
- 3. Numerical work on vacuum critical collapse
- This talk is not in historical order
- Can I assume you know: metric and line element, Riemann tensor, simple spacetime diagrams (null curves at 45 degrees)?
- Upcoming update of my article in Living Reviews in Relativity

Naked singularities in critical collapse

Here I am interested in this kind of naked singularity:



Self-similarity in general relativity

- Continuous self-similarity (CSS)
 - Homothetic vector field X, $\mathcal{L}_X g_{ab} = -2g_{ab}$
 - In adapted coordinates $x^a := (\tau, x, \theta^A)$:

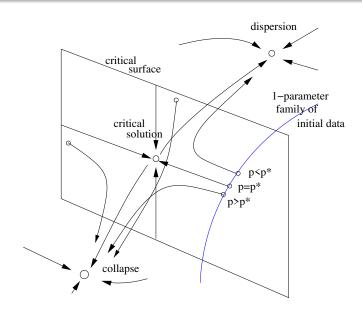
$$g_{ab} = e^{-2\tau} \tilde{g}_{ab}(x, \theta^A) \quad \Rightarrow \quad R^{ab}{}_{cd} = e^{2\tau} \tilde{R}^{ab}{}_{cd}(x, \theta^A).$$

- If there is matter, $G_{ab}=8\pi\,T_{ab}$, then $T^a{}_b=e^{2\tau}\,\tilde{T}^a{}_b$
- Familiar from Newtonian fluids (Riemann problem, Sedov-Taylor blast wave): $\tau := -\ln t$, x := r/t
- Discrete self-similarity (DSS)
 - Discrete conformal isometry Φ , $\Phi_* g_{ab} = e^{-2\Delta} g_{ab}$
 - In adapted coordinates: \tilde{g}_{ab} , $\tilde{R}^{ab}{}_{cd}$, $\tilde{T}^{a}{}_{b}$ now depend periodically on τ with period Δ
 - Essentially unknown elsewhere in physics
- Requires scale-invariant physics (massless scalar field, ultrarelativistic fluid, vacuum GR, ...)

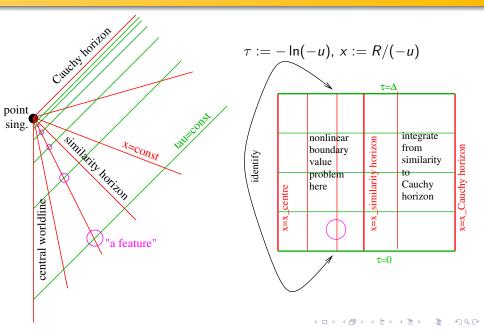
Critical collapse: a natural mechanism for naked singularity formation

- A "critical solution" exists with the following properties
 - CSS or DSS with \tilde{g}_{ab} regular \Rightarrow pointlike curvature singularity at $\tau=\infty$
 - future lightcone of this singularity is regular
 ⇒ locally and globally naked
 - $\bullet \ \ \text{single-mode unstable} \Leftarrow \ \ \text{attractor of codimension one} \\$
- Take a generic one-parameter family of smooth, asymptotically flat initial data...
- ... fine-tune the parameter p to the threshold p_* of black-hole formation...
- ...which is also the attracting manifold of the critical solution...
- ...and we get a naked singularity from smooth initial data

Phase space picture



How to construct the critical solution



Critical scaling

 While the time evolution is near the critical solution (here, assumed to be CSS)

$$ilde{g}(x, au)\simeq ilde{g}_*(x)+(p-p_*)e^{\lambda_0 au}(\delta ilde{g})_0(x)+ ext{decaying modes}$$

with $\lambda_0>0$, all other $\mathrm{Re}\lambda_i<0$

Essentially dimensional analysis gives

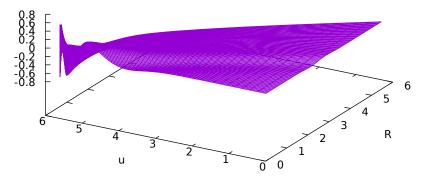
$$M_{
m black\ hole} \sim (p-p_*)^{1/\lambda_0}$$
 maximal curvature $\sim (p_*-p)^{-2/\lambda_0}$

for any one-parameter family of initial data

• Critical exponents for black hole spin and charge, universality classes...

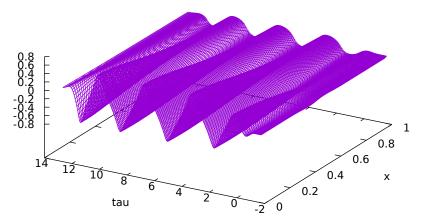
Numerical example: spherical scalar field

- $ds^2 = -4\Omega^2(u, v) du dv + R^2(u, v)(d\theta^2 + \sin^2\theta d\varphi^2)$
- Gaussian initial data for ψ at u=0, amplitude fine-tuned to just below black hole threshold
- Plot ψ against u and R(u, v)



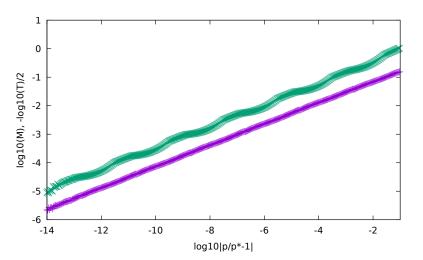
Same example: scale echoing

- Plot ψ again, now against $\tau(u) := -\ln(u_* u)$ and $x := R(u, v)/(u_* u)$, we have fitted $u_* \simeq 5.60924$
- \bullet We can read off $\Delta \simeq$ 3.44 as the period in τ



Same example: scaling laws

Mass and curvature scaling over 13 orders of magnitude in $|p-p_*|$



Examples of critical collapse

• Massless scalar field (DSS with $\Delta \simeq 3.44$)

$$R_{ab} = 8\pi \nabla_a \psi \nabla_b \psi, \qquad \nabla_a \nabla^a \psi = 0$$

(Choptuik 1993, CG 1995, 1997, Martín-García & CG 1999, Baumgarte 2018, Reiterer & Trubowitz 2019)

Ultrarelativistic perfect fluid (CSS)

$$T_{ab} = (\rho + P)u_au_b + Pg_{ab}, \qquad P = k\rho$$

(Evans & Coleman 1994, Maison 1996, CG 2002)

- Vacuum $R_{ab} = 0$ in polarised axisymmetry (see later)
- Electrovacuum in polarised axisymmetry (Baumgarte, CG & Hilditch 2019)

Rigorous results on the spherical scalar field (Christodoulou 1986-1999)

- Work in Bondi coordinates
- Generic regular initial data: Sufficient conditions for dispersal and collapse (in class of bounded variation)
- Restrict to CSS:
 - Ansatz $\psi(x,\tau) = f(x) + k\tau$ compatible with CSS \Rightarrow ODE system in x
 - Impose regularity at centre x = 0
 - 1-parameter family of non-unique continuations through similarity horizon $x = x_{SH}$
 - Open set has naked singularities
- Shows explicitly that these and any other naked singularity solutions have some codimension (in class of bounded variation): a family of perturbations of the initial data forms a black hole

Choptuik solution is analytic (Reiterer & Trubowitz 2019)

- First-order formulation of the Einstein equations with only quadratic nonlinearities (using tetrad and connection as variables)
- Null coordinates, Chebychev series in x, Fourier series in τ , quadratic terms by convolution
- Start from a very accurate approximate solution (truncated series) in rational arithmetic
- Contraction argument to show the full series converges with finite convergence radius ⇒ solution is analytic from centre to slightly beyond similarity horizon
- Computer-aided proof

Comments on Christodoulou and R&T

- ullet All CSS naked singularity solutions are not regular ($C^{1,\epsilon}$) at the similarity horizon
- C's explicit perturbation that destroys *any* naked singularity solution is not regular $(C^{1,\epsilon'})$ at the singularity horizon
- By contrast, critical solution seen in critical collapse is DSS and analytic (R&T)...
- ...and believed to be an attractor of codimension one (from critical collapse experiments, numerical perturbation spectrum of critical solution)
- But in what function space can one hope to prove this?
 - Analytic, smooth, energy norm, bounded variation?
 - Nonlinear, linear, mode stability?
 - Attractor only locally in spacetime (full critical solution is not asymptotically flat)

CSS vacuum (Rodnianski & Shlapentokh-Rothmann 2017, 2019)

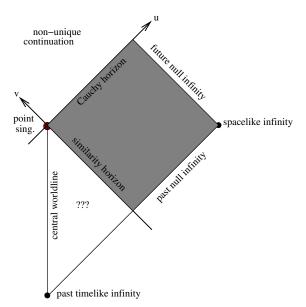
Double null coordinates

$$ds^2 = -4\Omega^2 du dv + g_{AB}(d\theta^A - b^A du)(d\theta^B - b^B du)$$

Lines of constant (u, θ^A) are outgoing null geodesics

- CSS data on v = 0 (similarity horizon) and "admissible" data on u = -1. No other symmetries
- Existence of a class of naked singularity solutions for $0 \le v < \infty$, $-1 \le u < \infty$ (to the future of the similarity horizon)
- Future work to extend to the past, from the singularity horizon to a regular centre
- Essential for naked singularities: X^a winds around generators $\nabla^a v$ of similarity horizon because $b^A \neq 0$

Rodnianski & Shlapentokh-Rothmann's naked singularities



Comments on R&S-R

Homothetic vector field is (in my notation)

$$X = \nu_u \, u \frac{\partial}{\partial u} + \nu_v \, v \frac{\partial}{\partial v}$$

 ν_u and ν_v are geometric invariants if coordinates are regular at v=0 (similarity horizon) and u=0 (Cauchy horizon) (previously noted by C, R&T for spherical scalar field)

- Naked singularities require $\nu_{\rm v} < 1$ (previously R&T found $\nu \simeq 0.6138$ for scalar field critical solution)
- Metric is only $C^{1,\epsilon}$ on similarity horizon (just like Christodoulou's naked singularity solutions)
- CSS is easier but not quite regular. Critical solutions must be analytic and therefore DSS?
- DSS vacuum critical solution conjectured but not yet known even approximately

Numerical experiments in vacuum collapse

- All using 3+1 formulations of the Einstein equations, restricted to polarised axisymmetry
- Abrahams & Evans 1993
 - ullet tentative scaling with $\gamma \simeq 0.36$ down to 0.2 ADM mass
 - \bullet tentative scale echoing with $\Delta \simeq 0.6$ and 3 echos
 - tentative universality for different one-parameter families
- Later attempts by other groups cannot fine-tune well enough
- Hilditch, Weyhausen & Brügmann 2017
 - tentative scaling with $\gamma \simeq 0.36$
 - ullet wiggle in scaling law suggests $\Delta \simeq 3$
 - tentative universality for different one-parameter families
- Ledvinka & Khirnov 2021
 - ullet $\gamma \simeq 0.33, 0.37, 0.19$ for three one-parameter families
 - irregular scale echoing (see next slide)

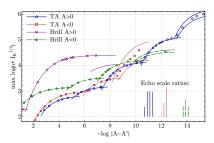


FIG. 1. Extremes of Kretschmann invariant I_K for $A \prec A^*$ correspond to spikes of curvature in subcritical spacetimes. Because the echo amplitudes exhibit smooth dependence on A, we show curve segments representing typically linear fits of $\log I_K^{\text{max}}$ vs. A through respective points. Effect of the uncertainty of A^* is also shown for the last segments. Echo scale ratios at A^* are also depicted in logarithmic scale – in DSS case they would universally approach DSS factor e^{Δ} .

 $\gamma_{\rm ta+} \doteq 0.33$, $\gamma_{\rm ta-} \doteq 0.37$ and $\gamma_{\rm Brill-} \doteq 0.19$. According to [4] $\gamma_{\text{Brill}+} \doteq 0.37$. In our fits we excluded data points corresponding to the first echo so that a direct influence of the form of initial data is suppressed. Similar approach applied to results [4] seems to result in $\gamma_{Brill+} > 0.5$.

These differences of the exponent γ seem to be significant, but we cannot decide if the slopes in Fig. 1 really settle towards a specific value for a given family or

C. Gundlach

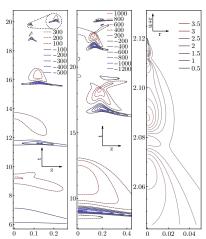


FIG. 2. The spacetime curvature in a sub-critical collapse shown using a dimensionless quantity $(\tau^* - \tau)^2 \zeta$ (see text). Left: $A_{\text{ta+}} = \overline{1.30080828}, z_0 = 0.08415\sigma, \tau^* = 3.88\sigma$; center: $A_{\text{Brill}-} = -3.5090625, z_0 = 0.161\sigma, \tau^* = 5.9\sigma \text{(coordinates } t, z$ in units of σ); right: near-critical massless scalar field collapse.

Using null coordinates for collapse simulations

$$ds^{2} = -2G du dx - H du^{2} + R^{2} \left[e^{2F} (d\theta + \beta du)^{2} + e^{-2F} \sin^{2} \theta d\varphi^{2} \right]$$

- Lines of constant (u, θ, φ) are outgoing null geodesics emanating from R = 0, forming null cones of constant u
- H can be chosen freely and controls coordinate x along null geodesics
 - $H = 0 \Rightarrow x$ is a null coordinate
 - R = x Bondi coordinates \Rightarrow ODE for H
 - $G = \text{const} \Rightarrow x$ is affine parameter, ODE for H
- G, β , $R_{,u}$, $f_{,u}$, $\psi_{,u}$ found by integration along null rays
- My gauge choice R = R(u, x) only ("local shifted Bondi"), with $x = x_0$ roughly ingoing null
 - Work on domain of dependence
 - Grid shrinks to a point
 - x and $-\ln(u_* u)$ are potentially adapted to DSS

My null coordinates adapted to DSS

