Example data for Figure 6(a) on Irrigation treatment A cross factored with sowing density treatment B in a fully replicated design: A B Y Control Low 2.046 Control Low 1.780 Control Low 8.150 Control Low 4.020 Control High 16.778 Control High 22.871 Control High 23.142 Control High 21.105 Water Low 12.300 Water Low 19.100 Water Low 13.651 Water Low 14.991 Water High 14.240 Water High 7.900 Water High 14.043 Water High 11.953 3.1 TWO FACTOR FULLY CROSS-FACTORED MODEL Y = B|A + e Analysis of terms: B|A Model 3.1(i) A and B are both fixed factors: Source DF SS MS F P 1 A 1 4.29 4.29 0.50 0.495 2 B 1 195.96 195.96 22.65 <0.001 3 B*A 1 398.06 398.06 46.01 <0.001 4 S(B*A) 12 103.81 8.65 Total 15 702.12 Example data for Figure 6(b) on Irrigation treatment A cross factored with sowing density treatment B in a design of randomised blocks (S): S A B Y 1 Control Low 2.046 2 Control Low 1.780 3 Control Low 4.020 4 Control Low 8.150 1 Control High 16.778 2 Control High 21.105 3 Control High 23.142 4 Control High 22.871 1 Water Low 13.651 2 Water Low 19.100 3 Water Low 12.300 4 Water Low 14.991 1 Water High 11.953 2 Water High 14.240 3 Water High 7.900 4 Water High 14.043 4.2 TWO FACTOR RANDOMISED BLOCK MODEL Y = S'|B|A Analysis of terms: S|B|A - S*B*A (Model 1) or S + B|A (Model 2) Model 4.2(i) A and B are fixed factors, S is a random blocking factor: Model_1 Model_2 Source DF SS MS F P F P 1 S 3 40.40 13.47 - - 1.91 0.198 2 A 1 4.29 4.29 0.27 0.639 0.61 0.455 3 B 1 195.96 195.96 1365.41 <0.001 27.81 0.001 4 B*A 1 398.06 398.06 77.78 0.003 56.49 <0.001 5 S*A 3 47.63 15.88 - - - - 6 S*B 3 0.43 0.14 - - - - 7 S*B*A 3 15.35 5.12 - - - - 8 P(S*B*A) 0 - - Total 15 702.12 __________________________________________________________________ Doncaster, C. P. & Davey, A. J. H. (2007) Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. Cambridge: Cambridge University Press. http://www.southampton.ac.uk/~cpd/anovas/datasets/