
A Design Search Algorithm for Generalized Linear Models

D.C. Woods∗

Southampton Statistical Sciences Research Institute
University of Southampton

Introduction

The search algorithm presented here is capable of finding either exact or continuous designs
for generalized linear models, either locally D-optimal designs under a given model or ro-
bust designs which compromise across a class of models. Background and details of the
statistical methods are given in Woods, Lewis, Eccleston and Russell (2006), available at
http://www.maths.soton.ac.uk/staff/woods/glm design.

Simulated annealing

A simulated annealing algorithm (see, for example, Spall (2003, ch.8) and Haines (1987)) is used
to solve the optimization problem. Simulated annealing is modelled on the cooling of materials
in metallurgy. It is a probabilistic optimization technique, as opposed to a greedy algorithm,
meaning that changes to the current state (design) are accepted according to a transition
probability. In the original formulation, for a minimization problem, transitions which decrease
the energy function (objective function) are accepted with probability 1 but transitions that
increase the energy function also have non-zero probability of being accepted, allowing the
algorithm to move away from local optima in the search space. The transition probabilities
are determined according to the Boltzmann distribution, as used in the Metropolis-Hastings
algorithm (Metropolis et al., 1953). Under this formulation, the probability of accepting an
“uphill” transition decreases with the increase in energy between the initial state and the
transition and also decreases as the temperature of the system decreases. The initial temperature
is user-controlled and often a geometric cooling scheme is employed with the temperature
decreasing by a fixed factor after a set number of iterations. A nice description of simulated
annealing can be found at http://en.wikipedia.org/wiki/Simulated annealing.

In a design of experiments setting with continuous variables, a simulated annealing algorithm
makes random perturbations to the design points, compares the existing design to the perturbed
design and accepts the perturbation with probability inversely proportional to the increase in
the objective function (in a minimization problem). Changes which improve the design are al-
ways accepted; changes which result in a singular design, that is, a design from which the model
cannot be estimated, are always rejected. As the system cools, i.e. the temperature parameter
decreases, the probability of accepting poor moves also decreases. When the temperature is 0,
a greedy algorithm results.

The algorithm allows the user to specify the initial acceptance probability, the geometric cooling
parameter, the parameter controlling the geometric decrease in the step size, the number of
iterations between changes in step size (perturbation size), the maximum number of iterations
and the minimum step size. The stopping rule of the algorithm is either (i) the maximum
number of iterations has been reached or (ii) the minimum step size has been obtained.

∗Email: D.C.Woods@maths.soton.ac.uk
WWW: http://www.maths.soton.ac.uk/staff/woods

1



Compiling and running

The algorithm is written in C++ and was developed under Linux using the g++ compiler. It
requires the GNU Scientific Library (GSL) (http://www.gnu.org/software/gsl/). A typical
commandline to compile and link the code on a Linux system with GSL installed in its default
location would be

g++ -o cont search.run cont glm search.cpp -lm -lgsl -lgslcblas

Input and output

By default, input is read from a file called cont search.in. See cont search.inREADME for a
description of an example input file. The default output file is output.out. These can be altered
by changing the relevant lines near the beginning of cont glm search.cpp.

Continuous designs

To find continuous (or approximate) designs, where each support point has a corresponding
design weight indicating the proportion of experimental effort to be allocated to that point, it
is necessary to specify an extra variable (placed last in the input file) with range [0,1]. When
specifying the terms in the model, only include this variable as a “0”. Specify “approx” as the
type of design. See cont search.inCONT for an example.

For various examples using continuous designs, the optimality of the designs from the algorithm
has been confirmed using the necessary and sufficient conditions that can be established; see
Woods and Lewis (2005).

C++ classes

Eight different C++ classes are used in the algorithm code and are included in the zip file
glm search SA.zip.

• matrix class - a class of 2D arrays that interfaces with GSL functions for matrices

• matrixoperations class - a class of static utilities for use with matrix class

• random class - a static utility class for the generation of pseudo-random numbers from
various distributions using the GSL functions

• cont design class - objects of this class hold designs under a particular model

• model class - these objects hold the link function and model parameters

• criteria class - static utility class with methods for evaluating the objective functions for
the D- and A- optimality criteria

• update class - static utility class with methods for the updating formula for D-optimality
under exact designs

• cont search class - static utility class with methods for simulated annealing design search

2



Table 1: Performance of the SA algorithm for examples 1 and 2, based on 10 random starts.

Example Runs Step-size Update Average Average
Run Time Obj. fun. value

1 16 1.1 No 1m35.56 2.3010
1 16 1.1 Yes 1m26.49 2.2406
1 16 1.01 No 9m21.11 2.2793
1 16 1.01 Yes 5m29.10 2.2558
1 24 1.1 No 3m32.80 97.4659
1 24 1.1 Yes 2m32.90 97.0874
1 24 1.01 No 22m15.32 98.6193
1 24 1.01 Yes 9m45.66 98.7167

Performance and tuning

The algorithm was timed finding exact designs for Example 1 from Section 5 of Woods et al
(2006). Average timings for 10 design searches are given in Table 1, both with and without
the use of an updating formula based on that given for linear models by Fedorov (1972, p.162).
All runs of the algorithm were performed on a desktop PC with a 3.2Ghz Intel Pentium IV
processor. The computational cost of complete objective function evaluations is dependent
upon the design size n whereas evaluation of the objective function via the updating formula
is independent of n. Hence, greater computational savings accrue from using the updating
formula for problems with large design sizes.

The “step size” column gives the settings for the geometric decrease in the step size, which
only occurs when the average number of accepted transitions is between 0.4 and 0.6. For these
timings, this average was taken over 20 iterations. The temperature was cooled continually, at
a rate of 0.9. Choice of these parameters determines the length of the design search and, in
some cases, the thoroughness of the search. Therefore a trade-off is required. Large examples
with many variables usually require the most intensive search of the design space and therefore
require considerable search time. An important technique is then to decrease the annealing
parameters but run several searches in parallel using, for example, a Beowulf cluster.

Acknowledgements

This work took place as part of the Combechem e-Science project (EPSRC grant GR/R67729).

References

Fedorov, V.V. (1972), Theory of Optimal Experiments. Academic Press, New York.

Haines, L.M. (1987). The application of the annealing algorithm to the construction of exact
optimal designs for linear-regression models. Technometrics, 29, 439-447.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.

Spall, J.C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation
and Control. Wiley, New York.

3



Woods, D.C. and Lewis, S.M. (2005). Continuous optimal designs under model uncertainty.
Technical Report 389, School of Mathematics, University of Southampton.

Woods, D.C., Lewis, S.M., Eccleston, J.A. and Russell, K.G. (2006). Designs for generalized
linear models with several variables and model uncertainty. Technometrics, 48, 284-292.

4


