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Topics to be Covered

◮ Introduction to Regge Theory- the “classical” Pomeron

◮ Building a Reggeon in Quantum Field Theory

◮ The “reggeized” gluon

◮ The QCD Pomeron - the BFKL Equation

◮ Some Applications

◮ Diffraction and the Colour Dipole Approach

◮ Running the Coupling

◮ Higher Order Corrections in BFKL

◮ Soft and hard Pomerons
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Strong Interactions Before QCD
Extract information from unitarity and analyticity properties of
S-matrix.
Unitarity - Optical Theorem

.

.

ℑmAαα = ∑
n

AαnA∗
nα

ℑmA(s, t = 0) =
1

2s
σTOT

Can be extended (Cutkosky Rules)

∆s Aαβ = ∑
cuts

AαnA∗
nβ

Leads to self-consistency relations for scattering amplitudes
(Bootstrap)
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Partial Wave Analysis

a

b

d

c
J

Aab→cd(s, t) = ∑
J

aJ(s)PJ(1− 2t/s), [cosθ = (1− 2t/s), mi → 0]

Crossing:

Aac̄→b̄d(s, t) = Aab→cd(t,s) = ∑
J

aJ(t)P(J,1− 2s/t)

In the limit s ≫ t (diffractive scattering)

P(J,1− 2s/t)∼ sJ

so that
Aac̄→b̄d(s, t)

s→∞→ ∑
J

bJ(t)s
J
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Sommerfeld-Watson Transformation

Aac̄→b̄d(s, t) =

∮
C

∑
η=±1

(2J+ 1)

sinπJ

(

η+ eiπJ
)

2
aη(J, t)P(J,2s/t)

.

.

l-plane

C

0

C

+

�

n

�

1 2 3�

1

2

Poles at integer J
Deform contour to C′ For large
s, integral along C′ is zero.
Pick up only contributions
from poles in J-plane.
N.B. Important (and possibly
incorrect) assumption is that
all singularities in J-plane are
poles.

A(s, t)
s→∞→ ∑

i

(

η+ eiπαi(t)
)

2
βi(t)s

αi(t)

αi are the poles in the J-plane
For s → ∞ we only need the leading pole.

QCD Pomeron University of Southampton



Reggeons in QFT The reggeized Gluon The BFKL Equation Applications Colour Dipoles Running Coupling Higher

Chew-Frautschi Plot
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Continue to negative t
.

.

�

Reggeon



ac



bd

a

b

c

d

A ∼ γac(t)γbd(t)s
αR(t)

(Factorisation)
We can think of Regge exchange as the superposition of the exchange
of many particles.
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The Pomeron
Leading trajectory
Using Optical Theorem

A(s,0)
s→∞→ ∼ sα(0)

implies
σTOT ∼ sα(0)−1

Okun-Pomeranchuk Theorem
If exchanged Regge trajectory does NOT have the quantum numbers
of the vacuum, α(0) < 1.
Foldy-Peierls Theorem
If α(0) ≥ 1, the Regge trajectory exchanged MUST have the quantum
numbers of the vacuum.

THIS IS THE POMERON

N.B. α(0) > 1 is NOT allowed by unitarity.
Froissart-Martin bound (derived from unitarity)

σTOT < A ln2 s
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Landshoff-Donnachie fit

αP(t) = 1.08 + 0.25(GeV−2)t
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Landshoff-Donnachie fit

αP(t) = 1.08 + 0.25(GeV−2)t
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Landshoff-Donnachie fit

αP(t) = 1.08 + 0.25(GeV−2)t
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Confronting Regge Theory with QCD

◮ How is the Pomeron explained in QCD?

◮ Data fitted by Landshoff-Donnachie cannot be calculated in
purely perturbative QCD - non perturbative effects must be
included

◮ Expect a hint of the Pomeron from perturbative QCD - but we
don’t really find one

◮ Phenomenological models have to be used to explain data.

◮ Nevertheless perturbative QCD in the kinematic regime where
Pomerons are expected to dominate give some interesting results
(solutions to the BFKL equation) which can be compared with
data in certain cases.
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Toy Model

LI = λφ3

Use Optical theorem to calculate ℑmA(
√

s,q)
l

l

0

@

@

@

@

p

1

p

0

1

p

2

p

0

2

k k + q

Leading order
Neglecting masses.

k = (k+,k−,k)

q = (0,0,q)

dLIPS =
1

2
dk+dk−d2kδ(k+(

√
s− k−)−k2)

ℑmA = (2π)λ4
∫

dk+dk−d2k
δ(k+(

√
s− k−)−k2)δ(k−(

√
s− k+)−k2)

(k+k−−k2)(k+k−− (k−q)2)

≈
∫

d2k
1

k2(k−q)2
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Higher Orders

In higher order we want to sum all terms ∼ λ2n lnn(s).
Is this approximation valid?
Maybe not - renormalon studies suggest that leading logarithm sums
are not reliable.
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@

@

@

@

@

@

@

k

1

k

2

k

1

+ q

k

2

+ q

p

1

p

0

1

p

2

p

0

2

λ6

8π

∫
dk+1 dk−1 d2k1dk+2 dk−2 d2k2δ(k+1 (

√
s− k−1 )−k1

2)

δ((k2 − k1)
+(k2 − k1)

−− (k1 −k2)
2)δ(k−2 − (

√
s− k+2 )−k2

2)

(k+1 k−1 −k1
2)(k+1 k−1 − (k1 −q

2)(k+2 k−2 −k2
2)(k+2 k−2 − (k2 −q)2)

=
∫ √

s

k+1

dk+2

(k+2 − k+1 )

d2k1d2k2

k1
2(k1 −q)2

k2
2(k2 −q)2

Integral over k+2 gives ln(s)
Dominated by the region

√
s ≫ k+2 ≫ k+1 .
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On the other hand

.

.

etc

give an extra power of λ2, but NO extra ln(s).
Such graphs may be dropped in the leading log approximation.
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Multi-rung Ladder Graph
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@

@
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@

.

.

.

.

.

.

.

.

.

.

.

.

k

i�1

k

i

k

i+1

ℑmAn ∼
∫ √

s/2

k+n−1

dk+n

(k+n − k+n−1)
· · ·

∫ √
s/2

k+1

dk+2

(k+2 − k+2 )

lnn s

Dominant region of k+ integration

√
s ≫ k+n ≫ k+n−1 · · · ≫ k+2 ≫ k+1

“Multi-Regge regime”

In this model only uncrossed ladder graphs contribute to the leading
log approximation.
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Multi-rung Ladder Graph
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.

.

.

.

.

.

.

.

.

k

i�1

k

i

k

i+1

√
s ≫ k+n ≫ k+n−1 · · · ≫ k+2 ≫ k+1

Similarly

√
s ≪ k−n ≪ k−n−1 · · · ≫ k−2 ≫ k−1

The on-shell delta functions for cut lines

δ(k−i+1k+i − (ki −ki−1)
2)

Propagators of the vertical lines

1

k+i k−i −ki
2
≈− 1

ki
2

(since k+i ≪ ki
2/k−i )

In this model only uncrossed ladder graphs contribute to the leading
log approximation.
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Crossed-rung Graphs
@

@

@

@

@

@

@

@

@

@

@

k

i�1

k

i

k

i+1

k

i�1

+ q

l

l2 = (ki + ki+1 − ki−1)
2 = (k+i + k+i+1 − k+i−1)(k

−
i + k−i+1 − k−i−1)−∼ ki

2

≈ k+i+1k−i−1 ≫ k+i+1k−i ≫ k2

In the multi-Regge region crossed-ladder graphs are suppressed
because denominators of propagators are larger.
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Integral Equation

.

.

A = + A

ℑmA(
√

s,q) = ℑmA0 +
λ2

16π3

∫ √
s/2 dk+

k+
d2k

k2(k−q)2
ℑmA(k+,q)

↑
effect of adding rung.

QCD Pomeron University of Southampton
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Mellin Transform

(Equivalent to Sommerfeld-Watson transformation)

Ã(ω) =

∫ ∞

s0

(

s

s0

)−ω−1

A(s)ds

If A(s) ∼ sω0

Ã(ω) ∼ 1

(ω−ω0)

Mellin transform has a pole at ω = ω0.
Furthermore

Ã(ω)B̃(ω) =

∫ ∞

s0

(

s

s0

)−ω−1

A(s)ds

∫ ∞

s0

(

s′

s0

)−ω−1

B(s′)ds′

=

∫ ∞

s0

(

s

s0

)−ω−1∫
dk+

k+
A(k+)B

(√
s

k+

)
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Integral Equation in Mellin Space

ℑmÃ(ω) = ℑmÃ0 +
λ2

16π3

1

ω

∫
d2k

k2(k−q)2
ℑmÃ(ω)

Solution:

ℑmÃ(ω) ∼ 1

(ω−ω0)

ℑmA(
√

s,q)∼ sω0

ω0 =
λ2

16π3

∫
d2k

k2(k−q)2

QCD Pomeron University of Southampton



Reggeons in QFT The reggeized Gluon The BFKL Equation Applications Colour Dipoles Running Coupling Higher

QCD

◮ Vertices contain momenta - cannot just consider uncrossed ladder
graphs

◮ Need to account for tree graphs and loop corrections for cut
graphs - “ladders within ladders” - bootstrap (self-consistency
relations)

◮ Need to account for colour factors - distinguish between colour
singlet and colour octet exchange

QCD Pomeron University of Southampton
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Colour Octet Exchange

a q

p

1

p

2

�

1

�

0

1

�

2

�

0

2

For |q|2 ≪ s use eikonal approximation

.

.g
p1

≈ 2gp
µ
1

A
(8)
0 ≈ g2 2s

q2
τa ⊗ τa (s = p1 ·p2)

NLO
p

1

p

2

p

1

p

2

(a) (b)

k k-q

b a b a

ℑmA(8) =
αsCA

4π2

∫
d2k

−q2

k2(k−q)2
g2 2s

q2
τa ⊗ τa

N.B. Infrared divergent - regularise by any means
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NNLO
p

1

p

2

(a)

k

1

k

2

a

b

c �

p

1

p

2

(b)

c

�

k

1

� k

2

k

2

b

p

1

p

2

(c)

c

�

k

1

� k

2

k

2

b

p

1

p

2

(d)

c

�

k

1

� k

2

k

1

b

p

1

p

2

(e)

c

�

k

1

� k

2

k

1

b
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Effective vertex

k+1 ≫ k+2 , k−2 ≫ k−1
p

1

p

2

k

1

k

2

�

�

��

�

Γσ
+−(k1,k2) = 2gf abc

(

k+1 +
2k1

2

k−2
,k−2 +

2k2
2

k+1
,−(k1 +k2)

)

(other components negligible)
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p

1

p

2

�

1

b

1

.

.

.

�

i

b

i

�

i�1

b

i�1

.

.

.

�

n

b

n

k

1

k

2

k

i�1

k

i

k

i+1

k

n

k

n+1

Generalises to all orders at
tree-level in multi-Regge region
(leading log approximation)
Each vertex replaced by
Γσi
+−(ki,ki+1)
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Virtual Corrections

Need graphs such as
p

1

p

2

@

@

@

@

(a)

k

1

k

1

� k

2

k

2

� q

p

1

p

2

@

@

@

@

(b)

Absorb L.H. part of graph
into NLO correction to
gluon exchange

ℑmA(8) =
αsCA

4π2

∫
d2k2

−q2εG(k2
2) ln(s)

k2
2(k2 −q)2

g2 2s

q2
τa ⊗ τa

εG(k2
2) = −CAαs

4π2

∫
d2k1

k2
2

k1
2(k1 −k2)

2
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p1

p2

❅

❅

❅

❅

LHS part indicates that exchanged gluon has been corrected.
(also need graph with correction of RHS of cut)
Up to NNLO we get

A(8)(
√

s,q) = A
(8)
0 (

√
s,q)

(

1+ εG(q
2) ln(s)+

1

2
ε2

G(q
2) ln2(s)

)

QCD Pomeron University of Southampton
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Bootstrap - ladders within ladders

Suggests a self-consistency ansatz for colour octet exchange in
multi-Regge region
p

1

p

2

�

�

�

�

.

.

.

�

�

�

�

�

�

.

.

.

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

.

.

.

�

�

�

�

�

�

.

.

.

�

�

�

�

k

1

k

1

� q

k

2

k

2

� q

k

i�1

k

i�1

� q

k

i

k

i

� q

k

i+1

k

i+1

� q

k

n

k

n

� q

k

n+1

k

n+1

� q

Assume solution in
which vertical gluons are
“reggeized”
i.e. propagator of ith gluon
is replaced by

1

ki
2

(

k+i−1

k+i

)εG(ki
2)

N.B. in multi-Regge re-
gion

si+1,i−1 ∼ k+i+1k−i−1 ∼ ki
2

k+i−1

k+i
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Define F (8)(s,k,q)

A(8)(s,q) =

∫
d2kF (8)(s,k,q)

F (8)(s,k,q) is the amplitude for a particle to emit two reggeized
gluons with (transverse) momenta k and (k−q) in a colour octet
state.

.

.

�
�

�
�

F (8)

k k − q
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.

.

�
�

�
�

❅

❅

❅

❅

❅

❅

F (8)

k

=

�
�

�
�

❅

❅

❅

❅

❅

❅

❅

❅

❅

+

Γσ

+−
Γσ

+−

�
�

�
�

�
�

�
�

❅

❅

❅

❅

❅

❅

❅

❅

❅

F (8)

k′

k

ℑmF (8)(
√

s,k,q) = ℑmF
(8)

0 (
√

s,k,q)−

αsCA

4π2

∫ √
s dk+′

k+′ Γσ
+−(k

′,k)Γσ
+−(k

′− q,k− q)
ℑmF

(8)
0 (k+′,k′,q)

k′2(k′−q)2

×
(

k+′

k+

)ε(k2)+ε((k−q)
2
)
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Take Mellin transform

F̃ (8)(ω,k,q) =

∫ ∞

s0

s−ω−1F (8)(
√

s,k,q)ds

Expanding the expression for Γ gives the integral equation in Mellin
space

ℑmF̃ (8)(ω,k,q)=ℑmF̃
(8)

0 (ω,k,q)− αsCA

4π2

∫
d2k′ ℑmF̃ (8)(ω,k′,q)

ω− εG(k2)− εG((k−q)2)

× 1

k′2(k′−q)2

(

q2 − k2(k′−q)2 +k′2(k−q)2

(k−k′)2

)

Integrate both sides over k to get

ℑmÃ(8)(ω,q)=ℑmÃ
(8)
0 (ω,q)− αsCA

4π2

∫
d2k′d2k

ℑmF̃ (8)(ω,k′,q)

ω− εG(k2)− εG((k−q)2)

× 1

k′2(k′−q)2

(

q2 − k2(k′−q)2 +k′2(k−q)2

(k−k′)2

)
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ℑmÃ(8)(ω,q)=ℑmÃ
(8)
0 (ω,q)− αsCA

4π2

∫
d2k′d2k

ℑmF̃ (8)(ω,k′,q)

ω− εG(k2)− εG((k−q)2)

× 1

k′2(k′−q)2

(

q2 − k2(k′−q)2 +k′2(k−q)2

(k−k′)2

)

BUT

−αsCA

4π2

∫
d2k′ q2

k′2(k−q)2
= εG(q

2)

−αsCA

4π2

∫
d2k′ k2

k′2(k′−k)2
= εG(k

2)

−αsCA

4π2

∫
d2k′ (k−q)2

(k′−q
2(k′−k)2

= εG((k−q)2)

Solved by

ℑmÃ(8)(ω,q)∼ 1

ω− εG(q2)
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This justifies the ansatz and shows that the reggeized gluon is given
(to all orders in perturbation - in the leading log approximation)
Exchange of a colour octet in the Regge region s ≫ t

.

.

s → k 1

k2

( s

k2

)εG(k
2)

where

εG(q
2) = −αsCA

4π2

∫
d2k

q2

k2(k−q)2

This is IR divergent, but since it is not a colour singlet process it is
unphysical.
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The Pomeron in (perturbative) QCD

◮ Pomeron must be a colour singlet

◮ At leading order this is achieved by exchanging two gluons in a
colour singlet state.

◮ As in the case of reggeized gluon, this can be generalised in
leading log. approximation by

◮ replacing gluons exchanged in t-channel by reggeized gluons
◮ building ladders using the effective vertices Γσ

+−

QCD Pomeron University of Southampton
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�

�

�

�

�
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�

�

k

1

k

1

� q

k

2

k

2

� q

f =

�

�

�

� +

�

�

�

�

�

�

�

�

k

1

k

1

� q

k

2

k

2

� q

k

0

�

�

�

�

f

y y

For q = 0

f (
√

s,k1,k2) = δ2(k1 −k2)−
αCA

2π2

∫
d2k′

∫ √
s

dk+f (k+,k′,k2)

×
(

k+1
k+′

)2εG(k
′2)

Γσ
+−(k1,k

′)Γσ
+−(k1,k

′)

k′4
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BFKL Equation at zero momentum transfer

After a HUGE amount of algebra we get (in Mellin space)

ω f̃ (ω,k1,k2) = δ2(k1 −k2) +
αCA

π2

∫
d2k′

(k1 −k′)2

[

f̃ (ω,k′,k2)

− k1
2

k′2 +(k′−k1)
2

f̃ (ω,k1,k2)

]

N.B. Integrand is finite as k1 → k′

Integral is IR finite as expected for a colour singlet amplitude.
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Solving the Equation

Write

αCA

π2

∫
d2k′

(k1 −k′)2

[

f̃ (ω,k′,k2) −
k1

2

k′2 +(k′−k1)
2

f̃ (ω,k1,k2)

]

as
K0 · f̃

Solution may be written as

f̃ ω,k1,k2) = ∑
i

φi(k1)φ
∗
i ((k2)

(ω−λi)

where
K0 ·φi = λiφi
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Eigenfunctions and Eigenvalues of BFKL Kernel

Eigenfunctions:, φn,ν(k) = (k2)−1/2+iνeinθ

Eigenvalues:
αsCA

π
χn(ν)

χ(ν) = 2Ψ(1)−Ψ

(

(n+ 1)

2
+ iν

)

−Ψ

(

(n+ 1)

2
− iν

)

General solution (k = (k,θ))

f̃ (ω,k1,k2) =
∞

∑
n=0

∫ ∞

−∞

dν

2π2k1k2

(

k1
2

k2
2

)iν
ein(θ1−θ2)

ω−αsχn(ν)

where

αs ≡
αsCA

π
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At large s we need only the right-most singularity of the Mellin
transform.
Set n = 0

Invert Mellin transform to get

f (
√

s,k1,k2) =
∫

dν

2πk1k2

(

k1

k2

)iν

sαsχ0(ν)

χ0(ν) = 2Ψ(1)−Ψ

(

1

2
+ iν

)

−Ψ

(

1

2
− iν

)

= 4ln(2)− 14ζ(3)ν2 + · · ·

Integral can be performed in saddle-point approximation (truncate χ0

at O(ν2))

f (
√

s,k1,k2)∼
1

k1k2

s4αs ln(2) 1
√

ln(s)
exp

{ − ln2(k1/k2)

14ζ(3)αs ln(s)

}

THE QCD POMERON
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Properties of BFKL Pomeron

f (
√

s,k1,k2)∼
1

k1k2

s4αs ln(2) 1
√

ln(s)
exp

{ − ln2(k1/k2)

14ζ(3)αs ln(s)

}

◮ Exchange of colour singlet object in leading log. approximation

◮ Terms in ln(s) indicate that Pomeron has a cut with a
branch-point at

4ln(2)αs

◮ The amplitude grows very fast as s → ∞ - violates unitarity
(needs correcting)

◮ Does NOT resemble the Landshoff-Donnachie pomeron (∼ s.08) in
any way !!

QCD Pomeron University of Southampton



Reggeons in QFT The reggeized Gluon The BFKL Equation Applications Colour Dipoles Running Coupling Higher

Impact factors

�

�

�

�

�

�

�

�

p

1

p

2

�

1

�

2

k

1

k

1

� q

k

2

k

2

� q

f

In order to calculate the amplitude
for a physical process, the gluons at
the top and bottom of the BFKL
ladder must be attached to physical
initial and final states. The ampli-
tude for this process is

A =

∫
d2k1

k1
2

d2k2

k2
2

Φ1(k1)Φ2(k2)

×f (s,k1,k2,q)

Φ1 and Φ2 are process dependent
impact factors, but they can some-
times be calculated in perturbation
theory.
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For the perturbation expansion to be totally reliable, the impact
factors should only have support for k ≫ ΛQCD

This is not usually possible - but it is often possible that one of the
impact factors is in the perturbative regime.
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Hamiltonian Approach to BFKL Equation
For the forward case (q = 0) the BFKL equation may be written

αs

π

[∫
d2k′k2

k′2 +(k− k′)2
f (k)−

∫
d2k′

(k− k′)2
f (k′)

]

= ωf (k)

The first term gives

αs ln

(

k2

λ2

)

and the second is the convolution with the (2-dimensional) Fourier
transform of

− ln
(

ρ2λ2
)

where the impact parameter ρ is conjugate to the transverse
momentum k.
Consider the wavefunction

φ̃(ρ) =

∫
d2keik·ρφ(k)

and write the 2-d vector ρ as a complex number ρ = ρx + iρy,
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The BFKL equation may be written as

Ĥφ̃(ρ,ρ∗) = ωφ̃(ρ,ρ∗)

where the Hamiltonian operator is

Ĥ = αs

[

ln(k̂)+ ln(ρ)+ h.c.
]

with the operator

k̂ =−i
∂

∂ρ

Note that the Hamiltonian is “holomorphically separable” i.e. it can
be written as a sum of terms depending only on ρ and only on ρ∗’
This means that the eigenfunctions are of the form

φ(ρ,ρ∗) = φ1(ρ)φ2(ρ
∗)
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The holomorphic Hamiltonian Ĥ = αs

[

ln(k̂)+ ln(ρ)
]

is invariant under rescaling

ρ → Λρ, k → k

Λ
,

i.e. under the Weyl group whose generator is

M̂ = ρ
∂

∂ρ

.
The eigenfunctions are therefore representations of this group, which
are

φm(ρ) = ρm

so that the general eigenfunction of the full Hamiltonian is

φm,m(ρ,ρ
∗) = ρm(ρ∗)m
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ρm(ρ∗)m

It can be shown that
[

ln(k̂)+ ln(ρ)
]

ρm = Ψ(1)− 1

2
(Ψ(m)−Ψ(1−m))

m and m do not have to be related, but by performing a trivial phase
rotation on ρ the imaginary parts can be taken to be equal.
In order for the eigenfunctions to be normalizable we require

ℜe{m+m}=−1,

so that we have

m =
1

2
+ n+ iν, m =

1

2
− n+ iν, (n integer, ,ν real )

φm,m(ρ,ρ
∗) =

1

|ρ|

(

ρ

ρ∗

)n

|ρ|2iν

n is called the “conformal weight”, if it is zero then there is no
dependence of the eigenfunction on the azimuthal angle of the 2-d
vector φ.
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BFKL Equation for t 6= 0

∂

∂ ln(s)
f (s,k1,k2,q) = δ2(k1 −k2)

+
ᾱs

2π

∫
d2k′

[

−q2

(k′−q)2
k2

1

f (s,k′,k2,q)

+
1

(k′−k1)
2

(

f (s,k′,k2,q)−
k2

1 f (s,k1,k2,q)

k′2 +(k1 −k′)2

)

.

+
1

(k′−k1)
2

(

(k1 −q)2
k′2 f (s,k′,k2,q)

(k′−q)2
k2

1

− (k1 −q)2
f (s,k1,k2,q)

(k′−q)2 +(k1 −k′)2

)]

.
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Solutions for t 6= 0

Solution for t =−q2, is still of the form

f (s,k1,k2,q) =
∫

dνsαsχ0(ν) fν(k1,k2,q)

fν(k1,k2,q) = k2
2(k1 −q)2

∫
d2ρ1d2ρ′

1d2ρ2d2ρ′
2ek2·(ρ2−ρ′2)−k1·(ρ1−ρ′1)+q·(ρ1−ρ2)

×δ2(ρ1 +ρ′
1 −ρ2 −ρ′

2) f̃ ν(ρ1,ρ
′
1,ρ2,ρ

′
2)

f̃ ν(ρ1,ρ
′
1,ρ2,ρ

′
2) =

∫
d2ρ0

(

(ρ1 −ρ′
1)

2(ρ2 −ρ0)
2(ρ′

2 −ρ0)
2

(ρ2 −ρ′
2)

2(ρ1 −ρ0)2(ρ′
1 −ρ0)2

)iν

Cut with (t-independent) branch-point 4αs ln(2).
t- dependence only in the eigenfunctions.
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Non-Forward Pomeron

For non-zero momentum transfer the wavefunction depends on two
impact parameters ρ1, ρ2 where ρ1 −ρ2 is conjugate to the pomeron
momentum transfer q.
The Hamiltonian is again separable into holomorphic and
anti-holomorphic parts

H̃12 = H12 +H12

Ĥ12 = αs

2

∑
i=1

[

ln(k̂i)+
1

k̂i

ln(ρ12)k̂i −Ψ(1)

]

, (ρ12 ≡ (ρ1 −ρ2)

This Hamiltonian is invariant under 2-D conformal (Möbius
transformations)

ρi →
aρi + b

cρi + d
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Ĥ12 = αs

2

∑
i=1

[

ln(k̂i)+
1

k̂i

ln(ρ12)k̂i −Ψ(1)

]

The Möbius transformations are generated by

M̂+ =
2

∑
i=1

∂

∂ρi

, M̂− =
2

∑
i=1

ρ2
i

∂

∂ρi

, M̂3 =
2

∑
i=1

ρi
∂

∂ρi

,

M̂2 ≡ M̂+M̂−+ M̂−M̂++ M̂3
3 =−ρ2

12

∂

∂ρ1

∂

∂ρ2

[M̂i, Ĥ12] = 0

The eigenfunctions of H12 are simultaneously eigenfunctions of M2

and M3
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φm(ρ1,ρ2)≡
(

ρ12

ρ1ρ2

)m

M̂2φm(ρi) = m(m− 1)φm(ρi), M̂3φm(ρi) = mφm(ρi)

Ĥ12φm(ρi) =
1

2
αs [2Ψ(1)−Ψ(m)−Ψ(1−m)]φm(ρi

The complete wavefunction is

φm,m(ρ1,ρ
∗
1,ρ2,ρ

∗
2) =

(

ρ12

ρ1ρ2

)m( ρ∗
12

ρ∗
1ρ∗

2

)m

with eigenvalue

ω = αs [2Ψ(1)−Ψ(m)−Ψ(m)−Ψ(1−m)−Ψ(1−m))
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There is a further degeneracy generated by the translation invariance.
The origin ρ0 is arbitrary, so strictly we should write

φmm(ρ1,ρ2,ρ0) =

(

ρ12

ρ10ρ20

)m( ρ∗
12

ρ∗
10ρ∗

20

)m

By making a phase rotation on all ρ we can require that m and m

have the same imaginary part, ν.
For normalizable wavefunctions we require ℜe{m+m}= 1 so that the
wavefunction may be written

φn,ν(ρ1,ρ2,ρ0) =

(

ρ12

ρ10ρ20

)(1/2+n+iν)( ρ∗
12

ρ∗
10ρ∗

20

)(1/2−n+iν)

=

[

ρ12ρ∗
10ρ∗

20

ρ∗
12ρ10ρ20

]n ∣
∣

∣

∣

ρ12

ρ10ρ20

∣

∣

∣

∣

(1+2iν)
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Deep Inelastic Scattering at Low-x

s = Q2 (1− x)

x
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.

.

k1

Q

k1

Q

+ + · · ·

Φ
γ∗
2 = 4πααs ∑

f

Q2
f

∫ 1

0
dρdτ

1− 2ρ(1−ρ)−2τ(1− τ)+12ρ(1−ρ)τ(1− τ)

Q2ρ(1−ρ)+k1
2τ(1− τ)

Define probability to find gluon inside proton with fractional
momentum x and transverse momentum k1

F (x,k1
2)≡ 1

2π3

∫
d2k2

k2
2

Φp(k2)f (Q
2/x,k1,k2)

Φp is unknown impact factor of proton (must be modelled)

F2(x,Q
2) =

Q2

4πα

∫
d2k1

k1
4

F (x,k1
2)Φ

γ∗
2 (Q2,k1)
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Insert expression for f (Q2/x,k1,k2)

F2(x,Q
2)∼

(

1

x

)4αs ln(2)
1

√

− ln(x)
exp

{

ln2(Q2/µ2)

56ζ(3)αs ln(x)

}

dashed line αs = 0.1
solid line αs = 0.2
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Relationship with DGLAP
Moments of structure functions:

FN(Q
2) =

∫ 1

0
xN−1F2(x,Q

2)dx =
Q2

4πα

∫
d2k1

k1
2

FN(k1)Φ
γ∗
2 (Q2,k1)

FN(k1)∼
∫

d2k2Φp(k2)

∫ − 1
2+i∞

− 1
2−i∞

dγ

(

k1
2

k2
2

)γ
1

N −αsχ(γ)

γ =
1

2
+ iν

χ(γ) = 2Ψ(1)−Ψ(γ)−Ψ(1− γ) =
1

γ
+ 2∑

r

ζ(2r+ 1)γ2r

Integral over γ picks up a pole at

γ = γ = χ−1

(

N

αs

)
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FN(k1)∼
∫

d2k2Φp(k2)

∫ − 1
2+i∞

− 1
2
−i∞

dγ

(

k1
2

k2
2

)γ
1

N −αsχ(γ)
∼
(

k1
2
)γ

FN(Q
2) =

Q2

4πα

∫
d2k1

k1
2

FN(k1)Φ
γ∗
2 (Q2,k1) ∼ (Q2)γ

[ Φ
γ∗
2 (Q2,k1) peaks at Q2 ∼ k1

2]
DGLAP equation:

∂

∂ ln(Q2)
FN(Q

2) = γFN(Q
2)

Invert

χ(γ) = 2Ψ(1)−Ψ(γ)−Ψ(1− γ) =
1

γ
+ 2∑

r

ζ(2r+ 1)γ2r

to get DGLAP gluon splitting function near N=0 to all orders in αs

lim
N→0

γN = γ =

(

αs

N

)

+ 2ζ(3)

(

αs

N

)4

+ · · ·
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Mono-jets

Is it possible to isolate a region of phase-space which has a “clean”
BFKL pomeron - no non-perturbative model.

Mono-jet: Parton with trans-
verse momentum kj and fraction
xj of proton momentum
If kj ≫ ΛQCD proton impact fac-
tor becomes

Φp = 8π2αsf
P
i (xj,kj)

xj ∼ 1 so PDF f P
i (xj,kj) is well-

measured.
Experimentally difficult to ob-
serve - jet in forward direction

∂2F2(x,Q
2,xj,xj)

∂ ln(x)∂kj
2

∼ Q2

∫
d2k1

k1
2

φ
γ∗
2 (k1)f (x/xj,k1,kj)f

P
i (xj,kj)
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Vector Meson Production

Another possible way of guaranteeing that the top and bottom of
BFKL ladder has k ≫ ΛQCD is in vector meson production

F







k

1

k

2





V

V

Either:
V is a heavy meson ( e.g. J/Ψ)

k1
2 ∼ k2

2 ∼ m2
J/Ψ

Or:
V is emitted with transverse mo-
mentum, −t >> Λ2

QCD

but −t ≪ s
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More realistically only one vector-meson is produced
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Diffraction
Processes for which −t ≪ s .

∆η

Elastic diffraction

∆η

Diffractive Dissociation

∆η

Double Diffractive Dissociation

In each case the “jets” have large positive or negative rapidity

η =
1

2
ln

(

E+ pz

E− pz

)

Large rapidity gap between the two jets

∆η ∼ ln

(

s

−t

)

Such rapidity gaps are possible is object exchanged between
scattering particles is a colour singlet (a pomeron)
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BFKL amplitude grows as

e4αs ln(2)∆η

Expect the number of events with rapidity gap ∆η to grow with ∆η
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Gap fraction f (∆η)
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Rapidity Gap Survival

The theoretical gap fraction calculated using BFKL should be larger
than that observed
The spectator partons which do NOT partake in the BFKL evolution
can nevertheless radiate gluons which can populate the rapidity gap
between the primary jets.
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Mini-jets

.p1
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Optical Theorem
Imaginary part of BFKL ampli-
tude is probability to find two
primary jets and any number of
low-energy “mini-jets”
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Write the BFKL amplitude as

f (s,k1,k2) = ∑
n

Pn lnn(s)

Pn is the probability that the ladder has n rungs (equal to the
probability that there are n mini-jets)
This gives an expression for the average number of mini-jets

< n >= ln(s)
∂

∂ ln(s)
f (s,k1,k2)

Using
f (s,k1,k2)∼ s4 ln(2)αs, (s ∼ e∆η)

< n >≈ 4ln(2)αs∆η

Can get < n >∼ 3− 4 at Tevatron - MORE AT LHC!!!
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Diffraction Quantum Optics

.

.k+

b

Describe a photon in terms of longitudinal momentum k+ and impact
parameter b, |k+,b〉
(“energy” eigenstate in light-cone quantisation)

|in〉=
∫

dk+d2bφin(k
+,b)|k+,b〉

|k+,b〉 are eigenstate of diffraction operator T

T|k+,b〉= t(k+,b)|k+,b〉

|out〉=
∫

dk+d2bφout(k
+,b)|k+,b〉
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e.g amplitude to scatter into state with transverse momentum k

A =

∫
dk+d2bφin(k

+,b) t(k+,b)〈k+′,k|k+,b〉=
∫

d2bφin(k
+,b) t(k+,b)eik·b

e.g. Diffraction due to opaque slab

.

.

D
θ

φin = e−αb (k+ ≫ α)

A =

∫
d2be−αbθ(b−D/2)eik+b sinθ

= 4
e−αD/2

k+ sinθ
cos(

1

2
k+Dsinθ)

Diffraction pattern
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Diffraction in Particle Scattering
In particle physics it is also the case that for diffractive processes an
incoming particle (helicity λ) described in terms of k+, b, λ is an
eigenstate of the diffractive scattering operator.

T|k+,b,λ〉= t(k+,bλ)|k+,b,λ〉

Incoming state with given k+ may be written

|in〉= ∑
λ

∫
d2bφin(b)|k+,b,λ〉

and out-going state with given k+ may be written

|out〉= ∑
λ

∫
d2bφout(b)|k+,b,λ〉

The diffractive scattering process is

.

.

b
T φoutφin
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Colour Dipole Approach
In QCD the diffraction eigenstates are colour dipoles of transverse
size c with (average) impact parameter b, with the coloured particles
carrying fractions z and 1− z of the longitudinal momentum k+.

.

.z

1 − z
c

b

The amplitude for an incoming particle to split into such a dipole
depends on z and c and likewise the amplitude for the dipole to form
a final state also depends on these variables so the diffraction
amplitude is given by∫

d2cdzφin(z,c)t(k
+,b,c)φout(z,c)

φin(z,c)φout(z,c) plays then role of the impact factor (Fourier
transformed) and t(k+,b,c) plays the part of the (process
independent) BFKL evolution.
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Dipole Evolution

As an incoming colour dipole propagates it can emit gluons,

.

.

thereby splitting into two colour dipoles.

.

.

w

y = b − c/2

x = b + c/2

Probability to emit dipole into rapidity interval dη and impact
parameter interval d2w is

dP =
αs

2π

(x− y)2

(x−w)2(w− y)2
d2wdη
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This increases the effective incoming dipole flux, thereby increasing
the cross-section.
Rapidity dependence of dipole scattering cross-section

∂σ(x,y,η)

∂η
=

αs

2π

∫
d2w

(x− y)2

(x−w)2(w− y)2

×(σ(x,w,η)+σ(y,w,η)−σ(x,y,η))

The first two terms represent the scattering of either of the two
dipoles from the target, the third represents the case in which the

original dipole is destroyed (virtual corrections) .

.

This is the BFKL equation in impact parameter space.
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From the Optical Theorem

σ(x,y,η) =
1

s
ℑm(t(

√
s,b,c)

b =
x+ y

2
, c = x− y, η ∼ ln(s)

Rapidity dependence of σ gives rapidity dependence of diffractive
scattering eigenvalue.
In the standard BFKL approach, impact factor is probability for
dipole production/decay - the rapidity dependence is encoded in the
gluon ladder.

z

2

1� z

2

r

2

r

2

r

1

z

1

1� z

1

r

1

In dipole approach the
gluon ladder is replaced
by 2 gluons (LO colour
singlet exchange) - ra-
pidity dependence is ab-
sorbed into the impact
factor leading to an in-
coming dipole density that
grows with rapidity.
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Saturation
Dipole density grows as

e4αs ln(2)η

Growth cannot continue for ever - unitarity violated.
As rapidity grows dipole density
increases so that dilute dipole ap-
proximation (single dipole scat-
tered by target) breaks down.
This is the basis of the

Colour Glass Condensate

Effective theory that describes
QCD in limit of high gluon den-
sity.
First applied to heavy ion colli-
sion (RHIC) but can also be ap-
plied to DIS at sufficiently low x

or diffractive scattering at suffi-
ciently large rapidities.
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Balitsky-Kovchegov Equation

In terms of the dipole evolution multiple scatterings are introduced by
adding a term that account for both dipoles to scatter form the target
simultaneously

∂σ(x,y,η)

∂η
=

αs

2π

∫
d2w

(x− y)2

(x−w)2(w− y)2

×
(

σ(x,w,η)+σ(y,w,η)−σ(x,y,η)− 1

2
σ(x,w,η)σ(y,w,η)

)

Non-linear equation (difficult to solve)
Analogous to

◮ Langevin equation (stochastic processes)

◮ Fisher, Kolmogov, Petrovski, Pisconov equation
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∂σ(x,y,η)

∂η
=

αs

2π

∫
d2w

(x− y)2

(x−w)2(w− y)2

×
(

σ(x,w,η)+σ(y,w,η)−σ(x,y,η)− 1

2
σ(x,w,η)σ(y,w,η)

)

Non-linear term moderates the growth so that σ saturates.
Expect a solution of the form

σ(x,y,η)∼
[

1− exp
(

−(x− y)2e4αs ln(2)η
)]

Unitarity is respected in terms of dipole density.
BUT to get a physical cross-section need F.T. in b = (x+ y)/2.
Region itself in b-space over which σ is non-zero (after saturating)
grows exponentially with rapidity - thereby violating the
Froissart-Martin bound)
The unitarization of the BFKL amplitude even with BK modification
is still not fully resolved.
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Cuts not Poles

The Mellin transform of the BFKL amplitude involves an integral
over ν.

f (ω,k1,k2)∼
∫

dν

(

k1
2

k2

)iν
1

ω−αsχ(ν)

The singularity is a cut with branch-point

αsχ(0)

Regge theory predicts a pole !
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Diffusion
As we go down the BFKL ladder away from the impact factor the
spread of k for which the integral has support, increases (until we
start getting near the bottom of the ladder)
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Bartels’ Cigar
The BFKL equation is a diffusion equation in η ∼ ln(s) and
ξ = ln(k2/Λ2

QCD).

η′

ξ′

−ξ

ξ

η

Eigenvalue equation

K0eiνξ = αsχ(ν)e
iνξ = αsχ

(

−i
∂

∂ξ

)

eiνξ

BFKL equation (as a diffusion equation)
[

∂

∂η
−αsχ

(

−i
∂

∂ξ

)]

f (η,ξ) = δ(ξ− ξ0)
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What value should be used for αs ?

αs(ξ)∼
CAβ0

πξ

Eigenfunction with eigenvalue ω

eiνξ

(

ν = χ−1

(

ωπξ

β0CA

))

ξc = 4ln(2)
β0CA

ωπ

[ For ξ > ξc, ν is imaginary]
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◮ Region II: ξ ≪ ξc Oscillating solution

◮ Region IV: ξ ≫ ξc Exponential decay

◮ Region III: ν is small

ω−χ(ν)≈
ω

β0CA

(ξ− ξc)

Expanding χ to order ν2

[

ωπ

β0CA

(ξ− ξc)+
χ′′(0)

2

∂2

∂ξ2

]

fω(ξ) = 0

Airy’s equation.
Airy functions chosen to match
functions and their derivatives in
regions II and IV (fixes phase at
II-III boundary).

◮ Region 1: ξ < ξ0, too small for
perturbation theory to be reliable.
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Now suppose the infrared behaviour in the
non-perturbative region fixes the phase at
the I-II boundary.
This means that only solutions with dis-
crete values of ω can fit between regions
I and II an obey the phase fixing at both
boundaries

This gives separate poles, rather than a cut for the BFKL amplitude -
consistent with the predictions of Regge theory.
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BFKL Kernel at Next-to Leading Logarithm Order

For the calculation in sub-leading log

◮ Cannot restrict the phase-space to the multi-Regge region

◮ Cannot neglect crossed-ladder and other graphs

◮ Cannot neglect section of ladder involving fermions

Took 22 years to complete the calculation !!
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BFKL kernel is invariant under two-dimensional conformal
transformations (SL2(C)).
In impact parameter space, kernel K (b,b′) is invariant under

b → Ab+B

Cb+D
(AD = BC)

Eigenfunctions of BFKL kernel are of the form

(

k2
)iν

also in higher orders (representations of conformal group)
with eigenvalues

ω = αsχ0(ν) + αs
2χ1(ν) + · · ·
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Leading s behaviour in NLO

ω(ν) = αsχ0(ν) + αs
2χ1(ν) + · · ·

f (s,k1,k2)∼
∫

dν

(

k1
2

k2
2

)iν

sω(ν)

χ0(0) = 4ln(2) = 2.8

χ1(0) =−18.3

NLO term dominates leading s growth, (branch-point of pomeron cut)
unless αs ≪ 0.1
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BUT we need to integrate over all ν - not just look at branch-point.
χ1(ν) varies rapidly with ν
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- but this is not true at NLO

QCD Pomeron University of Southampton



Reggeons in QFT The reggeized Gluon The BFKL Equation Applications Colour Dipoles Running Coupling Higher

To calculate ∫
dν

(

k1
2

k2
2

)iν

sω(ν)

need to go beyond saddle-point approximation and expand ω to
quartic order

ω(ν) = ω0 + aν2 − bν4 + · · · ,
For αs = 0.15,

ω0 = 0.021, a = 4.19, b = 47.4

f (s,k1,k2) ∼ 1
√

k1
2k2

2
s(ω0+a2/4b) 1√

a lns
exp(

3b

4a2 lns
)

cos

(
√

a

2b

(

1− 3b

4a2 lns

)

ln

(

k1
2

k2
2

))

Forward amplitude (proportional to total cross-section by Optical
Theorem) oscillates if k1

2 ≫ k2
2 or k1

2 ≪ k2
2
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Reconciling NLO BFKL with DIS
Beyond the leading log we must write the BFKL amplitude as

f (s,k1,k2)∼
∫ − 1

2
+i∞

− 1
2−i∞

dγ

(

k1
2

k2
2

)γ(
s

s0

)ω(γ)
1

(ω−χ(γ))

where
ω(γ) = αsχ0(γ)+αs

2χ1(γ) ≡ χ(γ)

Ambiguity in s0.
Change s0 = k1

2 to s0 = k1k2 is equivalent to replacing γ by γ+ 1
2
ω in

χ(γ)
In DIS the maximum log dependence in order n is

αn
s lnn(x)

But χ1(γ) contains a triple pole

∼ 1/γ3.

which implies a α2
s ln3(x) dependence
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Replacing
χ0(γ) = 2Ψ(1)−Ψ(γ)−Ψ(1− γ)

by

2Ψ(1)−Ψ
(

γ+
ω

2

)

−Ψ
(

1− γ+
ω

2

)

reproduces the
α2

s/γ3

term when expanded as a power series in αs, but removes the spurious
α2

s ln3(s) dependence.
For a given value of γ the power of s is given by ω(γ), which is the
solution of the implicit equation

ω(γ) = αs

[

2Ψ(1)−Ψ
(

γ+
ω

2

)

−Ψ
(

1− γ+
ω

2

)]

+ αs
2χsub

1 (γ)

where

χsub
1 (γ) = χ1(γ)−

1

2γ3
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A further large but summable correction srises from the order ω
correction to the gluon anomalous dimension

γ = αs

[

1

ω
+A1

]

,

(

A1 =− β0

2CA

− 11

12
− nf

6C2
A

)

The 1/ω term matches DGLAP to (L.O) BFKL in the DLL limit. For
NLO BFKL we must match the constnt term also by replacing γ by
γ−αsA1 (for small γ).
We therefore have an expression for ω

ω(γ) = αs

[

2Ψ(1)−Ψ
(

γ+
ω

2
−αsA1

)

−Ψ
(

1− γ+
ω

2
−αsA1

)]

+ · · ·

Solving by iteration up to order α2
s

ω = αs [2Ψ(1)−Ψ(γ)−Ψ(1− γ)]+α2
s

[

2

γ3
+

2

(1− γ)3
− A1

γ2
− A1

(1− γ)2

]

(plus terms which are less singular as γ → 0 or γ → 1)
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This “collinear” correction (γ → 0(1) corresponds to gluons emitted
parallel (anti-parallel) to emitter) accounts for mearly all the NLO
correction
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The summation of these “collinear singular” terms considerably
moderates the effect of the higher order contribution.
Taking steps to ensure that the leading log. DGLAP dependence is
correctly reproduced in all orders, the higher order BFKL amplitude
suitably modified) produces a modest effect.
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Hard and Soft Pomerons?
Hard Pomeron:
Solution to BFKL equation with leading energy dependence

sω

ω = 4ln(2)αs +O(αs
2)

Rapid rise with increasing s.
Controversial evidence for BFKL behaviour in low-x DIS, diffractive
processes etc.
Soft Pomeron:
Regge trajectory αP(t) with vacuum quantum numbers.
For t > 0, glue-balls of mass

√
t and spin J, where αP(t) = J.

For t = 0, αP(t) is close to one.
Landshoff-Donnachie:

αP(t) = 1.08− 0.25(Gev−2)t

Good phenomenological fit.
The “two” pomerons seem to be mutually incompatible.
[problem has existed for 36 years !!]
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Landshoff-Donnachie (soft) pomeron is used to calculate total
hadronic cross-sections.
These are not accessible to perturbative QCD since they always probe
the infrared regime.
To soften the sω behaviour of the perturbative (hard) pomeron, these
infrared effects must somehow exactly cancel the perturbative
contributions (at least below the saturation scale)
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Landshoff-Nachtmann Model

◮ Based on Low-Nussinov model of two gluon exchange

◮ At low k2 gluon propagators should be replaced by
non-perturbative propagators

◮ Postulated that confined gluons have propagator which had a
stronger singularity as k2 → 0.

Studies of Dyson-Schwinger equation show that this does NOT but
gluon acquires an effective mass at the IR scale a

D(k2)∼ a2

1+ a2k2
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HR: insert non-perturbative
propagators into BFKL equa-
tion and solve numerically.
NZZ: recalculate dipole evolu-
tion using effective mass for
gluons.
Find a modest decrease in
pomeron intercept αP(0), but
not sufficient.
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Heterotic Pomeron

.

.

f

k1

k2

k1 − q

k2 − q

f (s,k1,k2,q)=
∫

d2beiq·b f̃ (s,k1,k2,b).

Diffusion in s, k1 and b.

∂f̃

∂s
=

∫
ds′

s′
d2k′ d2bK

( s

s′
,k′,k2,(b−b′)

)

f̃ (s′,k′,k2,b
′)

For k1,k2 ≫ ΛQCD - hard pomeron

K

( s

s′
,k′,k2,(b−b′)

)

= δ(b−b′)K BFKL(k′,k2)

For k1,k2 ≤ ΛQCD - soft pomeron

K

( s

s′
,k′,k2,(b−b′)

)

= δ
(

k′−k1

)

( s

s′

)α0−1

B(b−b′)

QCD Pomeron University of Southampton



Reggeons in QFT The reggeized Gluon The BFKL Equation Applications Colour Dipoles Running Coupling Higher

e.g. B(b−b′) is a random walk diffusion

B ∼ exp

{

− (b−b′)2

4α′ ln(s)

}

This is the Fourier transform of

sα′t

α0 = 1.08, α′ = .25 matches soft pomeron

The full K
(

s
s′ ,k

′,k2,(b−b′)
)

interpolates between hard and soft
extremes.
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The Pomeron and Gauge-String Duality

This is the basis of work by Brower. et. al. which seeks to exploit the
duality between QCD in four dimensions and string-theories of
ADS(5)× S5.
The fifth dimension of the ADS(5) serves as a renomalization scale so
that a solution to the diffusion equation in the full 5-dimensional
space gives rise to the extrapolation between the infrared and
ultraviolet regimes of QCD.
For large negative t in diffractive processes, the usual perturbative
BFKL behaviour is recovered.
For positive t, there are trajectories for which integer values of the
power of s correspond to glue-ball masses.
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Donnachie-Landshoff - Two Pomerons

Soft Pomeron: ∼ s1.08

Hard Pomeron: ∼ s1.4

Soft pomeron dominates in total cross-sections hadronic diffraction
differential cross-sections, but hard pomeron dominates at sufficiently
large energies, provided other momentum scales are also large.
In the dipole picture, hard pomeron dominates for small dipole sizes,
r, with the dipole cross-section growing as r2, but this saturates at
some r = R

σ ∼ ar2s0.4θ(R− r)+ bR2s0.08

Model gives good fits to proton structure function - including HERA
data.
Even if low r contributions are heavily attenuated for total hadronic
cross-section and low-t processes, the hard pomeron should eventually
dominate at large enough s - size of R must decrease with energy.
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SUMMARY
◮ The pomeron predicted by Regge theory is almost the one used

by Donnachie-Landshoff

αP(t) = 1.08− .25t

◮ In perturbative QCD the exchange of a colour singlet object
(perturbative pomeron) summed to all orders in leading ln(s)
leads to a pomeron cut singularity with branch-point

1+ 4αsln(2), αs ≡
αsCA

π

◮ The running coupling together with some “phase-fixing” from
non-perturbative effects in the IR limit can convert this cut into
a set of isolated poles.

◮ BFKL dynamics is expected to be probed at
◮ DIS at low-x
◮ Events with large rapidity gaps
◮ Events with rapidity gaps populated with mini-jets
◮ several others
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SUMMARY
◮ “Evidence” for BFKL behaviour is still not convincing, but much

data can be successfully analysed using models which incorporate
BFKL dynamics.

◮ The BFKL evolution violates unitarity.
At sufficiently high energies the cross-section saturates, when the
density of colour dipoles is so large that the approximation of
single dipole scattering off a target becomes invalid, and multiple
scatterings have to be taken into account.

◮ The NLO BFKL kernel gives rise to large negative corrections,
but most of these can be re-summed by requiring that the
(low-x) DGLAP splitting function behaves like

αn
s

lnn(x)

x

in order αn
s .
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SUMMARY
◮ “Evidence” for BFKL behaviour is still not convincing, but much

data can be successfully analysed using models which incorporate
BFKL dynamics.

◮ The BFKL evolution violates unitarity.
At sufficiently high energies the cross-section saturates, when the
density of colour dipoles is so large that the approximation of
single dipole scattering off a target becomes invalid, and multiple
scatterings have to be taken into account.

◮ The NLO BFKL kernel gives rise to large negative corrections,
but most of these can be re-summed by requiring that the
(low-x) DGLAP splitting function behaves like

αn
s

lnn(x)

x

in order αn
s .

◮ Over the years many attempts have been made to reconcile hard
and soft pomeron behaviour (most recently based on gauge-string
duality)
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