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1 Entropy in Classical Physics

1.1 What is entropy?

There are many seemingly different answers to this question. Entropy is described as

1. A measure of our ignorance of a system,

2. A measure of the amount of information contained in a system,

3. A measure of the disorder of a system ,

4. A property of a thermodynamic system in thermal equilibrium at (absolute) tempera-
ture T , which increases by an infinitesimal quantity

dS =
d−Q

T
, (1.1.1)

when the total energy of the system increases by d−Q.

Item 2 might appear to be contradictory. However, information theorists quantify infor-
mation in terms of the information obtained by measuring the value of a certain quantity (a
surprise factor). We will return to this later.

These seemingly diverse meanings of the word “entropy” are, in fact, related, in view of
the fact that the precise (mathematical) definition of entropy – the ‘Shannon entropy’– is
common to all these, albeit with different applications (different physical quantities corre-
sponding to the variables used in Shannon’ definition of entropy.)

1.2 Microstates and Macrostates

Before we can elaborate on this we need to define (and explain) two quantities, which describe
the state of a system.

Microstate
A microstate is labelled by the complete set of all quantities which describe the state of a
system. In the case of a system consisting of N particles moving in three dimensions, these
quantities are the position vectors xi and the momentum vectors pi where i = 1 · · ·N runs
over the N particles.

The space of all microstates is a 6N dimensional, known as “phase-space”, whose axes are
the 3N components of each xi and the 3N components of each pi. Although we are confining
ourselves to classical physics for the moment, we “borrow” from Quantum Physics the fact
that due to the uncertainty principle each microstate occupies a volume h3 in phase-space
(h being Plank’s constant). This means that the quantities used to label a microstates are
actually discrete.
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For particles with non-zero spin (a concept also “borrowed” from Quantum Physics),
the description of the state also requires specification of a component of the spin for each
particle.

Macrostates
A macrostate is labelled by some subset of the variables that determine a particular mi-
crostate. These correspond to the quantities that an experimentalist can measure. Since
this will be less or equal to the number of quantities which define the macrostate (usually
much less) there will be several (usually many) microstates for each macrostate.

The entropy of a system is a function of the quantities that define a macrostate. We
see immediately that this means that the entropy of a system can vary from one observer
to another reflecting a difference in their ability to make measurements, and consequently
to specify the values of the set of variables that label a given macrostate. So that entropy
is very much subjective. The entropy used in thermodynamics refers to a particular way of
labelling macrostates.

For the case of a system of spin-1
2
particles, a macrostate might be labelled by the total

energy of the N particles, without knowing the energies of the individual particles. On the
other hand, it could have more macroscopic variables, such as the number of particles in a
particular volume of space, without knowing the exact positions of all the particles. The
entropy in such cases would be different.

For the example of particles with a given spin, in the case of spin-1
2
, we might know how

many of the particles are spin-up, so that this would be specified in the macrostate, but have
no knowledge of the spin orientations of the individual particles.

1.3 Shannon Entropy

Suppose the microstate of a system be labelled by the values ofN quantitiesXi, (i = 1 · · ·N),
(N might be infinite) Let p({x}) be the probability that these values are xi, then the Shannon
entropy, H of the system is defined as

H = −
∑
{x}

p({x)} log2(p({x})), (1.3.1)

where the sum goes over all possible sets of values of {x} ≡ x1, x2 · · ·xN .

The logarithm is taken to base 2 because in information theory log2N is the number of
binary bits required to store a number between 0 and N−1. In thermodynamics the entropy
(which we designate by S) is defined in terms of natural logarithms and furthermore there
is an overall factor equal to the Boltzmann constant κB, i.e.

S = κB ln 2H. (1.3.2)

We see that the entropy (as defined by Shannon) depends on the probability distribution
of the quantities xi. This probability distribution is determined by what we know about
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the system. In particular, for a macrostate labelled by r quantities Ya, (a = 1 · · · r), the
probability distribution and hence the entropy is a function of the values ya which label the
macrostate.

As an example, take a collection of N coins which can either be heads-up or tails-up.
There are a total of 2N possible microstates specifying the state of each coin. Each microstate
is a sequence of 0’s and 1’s, which form a number x consisting of N binary bits. In other
words, each microstate corresponds to a number, x, (written inn binary) between 0 and
2N − 1. For true coins, the probability of the coin begin heads-up or tails-up is precisely
1
2
. There are 2N possible these is equally likely, so that each sequence, x, occurs with a

probability

p(x) =
1

2N

The Shannon entropy of a set of N true coins is then

H = N log2 2 = N.

The Shannon entropy is the number of binary bits required to specify a sequence.

For example, if we have 10 coins, three of the 2N possible sequences could be

0, 0, 1, 0, 1, 1, 1, 0, 0, 0 (1)

0, 1, 1, 0, 1, 0, 1, 0, 0, 0 (2)

0, 0, 1, 0, 1, 1, 1, 0, 1, 0 (3),

where 1 represents heads-up and 0 represents tails-up. p({x}) is the probability of obtaining
a distribution {x} . If the macrostate is not specified, then the entropy of these 10 coins is
10.

Suppose the macrostate is defined by specifying the number of coins that are heads-up.
For example, suppose we know that four of the coins are heads-up but we don’t know which
four. Then the distributions (1) and (2) shown above are allowed with some probability, but
distribution (3), which has five coins with heads-up, is not allowed - its probability is zero.
This will affect the determination of the entropy. In actual fact the entropy in such a case
is lower than the case where we do not know how many coins are heads-up, reflecting the
fact that for such a macrostate we have more knowledge (less ignorance) of the state of the
system. Of the 210 possible sequences of 10 coins only the 210 have a non-zero probability
and so the Shannon entropy is reduced from 10 to log2(210) = 7.7.

Thus we see in general that the entropy of a system is a function of the values, ya of
the quantities that label the macrostate. The specification of the macrostate restricts the
sum over the allowed microstates. The quantities, Ya, which determine the macrostate are
functions of all the quantities xi which determine the microstate. Therefore, For a given
macrostate, we can rewrite the Shannon entropy as

H =
∑
{x}

{
p({x}) log2(p({x})

r∏
a=1

δ(Ya({x})−ya)

}
. (1.3.3)
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In other words, the sum over the microstates is restricted to those for which the quantities
Ya which label the macrostate take the values ya.

In the above example of 10 coins, we just specify hoew many are heads-up and so r = 1.
The sum over all allowed microstates goes over all 10-bit binary numbers which have exactly
four bits set to 1 - i.e. the sum over all distributions of 10 heads or tails with the condition
that four and only four of the coins are heads. out of the 1024 possible distributions of 10
coins )microstates) only 210 of then have four heads-up coins.

1.4 Principle of Maximum Entropy

What remains now is to determine the probability distribution. In order to do this we invoke
the principle of maximum entropy, which asserts:

The probability distribution which best describes the current knowledge of a system is the
distribution for which the Shannon entropy is maximal.

The probability, p({x}) to obtain a set of quantities {x} which describes a microstate, is
the distribution of the different possible sets of quantities {x} over a very large number, N ,
copies (known as an ‘ensemble’) of the system under investigation, Strictly we should take
the limit N → ∞, but we need it to be sufficiently large that the number of copies of the
system, which are in the ste {x} is N p({x}) ,

There are two possible ways to approach this.

1.4.1 Microcanonical ensembles

This is an ensemble of N systems. all in the same macrostate, i.e. all of these have the same
values of the functions Ya({x‘i}), which label the macrostates, but they have different values
of the microstate variables {x}, subject to the constraints

Ya({x} = ya. (1.4.1)

The Shannon entropy is given by

H = −
∑
{x}′

p({x}) ln (p({x})) , (1.4.2)

where
∑

{x}′ means sum over the sets if variables {x} which are compatible with the con-

straints (1.4.1). For all the other sets of microstate variables, the probability is zero.

This is maximized subject to the constraint that the probability summed over all the
permitted sets of variables {x} is unity. This maximum is found by setting the function
derivative of

H − λ
∑
{x}′

p({x})
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to zero. λ is a Lagrange multiplier whose value is obtained from the requirement that the
sum of all the probabilities is unity. This leads to the result that the probability takes the
same value for all allowed sets of variables, i.e

p({x}) =
1

Ω({y})
, (1.4.3)

where
Ω({y}) ≡

∑
{x}

∏
a

δ ((Ya({x})− ya) (1.4.4)

is the number of microstates compatible with the macrostate. The statement that in the ab-
sence of any further information about the system, the probabilities for all sets of microstate
variables, compatible with a given macrostate, are equal, seems a reasonable assumption and
is compatible with the maximisation of the Shannon entropy.

The entropy, which is a function of the values of Ya that label the macrostate, is then
given by

H({y}) = log2 (Ω({y})) . (1.4.5)

For example, for a set of N coins r of which are heads-up, the number of possible mi-
crostates is the number of ways of selecting r elements from a total of N elements, i.e.

Ω(r) =
N !

(N − r)!r!
,

and the Shannon entropy is

H(r) = log2(N !)− log2((N − r)!)− log2(r!)

if N and r are both very large, then we may use Stirling’s approximation to obtain

H(r) ≈ N log2N − (N − r) log2(N − r)− r log2 r.

1.4.2 Canonical ensembles

A canonical ensemble is a (large) number, N , of copies of copies of the system, which are
not necessarily in the same macrostate, i.e. they do not have the same values of ya for the
variables Ya, that label the macrostate but the average values of the ya, averaged over the
who ensemble are known. The probability distributions are functions of a set of variables
µa, which bare conjugate to the variables Ya and which encode the average values of ya. In
thermodynamics, one of the variables that labels the macrostates is the total energy, E, of
all the particles in the system. The corresponding conjugate variable is β which is inverse
to the (absolute) temperature

β =
1

κBT
.
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This can be taken as the definition of temperature, and it is related to the average total
energy E. over the ensemble of systems.

For a general variable Ya which labels a macrostate, its average value over the N systems
in the ensemble is

ya =
1

N

N∑
α=1

ya(α), (1.4.6)

where the sum is over all the systems in the ensemble and ya(α) is the value of ya in system
α.

If the probability for a system to be in a microstate labelled by {x} is p({x}) then we
define the “expectation value ⟨ya⟩ to be

⟨ya⟩ =
∑
{x}

Ya({x})p({x}). (1.4.7)

These two quantities coincide as the number of systems, N , in the ensemble goes to in
infinity

lim
N→∞

⟨ya⟩ = ya. (1.4.8)

This is the proper definition of “probability”.

At this point, it is more convenient to revert to natural logarithms and introduce a
denominator factor of ln 2 in the definition of Shannon entropy.

H =
−1

ln 2

∑
{x}

{p({x}) ln(p({x})} (1.4.9)

For canonical ensembles, the probability of a system being in a microstate {x} is obtained
by maximizing the Shannon entropy subject to the constraints

Ya({x}) = ⟨ya⟩ =
∑
{x}

Ya({x})p({x}),

The conjugate variables µa act as Lagrange multipliers, so that the probability for a particular
microstate is given by maximizing the quantity

−1

ln 2

∑
{x}

p({x})

{
ln(p({x}) +

∑
a

µaYa({x})

}
,

This leads to

p({x}) =
1

Z({µa})
exp

{
−
∑
a

µaYa({x})

}
(1.4.10)

where

Z({µa}) ≡
∑
{x}

exp

{
−
∑
a

µaYa({x})

}
(1.4.11)
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is called the “partition function”. Its presence in the denominator in (1.4.10) guarantees
that the sum of al;l probabilities is unity.

We note here that we may rewrite (1.4.11) in terms of a sum over the allowed values of
ya which label the macrostates as,

Z({µa}) ≡
∑
{y}

Ω({y}) exp

{
−
∑
a

µaya

}
, (1.4.12)

where Ω is defined in (1.4.4) and is is the “density of states”, i.e. the number of microstates
for which the paramteres that label the macrostate take the values ya.

Once this partition function has been determined, the expectation value of the macrostate
variables ya are given by

⟨ya⟩({µa}) =
1

Z({µa})
∑
{x}

Ya({x}) exp

{
−
∑
a

µaYa({x})

}
= − ∂

∂µa

lnZ({µa}) (1.4.13)

and the entropy (as a function of the conjugate variables µa is given by

H({µa}) =
1

ln 2

{
lnZ({µa}) +

∑
a

µa⟨ya({µa})⟩

}
(1.4.14)

Conversely, from the entropy determined using a microcanonical ensemble, as a function
of the values of the macroscopic variables, ya, we can obtain the values of the conjugate
variables µa by partially differentiating (1.4.14) w.r.t. µb, making use of (1.4.13) to get

ln 2
∂H

∂µb

=
∑
a

µa
∂2

∂µa∂µb

lnZ =
∑
a

µa
∂⟨ya⟩
∂µb

(1.4.15)

Now consider the conjugates µa to be functions of the average values of the macroscopic
parameters, ya, i.e µa(⟨yb⟩) and multiply both sides by ∂µb/∂⟨yc⟩, and contract over b

ln 2
∑
b

∂µb

∂⟨yc⟩
∂H

∂µb

=
∑
a,b

µa
∂⟨ya⟩
∂µb

∂µb

∂⟨yc⟩
.. (1.4.16)

If we treat the Shannon entropy, H as a function of the average values of the macroscopic
variable, ya, then using the chain rule, the LHS of (1.4.16) becomes

ln 2
∂H(⟨yd⟩})
∂⟨ya⟩)

and the RHS is ∑
a

µa
∂⟨ya⟩
∂⟨yc⟩

=
∑
a

δac = µc
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to obtain

µc = ln 2
∂

∂yc
H(({y}) (1.4.17)

Moreover, we have a useful relation between the infinitesimal change, dH, in Shannon
entropy due to an infinitesimal change, dµb, of the conjugate variables, µb.

From the chain rule:

dH =
∑
a

∂H

∂µa

dµa

and

d⟨yb⟩ > =
∑
a

∂⟨yb⟩
∂µa

dµa

Taking the partial derivative of (1.4.14),

ln 2
∂H

∂µa

=
∂ lnZ

∂µa

+ ⟨ya⟩+
∑
b

µb
∂⟨yb⟩
∂µa

Using (1.4.13) we see that the first two terms cancel and we are left with

dH =
1

ln 2

∑
a

µad⟨ya⟩. (1.4.18)

In thermodynamics for which ya = E, and all the members of the ensemble occupy the same
volume, the total energy of the system and µa = 1/T , this is the familiar result

TdS ≡ κBT ln 2 dH = d⟨E⟩.

We return to the example of the set of N coins. Introducing a variable, µ, conjugate to
the number r of coins with heads-up, and accounting for the number of ways we can select
r coins with heads-up out of a total of N coins, the partition function is

Z(µ) =
N∑
r=0

N !

(N − r)!r!
e−µr =

(
1 + e−µ

)N
The expectation value of r is then

⟨r⟩ = − ∂

∂µ
Z(µ) = N

e−µ

(1 + e−µ)
.

or

µ = ln

(
N − ⟨r⟩

⟨r⟩

)
and the entropy is

H(µ) =
N

ln 2

{
ln
(
1 + e−µ

)
+

µ e−µ

1 + e−µ

}
.
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Writing µ is terms of ⟨r⟩, we see that this gives he same expression as we obtained for the
entropy in the limit of a large number, N of coins.

We note further that if we write H as a function of ⟨r⟩

H(⟨r⟩ =
N

ln 2
(−(N − ⟨r⟩) ln(N − ⟨r⟩)− ⟨r⟩ ln⟨r⟩) ,

and differentiate w.r.t. ⟨r⟩ we recover

µ = ln 2
∂H(⟨r⟩)
∂⟨r⟩

= ln

(
N − ⟨r⟩

⟨r⟩

)
The entropy of the set of coins has a maximum value, H = N , for µ = 0. For this value

⟨r⟩ = N/2. This is what happens if we toss a true coin N times. This entropy is maximal
because we have little knowledge of the coin. On the other hand for non-zero values of µ
we would obtain average values for r which differ from N/2 (⟨r⟩ < N/2 for positive µ and
⟨r⟩ > N/2 for negative µ. An experiment to measure the average number of times the coin
lands on heads then gives us information about the nature of the coin and consequently
reduces our ignorance of the coin. In the asymptotic limit µ → ∞ the coin will never land
on heads (⟨r⟩ = 0) and in this case we have absolute knowledge of the nature of the coin
and the entropy is zero.

This is demonstrated in Fig.1, in which the probability of a collection of 10 coins to have
r with heads up (after being tossed), for the cases of a true coin and two fraudulent coins.
The entropy is larger for the true coin than for the fraudulent coins.

We can check similarly that as µ → ∞, so that the coin always lands on tails the entropy
also vanishes (this is seen by expanding the expression for entropy as a power series in e−µ).

For systems whose macrostates depend on the values of several parameters canonical
ensembles are actually a hybrid of canonical and microcanonical ensembles, in which some
of the variables defining the macrostate are taken to be the same in the different copies of the
system comprising the ensemble, whereas others are different and only their average value
can be deduced. For example in thermodynamics a “canonical ensemble” is taken to mean
an ensemble of systems for which the total energies differ but the number of particles and (in
the case of a gas) the volume occupied are the same for all the systems in the ensemble. In
this case there is only one conjugate variable, β from which one can deduce the average value
of the total energy - this is known as the “internal energy”, U of the ensemble (the word
‘internal’ means that we discount any collective energy of all th systems in the ensemble –
they are assumed to be at rest relative to each other and relative to the observer.)

Ensembles for which the numbers of particles differ between members of the ensemble
are called “grand canonical ensembles” and the variable conjugate to the number of particles
is called the “thermodynamic potential”.
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Figure 1: Probabilities of a system of 10 coins having r coins with heads up. For the true
coin (red) the average number is 5, as expected and this system of coins has the largest
entropy. The blue and green curves correspond to fraudulent coins for which heads occurs
more often (green) or less often blue) than expected.

1.5 Loaded Roulette Wheel

A proper roulette wheel has the same probability for the boule to land on any number x
between x = 0 and x = 36. In other words the probability, p[(x) to land on x is given by

p(x) =
1

37

The average value for x is 18 and the Shannon entropy is

H = −
36∑
x=0

1

37
log2

(
1

37

)
= log2(37)

The house makes a profit because it only pays out 35 to 1.

However, if the wheel has a small bias, parametrized by µ, then the probability of the
boule to land on x is

p(x) =
e−xµ∑36

x′=0 e
−x′µ

=
(1− e−37µ) e−xµ

(1− e−µ)

The average value (expectation value) of x is

⟨x⟩ =
e−µ

(1− e−µ)
− 37

e−37µ

(1− e−37µ)
,
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and the entropy is

H = log2
(
1− e−37µ

)
− µ

e−37µ

(1− e−37µ)
− log2

(
1− e−µ

)
+ µ

e−µ

(1− e−µ)

This has a maximum for µ = 0. For non-zero values of µ we have the knowledge that the
average value of x differs from its value for a true roulette wheel. The reduced entropy is a
reflection of this extra knowledge.

If µ > 0.0016 then the probability of the boule landing on zero exceed 1/36 so that
betting on it will eventually beat the house. The average value of x is reduced to 17.8 and
the entropy reduced to log2 36.99 (a very tiny difference but nevertheless significant).

For an even more crooked roulette wheel, let’s go to Rick’s “Cafe Americain” in Casablanca.
Rick has information about his wheel that he would not have if the wheel were not fixed –
when he nods to the Croupier the boule lands on 22.

Suppose Rick had been a bit subtler and had fixed the wheel so that the boule had an
enhanced chance of landing in 22. Such a wheel would have a probability to land on x equal
to

p(x) =
1

Z(µ)
exp{−µ (x− 22)2} (1.5.1)

with

Z(µ) =
36∑
x=0

exp{−µ (x− 22)2} (1.5.2)

This is a distribution in which both the average value of x and the average value of x2 are
known.

The probability to land on a particular number x is plotted for three values of µ. We
see that all of these distributions are peaked at x = 22, but as µ becomes larger, the peaks
become sharper.

This means that as µ increases the width of the peak, which is a measure of the RMS
deviation, decreases, indicating an increase in information about the roulette wheel and
consequently a decrease in its entropy. This is shown in Fig.3.

1.6 Information and Communication

The answer to a question, for which the answer is either is either “yes” or “no” requires one
bot of information. The bit is st” (i.e. takes the value 1) if the answer is “yes” and unset
(value 0) if the answer is “no”. A priori we have no reason to assume that one answer os
more likely than another and so the probability of either answer is 1

2
and the entropy of a

bit of information is
h = −

∑
i=0,1

pi log2(pi) = log2(2) = 1.
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Figure 2: Probability distributions with average value ⟨x⟩ = 22 form different values of
Lagrange multiplier µ
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Figure 3: RMS deviation and entropy plotted against µ
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A message (this might be a short message, or an entire book or entire encyclopaedia) is
usually stored on a computer in ASCII, which requires ne byte per symbol. If we assume
that a computer byte has an equal probability to be in any of its 256 states, the entropy of
a message consisting of N symbols would be 8N

This is very wasteful as only a small fraction of the 256 possible states of byte (8 bits) is
actually used. The information contained in the message could be communicated using only
(26) capital letters and a space to separate words, and a few punctuation marks (including
a space to separate words)- so we would only need 32 different states and the message can
be communicated using “bytes” of 5-bits - for which the entropy of an N symbol message
would be 5N .

However, we have assumed that each symbol occurs in a message with equal probability.
In such a case the total number, Ω, of different message, which we could send would be

Ω = 32N ,

giving us a Shannon entropy
H = log2Ω = 5N

.

This is certainly not the case. For a text in English the letter ’E’ occurs with a frequency
of 12%, whereas ’Z’ occurs with a frequency of 0.07%. The most common symbol is the space
which occurs with a frequency of about 18%. Information theory can be used to encode all
the symbols unambiguously in such a way that the most frequently used are encoded with
the smallest number of symbols, enabling the message to be communicated as efficiently as
possible - i.e. using the smallest number of bits.

The entropy of the message is now more complicated. For each symbol, the Shannon
entropy is

h =
31∑
i=0

pi log2

(
1

p1

)
,

where pi is is probability frequency of a symbol being i. log2(1/po) is called the “surprise”
factor - the less frequent the occurrence of a symbol the greater the surprise at finding it!.
Using the frequencies of symbols found in several long English language texts, the entropy
of a message of N symbols is reduced from

In the case of information contained in a message, there is little to gain by introducing
a conjugate variable µi for each symbol i, since we know the probability distribution by
studying a large number of texts (interestingly the entropy per symbol varies very little
whether the sample used to obtain the probabilities is the complete works of Shakespeare or
the King James bible.

So far, we have assumed that the probability of a symbol being a letter i is independent
of the symbol which precedes or follows. This is not the case. A further economizing on the
number of bits required to communicate a message by noticing that for any given language
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some sequences of letters are more frequent than others. In English, for example, we don’t
use diphthongs very often so that a vowel is more likely to be followed by a consonant and
the letters ‘S’, ‘C’, ‘T’ and ‘P’ are often followed by ‘H’. A reduction in the entropy per
symbol of a message can be obtained by considering the frequency of pairs of symbols. We
do not go into such details here, but this forms an important part of information theory.

1.7 Conditional Entropy

Consider a system for which the macroscopic states are labelled by the values of two quan-
tities Y and Z.

Let p(y, z) be the probability that these labels take the values y and z respectively.

The Shannon entropy is then

H(Y, Z) = −
∑
y,z

p(y, z) log2(p(y, z, ). (1.7.1)

If the probabilities to find the system in the state y and z are totally uncorrelated then

p(y, z) = p(y)p(z)

and the entropy is

H(Y, Z) = −
∑
y

p(y)
∑
z

p(z) log2(pz)−
∑
z

p(z)
∑
y

p(y) log2(py) = H(Y ) +H(Z)

The joint entropy is simply the sum of the entropies for the cases where the macrostate is
labelled by either Y or Z.

However, if the probabilities are correlated, so that the probability of Z taking the value
z depends on the value of Y as a result of soime interaction between the quantities Y and
Z, then we need to use Bayes theorem, which tells us that the probability of finding Y = y
and Z = z is

p(y, z) = p(y|z)p(z),
where p(y|z) is the probability to find Y = y given that Z = z.

The essence of Bayes theorem is the fact that we could equally have written

p(y, z) = p(z|y)p(y),

and equating the two gives a relation between the two probabilities p(y) and p(z) given the
two conditional probabilities p(y|z) and p(z|y) (the probability of finding Z = z, given a
value of y).

The Shannon entropy is now

H(x, y) =
∑
y,z

p(z)p(y|z) (log2(p(y|z) + log2(pz)) . (1.7.2)
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This differs from H(Z) +H(Y ) unless p(y|z) = p(y), i.e. there is no correlation.

The difference between H(Y, Z) and H(Y ) + H(Z) is called the “mutual information”,
I(Y, Z), where

I(Y, Z) = H(Y ) +H(Z)−H(Y, Z) (1.7.3)

If the quantities Y and Z are completely correlated then

p(y, z) = p(y)δyz

and the Shannon entropy
H(Y, Z) = H(Y ) = H(Z)

reflecting the fact that the macrostate is completely determined by specifying the value of
either Y or Z.

For situations between the two extremes (partial correlation) we have a ”degree of dis-
order”, which is quantified by the “equivocation” or “entropy of disorder.

H(Y |Z) ≡ H(Y, Z)−H(Z). (1.7.4)

This takes the values H(Y ) if the quantities are totally uncorrelated (maximum disorder)
and zero if they are totally correlated (maximum disorder).

1.7.1 How untidy is my office?

As an example, we can try to quantify the untidiness of our office. Imagine a bookcase with
N slots each of which can hold one book. The slots are labelled y which takes values from 0
to N − 1 from left to right. We also have N books which are labelled z taking values from
0 to N − 1 in some order - this could be alphabetical order of author or book-size. At this
point we note the subjectivity of entropy since the observer can stipulate which subset of all
the quantities labelling a microstate, are actually used to label the macrostate.

Now of we select at random a book from one of the slots, the probability that the slot is
slot i is p(y) = 1/N . If the books are arranged in a totally untidy way the probability of the
book being book j is also p(z) = 1/N irrespective of the value of i (no correlation).

In this case the Shannon entropy is

H(Y, Z) −
N−1∑
x,y=0

1

N2)
log2

(
1

N2

)
= 2 log2N.

The Shannon entropy of either the slots or the book is log2N and so we have an entropy of
disorder

H(Y |Z) = log2N.
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Figure 4: Entropy of disorder (equivocation entropy) for a bookshelf of 10 books as a function
of tidiness parameter

On the other hand, if the book are exactly in their correct place then the probabilities
are totally correlated and

p(y, z) =
δyz
N

The Shannon entropy is

H(Y, Z) = −
(N−1)∑
y,z=0

δyz
N

log2

(
1

N

)
= log2N,

and the entropy of disorder is zero.

Between these two extremes we could have partially correlated probability distribution
for which

p(y, z) = aδyz +
(1− a)

N
,

where the parameter a measures the degree of correlation and takes values between 0 and 1.
Using p(z) = 1/N this gives us the joint probability

p(y, z) =
a

N
δy, z +

(1− a)

N2
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and inserting this into the expression for the Shannon entropy we find

H(Y, Z) = −
(
a+

(1− a)

N

)
log2

(
a+

(1− a)

N

)
− (1− a)N(N − 1)

N2
log2

(
(1− a)

N2

)
and an entropy of correlation

H(Y |Z) = H(Y, Z)− log2(N),

which is plotted against the parameter a in Fig.4 for the case N = 10.

1.8 Irreversible Processes.

The principle of maximum entropy, which tells us that the most probable distribution of
microstates for a given macrostate is that which maximizes the entropy tells us what the
entropy of a system is when it is in equilibrium.

For an interacting system, the interactions will give rise transitions between the mi-
crostates. Most interactions are invariant under time reversal, which means that the proba-
bility of a transition from a microstate {x} to a microstate {x′i} is the same as the probability
of a transition from microstate {x′i} to a microstate {xi}.

However, if p({x′}) < p({x}) the for an ensemble of a large number of copies of the
system, there will be more transitions from {x′i} to {xi} than from {x} to {xi′}. The
transitions will cause th system to fluctuate around a distribution with the largest probability,
A state with the largest probability is then the equilibrium state and the interactions will
only effect fluctuations around this equilibrium.

In other words, the entropy of a system in equilibrium for a given macrostate, is the
maximum entropy that the system can have for that given macrostate.

The minimum entropy that a system can have is zero, corresponding to the state in which
all of the microstate labels {x} are known.

It is possible to prepare a state which is not in equilibrium – the entropy of the system
will be less than its maximum value and will increase as the system makes transitions to its
equilibrium state.

The fact that the system in a non-equilibrium state has to be “prepared” is the essence
of the resolution of the apparent contradiction between the statement that entropy never
decreases and the fact that the interactions between elements of a system are (to a very good
approximation) invariant under time reversal.

If we make a video of a (french) billiard table (no pockets) showing billiard balls colliding
against each other and bouncing off the cushions, and run it backwards, we would not see
anything surprising. This is because the dynamics of the collisions between the balls or
between the balls and the cushions is time reversal invariant. On the other hand, if we
film a break in snooker in which a white ball crashes into a set of red balls arranged in a
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triangular configuration, after which the red balls move off in various different directions, then
this movie would look very odd when run backwards. This is because the transition from an
orderly state in which the red balls form a triangle has a lower entropy than the configuration
in which the red balls are moving off in different directions. The initial state in which the
red balls are organized is not an equilibrium state. The break is an irreversible process in
which the entropy increases. After a few shots into the game, an approximate equilibrium
state has been achieved and from then on running a movie backwards would not seem so
strange – the transitions between different configurations of the balls (different microstates)
are transitions between different microstates with maximum entropy. It is important to note
that to create the initial, non-equilibrium state, some work had to be done on the system
(by the match umpire) in order to arrange the red balls in the triangle for the start of the
frame. The entropy of the engine that generated this work was increased, since energy had
to be drawn form a hot reservoir, some of which is converted into work and the remaining
energy is dissipated into a lower temperature reservoir. In the process of creating the initial
state, entropy is transferred from the set of red balls to the engine (e.g. the umpire) - the
total entropy of the balls plus the engine does not decrease.

We return yet again to the example of a set of N coins. We supposed that these coins
interact with some external potential which causes a coin to flip with probability λ per unit
time. Since the interaction is invariant under time reversal the probability of flipping from
heads to tails is the same as the probability to flip form tails to heads.

Suppose that at some time t there are r(t) coins with heads up and N − r(t) with tails
up. After a small interval, δt of time we have (averaged over an ensemble of a large number
of copies of the N coins)

r(t+ δt) = r(t) + λδt (N − r(t)− r(t)) ,

reflecting the fact that on average of the N − r(t) coins with tails up, a fraction lambbaδt
of them will flip to heads-up, but also an equal fraction of the r(t) coins with heads-up will
flip back to tails-up.

In the limit δt → 0, this gives us a time-evolution differential equation

dr(t)

dt
= λ (N − r(t)) .

Supposing that at t = 0 we had the completely ordered state in which all coins were tails-up
(r(0) = 0), the solution is

r(t) =
N

2

(
1− e−2λt

)
.

Note that as t → ∞, the system reaches its equilibrium state in which half of the coins are
heads-up - this is the macrostate with the largest number of microstates and therefore the
equilibrium value.

The Shannon entropy at time t is then

H(t) = log2

(
N !

(N − r(t)!)r(t)!

)
≈ N log2

(
2

(1 + e−2λt)

)
+
N

2

(
1− e−2λt

)
log2

(
(1 + e−2λt

1− e−2λt

)
.
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Figure 5: Time dependence of entropy of 10 coins, with initial state for whioch all coins a
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This is zero for t = 0 where we have a completely ordered state and increases monoton-
ically to its equilibrium (maximum) value of N as t → ∞. The entropy never decreases.
For the case of 10 coins, the time dependence of the Shannon entropy is shown in Fig.5.

1.9 Phase-Space and Louiville’s Theorem

For a system consisting of N spinless particles the microstate can be labelled by specifying
the position three-dimensional vector, xi, and three dimensional momentum vector pi for
each of the N -particles. A microstate may therefore be represented as a point in a 6N
dimensional state whose axes are the components of xi and pi. Such a hyperspace is called
“phase-space”.

In classical mechanics, a microstate can be a point anywhere in phase space and so there
are a continuously infinite number of possible microstates. A sum over microstates then
becomes an integral over all phase space∑

{x}

→
N−1∏
i=0

d3pi

N−1∏
j=0

d3xj,

and the probability is replaced by a probability density, ρ ({pi}, {xj)), where

ρ ({pi}, {xj))
N−1∏
i=0

d3pi

N−1∏
j=0

d3xj
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is the probability to find the system within a given infinitesimal volume of phase space.

A volume element in phase-space has dimensions and so the probability density also has
dimensions. This makes it awkward to take its logarithm for the purpose of calculating the
entropy. We therefore “borrow”, from quantum physics the idea that due to Heisenberg’s
uncertainty principle a point in phase-space is replaced by a cell of dimension h3N . The
probability density, multiplied by h3N and interpreted as a probability to find the system
in a particular cell and the integral over phase-space is again a sum over all such cells.
For classical systems this usually makes no difference as the phase-space integrals can be
approximated by discrete sums.

If we know exactly the point occupied by the system, then we know everything about the
system and its Shannon entropy is zero. On the other hand, if we only know the probability
density, then the Shannon entropy is given by

H = −
∫ N−1∏

i=0

d3pi

N−1∏
j=0

d3xj ρ ({pi}, {xj)) log2
(
h3Nρ ({pi}, {xj))

)
(1.9.1)

For a macrostate at equilibrium (maximum entropy), the probability density is constant over
the region of phase-space which is compatible with the labelling of the macrostate, and zero
outside this region. In this case the Shannon entropy becomes

H({ya}) = log2Ω

(∏
a

Ya({pi}, {xj}) = ya

)
,

where Ω (
∏

a Ya({pi}, {xj}) = ya) is the volume of the region of phase space for which the
quantities which define a macrostate take the values, ya, which label the macrostate.

A classical system whose behaviour is determined by a Hamiltonian (i.e. no dissipative
forces), sweeps out a well-defined path in phase-space. Hamilton’s equations can be solved
(in principle) such that if the phase-space point {pi}, {xj} is known at time t = 0, one can
predict, the phase-space point, {p′

i}, {x′
j}, which the system will occupy at time t. Conversely

if we know the microstate of the system is time t, we can use the (time reversed) Hamilton’s
equations to determine the initial microstate at time t = 0. Furthermore, even if we do not
know the the initial microstate, but we know the probability density then classical mechanics
allows us to determine the probability density at a later times t.

In particular, we can use Hamiltonian mechanics to derive Louiville’s theorem, which tells
us that if the probability density at time t = 0 occupies a certain volume, Γ in configuration
space, then as the system, evolves, the region occupied by the non-zero probability density
can change shape, but its volume remains unchanged.

As a simple example consider a free particle moving in one dimension. The phase-space
is shown in Fig.6. At time t = 0 the particle is known to be between x0 and x1 and with
momentum between p0 and p1. The region of phase-space with non-zero probability density
is a rectangle, shown on the left in Fig.6. At a later time the increase in position is larger for
the larger momentum than for the lower momentum. The allowed range of x is still (x1−x0),
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Figure 6: Phase-space diagram for particle moving in one dimension. At t = 0 the has a
non-zero probability density for position x between x0 and x1, and momentum p between
p0 and p1. The red lines are the boundaries of the “volume” occupied by the particle. The
volume is the same in the t = 0 and t = τ states. The pale blue cells are the course-grained
cells which are occupied by the phase-space of the particle. This volume is larger at t = τ
than at t = 0

and the momentum (for a free particle) does not change, so that it is still between p0 and
p1. The phase space region with non-zero probability density is now a parallelogram (shown
on the right in Fig.6). This region is a different shape from the original region, but the area
is the same as the are of the original rectangle, as required by Louiville’s theorem.

This then appears to forbid the increase in entropy of a system as it reaches equilibrium.
This apparent paradox is resolved if we introduce “coarse graining”. We account for the fact
that we cannot pin down the exact phase-space position with total precision. but only up to
a certain resolution. This means that we granulate phase-space by introducing finite volume
cells into the phase-space and rather than pin-point the exact point in phase-space of a given
microstate, we can only specify into which of these cells it falls. Returning to the case of a
single particle moving in one dimension, this is shown by the grid in Fig.6. The blue cells
are the ones that are partially or totally occupied. We see that the number of blue cells for
the initial distribution is four, whereas for distribution at time t, there are six blue cells.
This means that although occupied volume the exact phase-space remains unchanged, the
occupied volume of the granulated phase-space has indeed increased, leading to an increase
in entropy.

The course-grained probability density is the probability density averaged over a partic-
ular course-graining cell. The grouping of many microstates into a single course-grained cell
is equivalent to defining a macrostate. The coarse grained probability density is

ρcg({y}) =

∫ N−1∏
i=0

d3xi d
3pi

∏
a

δ (Ya ({xi}, {pj})− ya)
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The entropy of a macrostate is the logarithm of the volume of phase-space in that particular
course-graining cell. If the system is not initially in an equilibrium state then this volume
can grow as it evolves in time, increasing the entropy until equilibrium is achieved.

1.10 Thermodynamics

So far we have considered entropy in statistics and information theory. The definition of
entropy as used inn thermodynamics is (almost) the same as the definition of the Shannon
entropy, where the macrostate is determined by specifying

1. The internal energy, U of the system. This is the sum of the energies of the particles
on the system, but does not include the bulk kinetic energy of the system due to the
motion of the centre-of-mass of the system or the bulk potential energy due to the
positon of the centre-of-mass in a force field.

2. The volume in which the system is confined (this is usually only important in the case
of gases.)

3. The number of particles, N , in the system.

Other properties, such as the total spin component in a given direction, may also be specified.

A further difference between the definition of entropy used in thermodynamics and the
Shannon entropy is that the logarithms are taken to be natural logarithms and the ther-
modynamic entropy carries an overall factor of the Boltzmann constant, κB. The Shannon
entropy is in units of bits (this is more convenient for information theory and computation)
whereas thermodynamic entropy has units of joules per degree Kelvin (J/K). Thus the
relation between Shannon entropy H, and thermodynamic entropy, S is

S = κB ln 2H.

There are several different types of ensembles used in thermodynamics.

1. Microcanonical Ensemble: This is a large number of copies of the thermodynamic
system all of which have the same internal energy, volume and number of particles.

2. Canonical Ensemble: This is a large number of copies of the system confined to the
same volume and with the same number of particles, but different internal energies.
The average internal energy is deduced from the conjugate variable, β ≡ 1/(κBT ).
This serves as a definition of temperature.

3. Grand Canonical Ensemble: This is an ensemble of copies of the system which
not only have different energies but also different numbers of particles. The variable
conjugate to the particle number multiplied by κBT ) is called the “chemical potential”
.
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4. Gibbs Ensemble. This is an ensemble of copies of the system with the same number
of particles, but different energies and also different volumes. The variable conjugate
to volume is βP where P is the pressure.

The Boltzmann definition of entropy uses the quantity Ω which is the number of mi-
crostates for a given macrostate, specified by total internal energy, U , number of particles,
N and volume V .

Ω(U, V,N) =
∑
{x}

δ(U({x})− U)δ(V ({x})− V )δ(UN{x})−N).

The Boltzmann definition of entropy, S,, used in thermodynamics is

S(U, V,N) = κB lnΩ(U, V,N) (1.10.1)

It coincides with the Shannon definition of entropy (up to a constant factor κB ln 2 under
the assumption that all microstates contributing to a given macrostate occur with equal
probability.

Very often, we require the entropy as a function of temperature rather than internal
energy. This can be obtained using the relation between temperature and internal energy

1

T
=

∂S(U, V,N)

∂U
, (1.10.2)

which is the inverse of the expression for the average value of U for a canonical ensemble,
obtained by partial differentiation of the partition function. (1.10.2) can be inverted to
find U as as function of T and inserted into (1.10.1) to obtain the entropy as a function of
temperature. However, such an expression for entropy is usually more easily obtained by
working directly with a canonical ensemble and calculating the partition function.

1.10.1 Example 1: Ensemble of spin-1
2
particles

Consider an ensemble of N spin-1
2
particles with magnetic moment µ in a uniform magnetic

field, B, in the z-direction. Neglect the mutual interactions between the spinning particles.

The microstates are labelled by s
(1)
z , s

(2)
z · · · s(N)

z where each sz can take the values ±1
2

The energy corresponding to a given microstate is

En+ = µBJz,

where

Jz =
N∑
a=1

s(a)z =
1

2
(2n+ −N) ,

n+ boing the number of spin-up particles. Thus fixing the value of n+ specifies the macrostate.
It is most convenient to use the canonical ensemble.
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The partition function may therefore be written

Z(β) =
N∑

n+=0

NCn+ e
−βµBn+ eβµBN/2 (1.10.3)

where
NCn+ =

N !

(N − n+)!n+!

is the number of ways of selecting n+ spins from a total ofN . This is a binomial coefficient
and so terms may be summed using the binomial theorem to yield

Z(β) = 2N cosh

(
1

2
βµB

)N

(1.10.4)

The internal, energy is then

U = − ∂

∂β
lnZ(β) = −1

2
NµB tanh

(
1

2
βµB

)
, (1.10.5)

Here U strictly means the value of the total energy of the spins, averaged over all the copies
of the system in the canonical ensemble. Previously this was denoted by ⟨U⟩. Here and
henceforth we drop the ⟨ ⟩ The entropy (as a function of temperature) is given by

S(T ) = κB ln(Z) +
1

T
U = κBN

[
ln 2 + ln

(
cosh

)
µB

2κBT

))
− µB

2κBT
tanh

(
µB

2κBT

])
(1.10.6)

Note that when the applied magnetic field is zero the entropy is simply NκB ln 2 which
is the logarithm of the number of possible microstates for the N spin-1

2
particles (times κB),

but if a magnetic field is applied one knows the average value of Jz for an ensemble of such
systems and the entropy decreases.

We could have arrived at (1.10.5) and (1.10.6) starting with a microcanonical ensemble
of systems of N spins, all of which have a total energy U = µB(N − 2n+). The entropy is

S(U) = κB lnΩ(n+) = κB ln

(
N !

(N − n+)!n+!

)
≈ κB (N lnN − (N − n+) ln(N − n+)− n+ ln(n+))

= N ln

(
2N

N + 2U/(µB)

)
− 1

2

(
N − 2U

µB

)
ln

(
N + 2U/(µB)

N − 2U/(µB)

)
(1.10.7)

Differentiating w.r.t U we obtain an expression for the temperature T

1

T
=

∂S(U)

∂U
= − κB

µB
ln

(
N + 2U/(µB)

N − 2U/(µB)

)
.

This is the inverse of (1.10.5), and inserting (1.10.5) into (1.10.7) we recover (1.10.6).
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1.10.2 Example 2: Perfect Gases - Sackur tetrode Formula

The entropy of a perfect gas was first calculated independently by Otto Sackur and Hugo
Tetrode on 1911. They used a microcanonical ensemble, but it is much easier if we consider
a canonical ensemble of identical mono-atomic particles of mass m in thermal equilibrium
at inverse temperature β. Thw paricles are at position xi with momentum pi, i = 1 · · ·N .

The partition function is

Z(β, V,N) =
1

N !

∫
1

hN

N∏
i=1

d3xi

N∏
i=1

d3pi exp (−βE({xi}, {pi}))

The factor 1/N ! accounts for the fact that it is impossible to distinguish between mi-
crostates which are related by the interchange of identical particles. This is again “borrowed”
from quantum physics, but do not at this stage account for the symmetry or antisymmetry
of wavefunctions under interchange of identical particles.

For non-interacting particles the total (internal) energy is the sum of the energies, ϵi of
each particle

E =
∑
i

ϵi,

so that the partition function factorizes

Thus we have

Z(β, V,N) =
1

N !

[
1

h3

∫
d3xd3p exp{−βϵ(x,p)}

]N
(1.10.8)

For a free particle of mass m, the (non-relativistic) energy is given by

ϵ(x,p) =
p2

2m

This is independent of x and so the integral over d3x list simply generates a factor of V -
the volume into which the particle is confined.

This leads to (setting h = 2πℏ)

Z(β, V,N) =
1

N !

[
V

(2πℏ)3

∫
d2p exp{−β p

2

2m
}
]N

=
1

N !

[
V

(2πℏ)3

∫
dp4πp2 exp{−β p

2

2m
}
]N

=
1

N !

[
V

(
m

2π2ℏ2β

)3/2
]N

(1.10.9)
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The partition function for an ensemble of N such (identical) molecules is

Z(β, V,N) =
1

N !
V N

(
m

2π2ℏ2β

)3N/2

(1.10.10)

The internal total energy, U =, of the ensemble is given by

U = − ∂

∂β
lnZ =

3N

2
κBT (1.10.11)

(equipartition of energy)

The entropy is

S(T, V,N) = −κB lnN ! + κBN

(
lnV +

3

2
ln

(
mκBT

2π2ℏ2

)
+

3

2

)
(1.10.12)

For large N we can use Stirling’s approximation and write

lnN ! ≈ N (lnN − 1) ,

so that finally we get

S(T, V,N) = NκB

(
ln

(
V

N

)
+

3

2
ln

(
m

2π2ℏ2β

)
+

5

2

)
(1.10.13)

Since the volume V is extensive, i.e. proportional to N , we see that the entropy is also
extensive. However, this would not have been the case if we had forgotten the prefactor of
1/N ! in the expression for the partition function of the ensemble.

1.10.3 Pressure

In the case of a gas, the partition function is a function of temperature, volume and number
of particles. The entropy is given by

S = κB lnZ +
U

T
(1.10.14)

Taking the deriviate of this we have

dS = κBd(lnZ) +
dU

T
− U

T 2
dT (1.10.15)

Since Z is a function of both temperature, T , and volume, V we have

d(lnZ) =
∂ lnZ

∂T V
dT +

∂ lnZ

∂V |T
dV (1.10.16)
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From the expression for U we have

∂ lnZ

∂T
dT =

U

κBT 2
.

Define the quantity “pressure” P as

P = κBT
∂ lnZ

∂V |T
(1.10.17)

and inserting into (1.10.15) and (1.10.16) we have

TdS = dU + PdV (1.10.18)

Note that for a partition function for a perfect gas given by (1.10.10), we recvoer the
perfect gas equation of state

P =
NκBT

V
.

If we compare this with the expression from the first law of thermodynamics for d−Q a
small quantity of heat introduced to a system

d−Q = dU + dW,

we see that this is consistent with (1.10.18) if we identify P as mechanical pressure such that

dW = PdV (1.10.19)

and leads to the second law of thermodynamics

d−Q = TdS (1.10.20)

In thermodynamics, we define the Helmloltz free energy, F as

F (T, V,N) ≡ −κBT lnZ(T, V,N) (1.10.21)

so that (1.10.14) can be rewritten as

F = U − TS. (1.10.22)

1.10.4 Gibbs Ensemble

Alternatively, we could use a Gibbs ensemble of systems that have different volumes (but
the same number of particles) with an average value determined by the conjugate variable
P/(κBT ). For a given phase-space point, the volume occupied by the gas is s function of the
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positions xi of the N particles in the system - it is the maximum volume of a tetrahedron
formed from four of the particle positions:

V ({xi}) = max
i,j,k,l

((xi − xj) · (xi − xj) ∧ (xi − xl)) .

The partition function is then a function of pressure and temperature

ZG(P, T ) =
1

h3N

∫ N−1∏
i=0

d3xi

N−1∏
j=0

d3pi exp (−β(E({xi}, {p)I}) + PV ({xi})) ,

where the subscript G indicates that the partition function is calculated in the Gibbs en-
semble and is a function of P and T .

The entropy is given by

S =

(
κB lnZG +

U

T
+
PV

T

)
,

where U means the average internal energy of the ensemble given by

U = κBT
2∂ZG

∂T
(1.10.23)

and V is the average volume given by

V = −κBT
∂ZG

∂P
. (1.10.24)

Using the chain rule

dS =
∂ZG

∂T
dT +

∂ZG

∂P
dP,

and the definitions of and U and V given by (1.10.23) and (1.10.24), we recover (1.10.18).

The Gibbs free energy, G is defined as

G(T, P, .N) = κB lnZG = U + PV − TS. (1.10.25)

1.11 Identical Particles

Accounting for the indistinguishability of identical particles as by dividing the partition
function by N !, as in (1.10.8) is not quite correct. It is more properly accounted for by
labelling the microstates in terms of “Fock-space” states (n0, n1, n2 · · · ) where ni is the
number of particles which occupy a single particle state labelled by i - this could be the
point in one-particle (6-dimensional) phase space for a single particle supplemented with a
label associated with the particle’s spin state.
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It is simpler to consider a grand canonical ensemble, in which the total number of particles
differs form one copy of the system to another, but possesses an average value ⟨N⟩ determined
by the dependence of the grand partition function Z, on a conjugate variable βµ, where µ
is called the ‘chemical potential”.

The grand partition function can be written as

Z(β, V, µ) =
∏
i

∑
ni

exp (β(µ− Ei)ni) (1.11.26)

There are two types of identical particles

• Bosons: These are particles with integer spin and any number of particles can exist
in a given state. For such particles

∞∑
ni=0

exp (β(µ− Ei)ni) =
1

(1− exp (β(µ− Ei)))
,

so that

Z(β, V, µ) =
∏
i

1

(1− exp (β(µ− Ei)))
. (1.11.27)

• Fermions These are particles with half-odd integer spin, for which ni can only take
the values 0 or 1 so that

1∑
ni=0

exp (β(µ− Ei)ni) = (1 + exp (β(µ− Ei))) ,

so that
Z(β, V, µ) =

∏
i

(1 + exp (β(µ− Ei))) . (1.11.28)

Let us consider a grand canonical ensemble of systems of free spin-0 bosons of mass m,
confined to a volume V at temperature T = (κβ)−1, and a chemical potential mu.

It is difficult to calculate the produce over all allowed states and so we take the (natural)
logarithm and calculate the sum over allowed states.

lnZ(β, V, µ) = −
∑
i

ln (1− exp (β(µ− Ei)))

The sum over all allowed states maybe approximated by an integral over phase space
divided by the phase-space volume h3 of each state. It turns out that this approximation
excludes the ground state whose energy is zero, so that this term has to be added in by
hand, yielding

lnZ(β, V, µ) = − 1

h3

∫
d3x d2p ln

(
1− exp

(
β(µ− p2/2m)

))
+ ln

(
1− eβµ

)
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The integral over x yields the volume V and the integral over the angular parts of the
momentum yields a factor of 4π, so that we may write

lnZ(V, β, z) =
2πV

h3

(
2m

β

)3/2 ∫ ∞

0

dy y1/2 ln
(
1− ze−y

)
+ ln (1− z)

where we have changed variable to

y = β
p2

2m

and introduced the “fugacity”
z ≡ eβµ

The integral over y can be performed in terms of a polylogarithm function Li5/2(z), so that
we end up with the result

lnZ(V, β, z) =
V

h3

(
2πm

β

)3/2

Li5/2(z) + ln (1− z) (1.11.29)

For the case of fermions, we get a similar result with Li5/2(z) replaced by −Li5/2(−z).

The pressure P is given by

P =
1

β

∂

∂V
lnZ =

1

βV
lnZ, (1.11.30)

The internal energy, U (we mean the average value but drop the ⟨⟩) is given by

U = −∂lnZ
∂β |z,V

=
3

2β
lnZ (1.11.31)

The number of particles N is given by

N =
1

β

∂lnZ
∂µ |β,V

= z
∂

∂z
lnZ =

V

h3

(
2πm

β

)3/2

Li3/2(z) +
z

(1− z)
(1.11.32)

and the entropy is given by (using ln z = βµ)

S = κB lnZ +
U

T
− µN

T
(1.11.33)

1.11.1 Entropy of Mixing

Consider two different boxes of gas, each of volume V and each containing N (spin-0)
molecules. The boxes are placed side by side and they share a common wall, as shown
on the left of Fig,7. The
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Figure 7: The mixing of two gases when the wall separating them is removed. This produces
an increase in the entropy

The partition function is

Z(β, V.N) =
1

N !
V N

(
m1

2π2ℏ2β

)3N/2
1

N !
V N

(
m2

2π2ℏ2β

)3N/2

(1.11.34)

The total entropy is

S = S1 + S2 = 2NκB

(
ln

(
V

N

)
+

3

2
ln

(
m

2π2ℏ2β

)
+

5

2

)
(1.11.35)

(m is the geometric mean of the molecular masses of the two gasses).

If the connecting wall is removed, the two gases mix as shown on the right of Fig.7. Each
gas is now contained in a volume of 2V and so the entropy increases by

∆Smix. = 2NκB ln 2. (1.11.36)

The unmixed gas contains the information that all the molecules of gas 1 are on the left
whereas all the molecules of gas 2 are on the right. When the gases mix, this information is
lost and so the entropy goes up.

The entropy of mixing is the application in thermodynamics of the entropy of disorder.

But what happens if the two gases are identical as shown in Fig,8. In this case there is
no change of state of the gas – there is no loss of information loss and therefore there should
be no increase in entropy. This is the Gibbs paradox.

The resolution of the “paradox” lies in the prefactor 1/N ! for the partition function of
N identical particles.

The partition function for the two boxes of (identical gas) is

Z< =

(
1

N !
V N

(
m1

2π2ℏ2β

)3N/2
)2

(1.11.37)

The partition function for 2N molecules on a volume 2V is

Z> =
1

(2N)!
(2V )2N

(
m1

2π2ℏ2β

)3N

(1.11.38)
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Figure 8:

Using Stirling’s formula we find that for large N

(2N)! ≈ 22N(N !)2,

so that these two partition functions and consequently the two entropies are identical –
there is no entropy of mixing

1.11.2 Irreversibility in Thermodynamics

If you drop an egg on the floor it smashes to pieces and yoke runs over the floor. we would
not expect the interactions between the small pieces of egg to reconstruct themselves into a
whole egg.

The egg is initially in a metastable state -stable under small disturbances, but a state
which is highly ordered in which he molecules of the yoke are confined to a fixed volume and
the crystals of egg-shell are arranged in a particular way - so the entropy the whole egg is
low.

When the eggs is sufficiently disturbed by coming into contact with the floor, the initial
metastable equilibrium is destroyed and egg then makes a transition between its low entropy
state and one of the many high entropy states.

The hen that prepared the egg had to do a lot of work to create such an ordered object.
The ordered egg stores this work as potential energy.

The process is irreversible in that the egg will not spontaneously reconstruct itself in the
course of the interactions between the molecules of broken egg or their interaction with the
environment. the statement that entropy increases is a statistical statement, and should
strictly be replaced to the statement that the probability that entropy will decrease is negli-
gibly small. There are far more states with large entropy than states with low entropy and so
even though the interactions of the bits of the egg with each other or with the environment
can effect transition to any final state, it is far more likely that the final state will also be a
disordered state.

The entropy of a localized system (or a “subsystem” can be reduced, creating more
“order”, but this requires work (as experienced by anybody who has mopped up a broken
egg in order to make the kitchen tidier). If the subsystem is in thermal equilibrium with a
heat bath a temperature T0, then the work done is dissipated into heat bath. The Second
Law of Thermodynamics tells us that in order to generate the work we need to take energy
from a best bath at a higher temperature, T1, so that the increase in entropy due to energy
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transferred from a higher temperature heat bath to a lower temperature heat bath exceeds
the decrease in entropy of the subsystem whose “order” has been increased.

The mixing of two gases when the connecting wall is removed can be reversed, as we
shall see on the next section. When this happens the entropy of mixing is lost – the entropy
of the gas goes down. However, in order to do this we need to do some work on the gas,
which is transformed into energy. Since the gas is held in equilibrium with a thermal bath
at constant temperature, the energy from the work done is transmitted to the thermal bath,
thereby increasing the entropy of the bath. The total entropy of the gas plus the thermal
bath cannot decrease, but it can be transferred from one to the other.

1.12 What Do We Get from the Sun

Ask the average person what we get from the sun and you will probably get the answer
“energy”. Inform them that (almost) all of the energy we receive from the sun is radiated
back into the atmosphere (and from there to outer space) and they are likely to be both
surprised and confused.

Radiation arrives on Earth from the sun at a rate of about 3× 1017 watts. It arrives as
blackbody radiation at a temperature of 6000K (equivalent to 8×10−20 J), the temperature
of the surface of the sun, and radiates it at the temperature of the Earth – 300K (equivalent to
4×10−21J.. The entropy of the re-radiated energy (inversely proportional to the temperature)
is much larger than the entropy of the incoming radiation. Entropy is “expelled” into the
atmosphere at a rate of around 1038 bits per second.

The second law of thermodynamics tells us that the total entropy of the Universe cannot
increase, but it can be exchanged between different parts. This means that the (Shannon)
entropy on Earth can be decreased and this enables the creation of information or order.

Most of the order takes the form of converting a random distribution of different molecules
into proteins and hence the creation of life forms. Living creatures then contribute further
to this order.

• Plants grow

• Birds build nests (and lay highly ordered eggs in them)

• Beavers build dams

• Homo Sapiens builds the Taj Mahal and paints the Mona Lisa.

As a less ambitious example of using sunlight to create order, we consider a method
for separating a mixture of two perfect gases thereby lowering the entropy by removing the
entropy of mixing. This requires doing some work, ∆W , on the gas. The work is supplied
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membrane 1 membrane 2

T0 T0

(a) (b)

T0

(c)

Figure 9: Thought experiment which uses work (in the last step) to separate two mixed
gases and remove the entropy of mixing. The molecules of gas 1 are represented by red dots
and gas 2 by blue dots. The semi-permeable membrane 1 which allows gas 1 molecules to
pass is represented by a red dashed line and the semi-permeable membrane 2 which allows
gas 2 molecules to pass is represented by a blue dashed line.
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by taking energy ∆E from the sum at the sun’s surface temperature T1 and radiating the
balance ∆E −∆W into the atmosphere at the temperature of the Earth, T0.

The “setup” is shown in Fig.9. At the initial stage, (a), the mixture of gases consisting
of N molecules of each gas, is confined to a volume V in the right-hand side of a cylinder,
between two pistons. There is a semi-permeable membrane (membrane 1 – shown as a red
dotted line) at the left wall of the cylinder, which allows gas 1 (red) to pass but not gas 2
(blue). At the right wall there is another semi-permeable membrane (membrane 2 – shown
as a blue dotted line) which allows gas 2 (blue) to pass through but not gas 1 (red). This
second membrane is connected to the piston on the left (not shown) so that as the piston
is withdrawn, membrane 2 moves with it so that the volume between the left piston and
membrane 2 remains equal to V . The entire apparatus is kept at constant temperature, T0
by keeping it in thermal equilibrium with a heat bath.

In stage (b) the left piston and membrane 2 are withdrawn until membrane 1 and mem-
brane 2 are in contact (the combination of he two membranes constitutes a hard wall between
the two gases). All of gas 1 is to the left of the membranes and all of gas 2 is on the right.
There is no change of entropy in this process, since both gases still occupy a volume V (and
are held st the same temperature. Furthermore no work is done since the work done by gas
1 on the left piston is exactly balanced by the work done on gas 1 by membrane 2, There is
no flow of energy to or from the thermal bath.

In the final step, (c) the left piston is decoupled from membrane 2 and both pistons are
pushed in so that the volume of each compartment is reduced to V/2. We now have the
original volume of gas but the two gases are separated. The entropy of the two gasses has
decreased by

∆Smix. = 2N ln 2, (1.12.1)

since the gases now occupy half of their original volume. Work, ∆W , is needed to compress
the gas

∆W = −
∫ V/2

V

P (V )dV. (1.12.2)

For a perfect gas

P =
2N κBT0

V
,

so that
∆W = 2NκBT0 ln 2 (1.12.3)

This is converted into internal energy of the gas and immediately expelled into the thermal
bath in order to maintain the temperature of the gas.

In order to produce the necessary work energy ∆E must be extracted from the sun at
temperature T1 and energy ∆E − ∆W is expelled into the cold reservoir (atmosphere) at
temperature T0.

According to the second law of thermodynamics

∆E ≥ T1∆W

(T1 − T0)
=

T1
T0

∆Smix. (1.12.4)
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Ultimately all of this energy is expelled into the atmosphere at temperature T0, so that
the entropy of the atmosphere increases by

∆Satm. = ∆E

(
1

T0
− 1

T1

)
≥ ∆Smix.. (1.12.5)

We see that whereas the entropy of the system can be reduced by performing work on it
– thereby creating order, it is necessary to extract energy from the sun at high temperature
and expel into into the atmosphere at low temperature, thereby increasing the entropy of
the atmosphere by more than the decrease in entropy required to order the system.

1.13 Landauer’s Principle

So far, entropy of information and thermodynamic entropy have been treated as separate
entities, albeit determined by the same equation relating entropy to the probabilities of a
system being in a certain microstate (up to an overall constant of κB ln 2). However, in
1961 Landauer showed these were really the same. Information has to be stored somewhere
physical, such as a computer, a notebook or a brain. Landauer showed that in order to erase
a bit of information from a device at equilibrium with a heat bath at temperature T required
the input of at least a quantity of energy

d−Q = κBT ln 2.,

so that the thermodynamic entropy of the heat bath increases by at least κB ln 2. In other
words, the process of erasing information converts information entropy into thermodynamic
entropy.

A computer straight from the factory has no information in its memory. All the bits are
set to |0⟩ – the probability of each bit being 0 is unity – and the entropy is zero. If we store
one bit of information in the computer – whether a certain proposition is true or false the
Shannon entropy of one bit is increases to 1. A priori, the proposition is as likely to be true
or false, but we do not know which. In order to erase that information, we require act on
that bit with a process for which the final state of the bit is |0⟩ irrespective of whether it
was initially in the state |0⟩ or |1⟩.

|1⟩

|1⟩

|0⟩

This is clearly not a reversible process. Classical interactions are deterministic and so if
we start with a bit in the state |0⟩ and subject it to any interaction we know with certainty
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(a)

(b)

(c) (d)

T

Figure 10: Erasure of a single bit of memory. Initial state is either |0⟩, (a), or |1⟩
, (b), The barrier is removed, (c), so that the molecule occupies the entire volume,

irrespective of which state it was initially. The piston is then pushed in to compress the
volume occupied by the gas to its original volume. The heat generated by the work done is

dissipated into the heat bath, thereby increasing its entropy by κB ln 2.

if it will end up in the state |0⟩ or |1⟩. The entropy of any physical system which undergoes
an irreversible process increases.

An example of how such an erasure of information could occur can be seen from a bit of
information which consists of a molecule of a perfect gas in a box with two compartments -
the molecule in the left compartment means the bit is in state |0⟩ and the right compartment
means the bit is in state |1⟩. The erasure takes place in two stages. In the first stage the
barrier between the two compartments is removed. The molecule is then free to move
throughout the box. A piston is then used from the right side and the “gas” is compressed
into the left hal f. It is then in the state |0⟩ regardless of whether it was initially in the left
or the right compartment. The work, W , done on the gas during that compression is

W = −
∫ V/2

V

P (V ′)dV ′.

For one molecule of an ideal gas at temperature T

P (V ) =
κBT

V
,

so the work done is
W = κBT ln 2.

Since the gas is held at constant temperature, the energy equivalent of this work is dissipated
into the heat bath, increasing its entropy by

∆S = κB ln 2.

The general principle expounded by Landauer in 1961 has been disputed (i.e. can we find
a way of erasing information which requires less energy?). However,in 2012, an experiment
was carried out by Berut et. al. which confirmed the Landauer principle.
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1.13.1 Maxwell’s Demon

Landauer’s principle has been used by Bennet to debunk the apparent paradox of Maxwell’s
demon. The demon proposed by Maxwell operates a trap door between two compartments
of a gas. He is able to measure the velocity of each molecule which approaches the trap-door
and opens it only if the molecule from the left has above the average kinetic energy of the
gas molecules or the molecule from the right has less than the average kinetic energy.

In this way the right-hand compartment becomes hotter as the average kinetic energy of
the molecules on the right increases. Conversely, the left-hand compartment becomes cooler
as the average kinetic energy of the molecules on the left decreases. This clearly violates the
Second Law of Thermodynamics.

1.13.2 Szilard’s Demon

A simplification was proposed by Szilard who considered an “engine” consisting of a
single molecule which is either in the left half of a box or in the right half. The demon
observes the molecule and then inserts a piston in the empty compartment and pushes it
until the volume of the box is halved. This can be done without expenditure of work, since
the part of the box through which the piston moves is empty. The box is in equilibrium with
a heat bath at temperature T . The single molecule “gas” can now push against the piston
until the original volume of the box is recovered. In doing this, the “gas” does work

W = κBT ln 2.

The energy required for this work is extracted from the heat bath, but no energy is expelled
into another heat bath. Heat has been extracted from the (only) heat bath and converted
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into work. The demon can once again observe the compartment which contains the molecule
and repeat the process indefinitely, taking heat from a thermal bath and converting it all
into work thereby violating Clausius’ statement the Second Law of Thermodynamics.

The resolution of this apparent paradox lies in the fact that the engine and the demon
must be taken together. For the union of the engine and the demon, the process described
above is not a complete cycle. Information on which compartment initially contained the
molecule is stored in the demon’s memory. The cycle is only completed if this memory is
erased. According to the Landauer principle the energy required to erase each bit of memory
is greater or equal to the work done by the engine alone, and the heat dissipated into the
heat bath is at least as great as the heat which is converted into work by the engine alone.

1.14 Black Holes

The relationship between information entropy and thermodynamic entropy enabled Beken-
stein to estimate the entropy of a black hole. (We restrict ourselves here to not rotating
black holes with zero electric charge.)

A particle can contain several properties and therefore several bits of information. The
minimum information that it can contain is the single bit which stores the (binary) answer
to the question “does the particle exist”.

If the particle is outside a black hole then a measurement can be performed to answer
this question. However, when the particle falls into a black hole this bit of information is
lost. More precisely, the information is converted into an increase

∆S = κB ln 2, (1.14.1)

in the thermodynamic entropy of the black hole.

The largest particle that can fall into a black hole is a particle whose radius R is equal to
the radius of the horizon. This is the Schwarzschild radius, RS, and is related to the mass,
M , of the black hole by

Rs = 2
GM

c2
. (1.14.2)

From the Uncertainty Principle the minimum mass, ∆M of a particle that can be dropped
into a black hole of radius RS is one for which the Compton wavelength is smaller than the
radius of the block hole horizon.

∆M >
ℏ
Rsc

. (1.14.3)

The addition of such a mass to the black hole increases its radius by

∆RS = 2
G∆M

c2
. (1.14.4)

A more careful derivation using the dynamics of general relativity generates a correction of
a factor of 1

2
.
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The increase in the area of the horizon of the black hole is

∆A = 8πRS∆RS. (1.14.5)

From (1.14.3) and (1.14.4) (corrected by 1
2
) we obtain the inequality for the increase in area

of the black hole
∆A > 8πl2P , (1.14.6)

where lP =
√

ℏG/c3 is the Planck length. The minimum value of ∆A is the increase in the
area of the black-hole horizon when a particle containing a single bit of information falls into
the black hole. In other words it is the increase in the area of the black-hole horizon when
one bit of information is erased, generating a change in thermodynamic entropy, ∆S, given
by (1.14.1). We see, therfore, that the entropy Sbh of a black hole is proportional to the area,
A, of the holizon and is given by

Sbh =
ln 2κBc

3

8πℏG
A (1.14.7)

The entropy of a black hole of mass M is (using (1.14.2))

Sbh =
2 ln 2κBG

ℏc3
M2 (1.14.8)

This allows us to define a black-hole temperature

Tbh =

(
1

c2
∂Sbh

∂M

)
1

=
ℏc3

4 ln 2GκBM
(1.14.9)

For non-rotating, uncharged, black holes, their macrostate is defined entirely by their
mass (energy). More generally, a black hole can possess angular momentum and electric
charge, but these are the only observables and therefore completely define the macrostate.
The entropy of the black hole is the logarithm of the number of possible microstates for
the material which make up a black hole of a given mass, angular momentum and electric
charge.

1.14.1 Geroch’s Perpetual Motion Machine:

In 1971, Robert Geroch devised a perpetual motion machine using a black hole. A cavity was
filled with blackbody radiation,energy E from a heart bath at temperature T . The cavity is
then lowered to the horizon of a black hole, at which point the energy, as measured by the
distant observer, vanishes. A quantity of work W = E can be extracted during this process.
The cavity deposits a fraction. ϵ, of its proper energy (energy observed by am observer who
os co-moving with the cavity) and the cavity is raised to its original position. In this process
work (1− ϵ)E has to be done on the cavity and this is less than the work extracted during
the its downward journey. The energy of the remaining radiation in the cavity (1 − ϵE is
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then returned to the heat bath. The net effect is the extraction of a quantity of energy ϵE
from the heat bath, which is equal to the net work done. This violates Kelvin’s statement
of the Second Law of Thermodynamics.

Beckenstein pointed out that for a spherical cavity of radius b, if a point on the surface
is in contact with the horizon of the back hole, the remainder of the cavity is outside the
black hole and so the energy (as measured by the distant observer) is not completely zero,
but has energy

Emin =
1

2

E b

RS

,

where RS is the radius of the black-hole horizon. The net work done by the engine is then

W = ϵE

(
1− b

2RS

)
,

whereas the net heat extracted from the heat bath is ϵE, so the efficiency of the engine
reduced from unity to

η =

(
1− b

2RS

)
.

In order to fill a cavity with black-body radiation, the radius of the cavity has to be
larger than than the characteristic wavelength of blackbody radiation at temperature T .

b > ξ
ℏπc
2κBT

,

where ξ is a constant of order unity, so that the efficiency of the engine is

η < 1− ξ
ℏπc3

4GκBM

1

T
.

Setting ξ to π/4 ln 2 (Beckenstein’s argument involved order of magnitude estimates),
this may be written

η < 1− Tbh
T

where we have used (1.14.9). This is exactly the limit on the efficiency imposed by the
Second Law of Thermodynamics for an engine working between a heat bath of temperature
T and a heat bath with the temperature of the black hole.

A more rigorous derivation of the entropy, from examination of Quantum Field Theory
in a Schwarzschild metric, of a black hole by Hawking yields the result

Sbh =
κBc

3

4ℏG
A. (1.14.10)
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2 Entropy in Quantum Physics

2.1 Quantum Superposition

A quantum system is in a quantum state |Ψ⟩, which is generally a superpositon basis vectors
in a Hilbert space HX

|Ψ⟩ =
∑
{x}

C{x}|{x}⟩. (2.1.1)

here {x} are a set of eigenvalues of a complete set of commmuting operators X̂i, (i = i · · ·N),
which label a microstate.

The square modulus of the coefficients,
∣∣C{x}

∣∣2 are the probabilities that a simulataneous
measurement of the quantities Xi will yield the set of eigenvalues {x}. The conservation of
probabilities then tells us that ∑

{x}

∣∣C{x}
∣∣2 = 1 (2.1.2)

The basis vectors of the Hilbert space are orthonormal

⟨{x}|{x′}⟩ = δ{x}{x′} ≡
N∏
i=1

δxix′
i

(2.1.3)

2.2 Density Matrix

The density matrix, ρ, associated with the state |Ψ⟩ is

ρ = |Ψ⟩⟨Ψ| =
∑

{x},{x′}

C{x}C
∗
{x′}|{x}⟩⟨{x′}| (2.2.1)

The diagonal elements of the density matrix are the probabilities that a measurement of
Xi will yield {x}.

The density matrix is idempotent, i.e.

ρ · ρ =
∑

{x},{x′}{x′′}{x′′′}

C{x}C
∗
{x′}C{x′′}C

∗
{x′′′}|{x}⟩⟨{x′}|{x′′}⟩⟨{x′′′}|

=
∑

{x}{x′}

C{x}C
∗
{x′}

∑
{x}{x′′}

C{x′′}C
∗
{x′′}|{x}⟩⟨{x′}| (using (2.1.3)

=
∑

{x}{x′}

C{x}C
∗
{x′}|{x}⟩⟨{x′}| (using (2.1.2)

= ρ. (2.2.2)
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This can be shown using the orthonormality relation (2.1.3) and the conservation of proba-
bilities (2.1.2).

Furthermore, since the diagonal elements are probabilities, the conservation of probabil-
ities tells us that

Tr ρ = 1 (2.2.3)

A matrix which is idempotent and whose trace is unity can only have one non-zero
eigenvalue whose value is unity.

2.3 Von Neumann Entropy

The entropy of a qunatum system was define by von Neumann to be

HvN = −Tr (ρ log2 ρ) . (2.3.1)

This is independent of the choice of basis vectors of the Hilbert space and therefore can be
calculated in the system of basis vectors for which the density matrix is diagonal. In this
basis the eigenvalues are zero except for one of them which is unity. From this we conclude
that the von Neumann entropy of a pure quantum state is zero.

This makes sense if we interpret entropy as a measure of what we do not know about a
system. If the quantum state of a system is known, then we know everything that we can
know about that system with restrictions imposed by Quantum Physics.

2.4 Quantum Macrostates and Microstates

Whereas the complete set, {x}, of eigenvalues of the operators Xi determine a given mi-
crostate, a macrostate is determined by a (usually small) subset of these, namely by the
eigenvalues of a subset of operators Ŷa(X̂i).

The Hilbert space of the system is partitioned into the Hilbert space, HY , of the “body”
and a Hilbert space HZ of the “environment” (usually assumed to have a much larger di-
mension than the Hilbert space of the body, which label the macrostates). The environment
is space of operators Ẑb(X̂i), which are orthogonal to the operators of the Hilbert space HY

in the sense that ∑
i

∂Ya
∂Xi

∂Zb

∂Xi

= 0

Hx = HY ⊗HZ .

Example:
A system of N spin-1

2
particles, for which the microstates are labelled by the eigenvalues of

the z-component of spin of each particle,

X̂i = ŝ(i)z ,
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but where the macrostates are labelled by the total z-component of spin

Ŷ ≡ ĴZ =
N∑
i=1

ŝ(i)z

The orthogonal operators Zb may be written

Ẑb =

(N−b)∑
j=1

ŝ
(j)
Z − (N − b)

N
Ŷ ,

(any independent set of linear sums of these operators can also be used.

The quantum state |Ψ⟩ is now written as a sum over the products of the eigenvectors of
the operators Ŷa and Ẑb, namely

|Ψ⟩ =
∑

{y}{z}

C
{z}

{y} |{y}⟩ ⊗ |{z}⟩, (2.4.1)

where |{y}⟩ and |{z}⟩ are basis vectors in Hilbert space HY and HZ respectively.

2.5 Entanglement

In some cases, these quantum states are said to be factorizable. This occurs if the coefficients
take the form

C
{z}

{y} = U
{y}
{y0}V

{yz}
{z0} (2.5.1)

where U and V are unitary matrices in Hilbert spaces HY and HZ respectively. In this case
the quantum state may be written as a single (outer) product of a state in Hilbert space HY

and a state in Hilbert space HZ :

|Ψ⟩ = |{y0}⟩ ⊗ |{z0}⟩. (2.5.2)

If the composition (2.5.1) is not possible then the state is said to “entangled” and cannot
be transformed by unitary transformations within the Hilbert spaces into a single product.

Example:
Two spin-1

2
particles - |0⟩ is the sz = −1

2
state and |1⟩ sz = +1

2
state.

The state

|Ψ⟩ =
1

2
(|0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

can be written as

|Ψ⟩ =

(
1√
2
(|0⟩+ |1⟩)

)
⊗
(

1√
2
(|0⟩+ |1⟩)

)
,

and we can write this as
|Ψ⟩ = |1⟩′ ⊗ |1⟩′,
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where (
|1⟩′
|0⟩′

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
|1⟩
|0⟩

)
The state is therefore a factorizable state.

On the other hand, the state

|Ψ⟩ =
1√
2
(|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩)

cannot be factorized in this manner. It is an entangled state.

2.6 Schmidt Decompostion

The general expansion of an entangled state (2.4.1) involves a sum over both the Hilbert
spaces HY and HZ . However, the Schmidt decomposition allows this to be written in the
form of a single sum

|Ψ⟩ =
∑
α

√
pα|{yα}⟩ ⊗ |{zα}⟩, , (2.6.1)

where |{yα}⟩ and |{zα}⟩ are unique vectors in the Hilbert spaces HY and HZ respectively,
for each value of α in the (single) sum.

We do not prove this statement, demonstrate for the case of finite dimensional Hilbert
spaces

dim{HY } =M, dim{HZ} = N, (M < N),

how to determine the coefficients
√
pα.

The state-vectors |{yα}⟩ and |{zα}⟩ are related to the basis vectors of HY and HZ by
unitary matrices:

|{yα}⟩ = U
{y}

{yα{ |{y}⟩ (2.6.2)

and
|{zα}⟩ = V

{z}
{zα} |{z}⟩ (2.6.3)

We write the coefficients in the form of a rectangle M ×N matrix C
{z}

{y} . Inserting (2.6.2)

and (2.6.3) into (2.6.1) and comparing with (2.4.1), we see that the matrix C may be written

C = U †
√
PV (2.6.4)

where
√
P is a rectangular M ×N matrix with diagonal values

√
P

β

α =
√
pαδαβ, (β ≤ M),

Similarly, taking the Hermitian conjugate of (2.6.4),

C† = V †(
√
P )†U.
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This means that U is the unitary matrix that diagonalizes C C† and V is the unitary
matrix that diagonalizes C†C. The non zero eigenvalues of either of these diagonalized

matrices are
(√

pα
)2

= pα (α = 1 · · ·M).

Example: Let the dimension of Hilbert space HY be 2 (the body) and the dimension of
the Hilbert space HZ be 3 (the environment). In particle physics, an example of this would
be the hadrons Σ±, Σ0 which have spin-1

2
. The state of the Σ can be described in terms of

the third component of spin which can take values ±1
2
and the third component of isospin,

which can take the values 1, 0,−1. A general entangled state can bt written

|Ψ⟩ =
∑
I3,sz

Csz ,I3|I3⟩ ⊗ |sz⟩

The rectangular matrix C is

C =

 C+,1 C−,1

C+,0 C−,0

C+,−1 C−0,−1


We assume these coefficients are all real - they can be rendered real by an appropriate U(1)
transformation for each state Choose angles ω, ψ, θ, ϕ such that

C+,1 = cosω cosψ cosϕ cos θ − sinω sinψ sinϕ (2.6.5)

C−,1 = cosω sinψ cosϕ cos θ − sinω cosψ sinϕ (2.6.6)

C+,0 = − cosω cosψ sinϕ cos θ − sinω sinψ cosϕ (2.6.7)

C−,0 = cosω sinψ sinϕ cos θ − sinω cosψ cosϕ (2.6.8)

C+,−1 = − cosω cosψ sin θ (2.6.9)

C−,−1 = cosω sinψ sin θ (2.6.10)

U is the rotation matrix

U =

(
cosψ sinψ
− sinψ cosψ

)
and V is the rotation matrix

V =

 cos θ cosϕ − cos θ sinϕ − sin θ
sinϕ cosϕ 0

cos θ sinϕ − sin θ sinϕ cos θ


The Schmidt decomposed state is now written

|Ψ⟩ =
∑
Ĩ3,s̃z

√
P

Ĩ3

s̃z |Ĩ3⟩|s̃z⟩

where the matrix
√
P is

√
P =

 cosω 0
0 sinω
0 0
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2.7 Reduced Density Matrix

The reduced density matrix is constructed by tracing over all possible values of the environ-
ment variables {z}

(ρ̃Y )
{y′}
{y} =

∑
{z}

C
{z}

{y} C
† {y′}
{z} |{y}⟩⟨{y′}| (2.7.1)

If we rotate the Hilbert space for the body, HY using the unitary transformation of the
Schmidt decomposition, then the reduced density matrix is diagonal

ρ̃Y =
∑
α

pα|{yα}⟩⟨{yα}| (2.7.2)

This is the density matrix for a state which is not a pure quantum state, but an ensemble
of systems in different macrostates states with a probability pα to be in in the state |{yα}⟩.

The density matrix for such a “mixed state” is no longer idempotent, but has eigenvalues
pα, with the only restriction imposed by the conservation of probability∑

α

pα = 1

The von Neumann entropy

HvN = −Tr (ρ̃Y log2 ρ̃Y ) =
∑
pα

pα log2 pα (2.7.3)

is now non-zero unless the state of the system is factorizable, in which case all the pα vanish
except one, which is then unity.

The above example of the spin-1
2
particle, with isospin one. the third component is to

be an environment variable, i.e. we define the macrostate in terms of the z-component of
spin irrespective of the electric charge of the particle. The reduced density matrix (in the
Schmidt decomposition) is then

ρ̃ =

(
cos2 ω 0

0 sin2 ω

)
.

and the von Neumann entropy is

HvN = − cos2 ω log2(cos
2 ω)− sin2 ω log2(sin

2 ω)

This is zero if ω is a multiple of π/2 for which values the state is factorizable into the
product of a spin state and an isospin state. The maximum entanglement occurs for ω = π/4,
for which the von Neumann entropy is 1.

We can also construct a reduced density matrix by tracing over the variables of the body
to obtain
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ρ̃Z =
∑
{y}

C
†{y}
{z} C

{z′}
{y} |{z}⟩⟨{z

′}|

In the bases of the Schmidt decomposition, we may write this as

ρ̃Z =
∑
α

pα|{zα}⟩⟨{zα}|

The non-zero eigenvalues of the reduced density matrix ρ̃Z are the same as the eigenvalues
of ρ̃Y , so that they both lead to the same von Neumann entropy. This symmetry between
the reduced density matrices when tracing over the body or the environment leads to the
apparent paradox in the Schroedinger cat (thought) experiment.

2.8 Entropy of Entanglement

The von Neumann entropy can therefore be taken as a measurement of entanglement. The
principle of maximum entropy is then equivalent to the statement that the most probable
mixed state is one for which the entanglement is maximal.

If there is no information about the system, then maximum possible value of the entropy
occurs when the eigenvalues of the reduced density matrix are all equal (taking the value 1/N
where N is the dimensionality of the reduced density matrix). For a maximally entangled
state the eigenvalues of the reduced density matrix are all equal.

An irreversible process is one in which an initial state is either factorizable or only en-
tangled with some subset of the environment states. For example, in a Joule expansion
experiment in which the gas is confined by a barrier to the left hand half of a box, the gas
must be in a microstate in which the wavefunction of each gas molecule is in some superpo-
sition of the subset of wavefunction for a particle in a box, which only have support in the
left-hand half of the box. For any set of variables for the gas which label the macrostates, the
entanglement is only between the ”body” states and the states of the environment, which
are non-zero only in the left-hand part of the box. Once the barrier is removed, interactions
(collisions) between the gas molecules will eventually lead to entanglement will all of the
environment states and the von Neumann entropy increases.

2.8.1 Example: Two Coupled Harmonic Oscillators

We consider two uncoupled coupled harmonic oscillators with unit mass. The “body” is
oscillator 1 and the environment is oscillator 2.

If the oscillators are uncoupled, the Hamiltonian is

H =
1

2

(
p21 + p22 + ω2

1x
2
1 + ω2

2x
2
2

)
(2.8.1)
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with energy eigenfunctions

Ψm1m2(x1, x2) = ψω1
m1

(x1)ψ
ω2
m2

(x2), (2.8.2)

where ψω
m(x) are the energy eigenfunction for an oscillator with frequency ω, and energy

eigenvalues

Em1,m2 =

(
m1 +

1

2

)
ω1 +

(
m2 +

1

2

)
ω2 (2.8.3)

The uncoupled system is not entangled. If the system is in the state with quantum
numbers m1,m2,The density matrix in configuration space -an

ρ x′
1x

′
2

x1x2
= ψω1(x1)ψ

ω1
m1

(x′1)ψ
ω2
m2

(x2)ψ
ω2
m2

(x′2) (2.8.4)

The reduced density matrix is obtained by multiplying by δ(x2 − x′2 and integrating over x2
and x′2. Using the normalization properties of the wavefunctions, this gives

ρ̃ x′
1

x1
= ψω1(x1)ψ

ω1
m1

(x′1). (2.8.5)

This is an idempotent matrix and therefore the von Neumann

If we add a coupling term 2ω2
12x1x2 to the Hamiltonian, it becomes

H =
1

2

(
p21 + p22 + ω2

1x
2
1 + ω2

2x
2
2 + ω2

12x1x2
)

(2.8.6)

This may be written as

H =
1

2

(
p2+ + p2− + ω2

+x
2
+ + ω2

−x
2
−
)
, (2.8.7)

where
x+ = cosαx1 + sinαx2

x− = cosαx2 − sinαx1(
ω2
+ + ω2

−
)

=
(
ω2
1 + ω2

2

)(
ω2
+ − ω2

−
)
cos 2α =

(
ω2
1 − ω2

2

)(
ω2
+ − ω2

−
)
sin 2α = ω2

12

The eigenvalues of the Hamiltonian are

En1,n2 =

(
n1 +

1

2

)
ω+ +

(
n2 +

1

2

)
ω− (2.8.8)

The corresponding wavefunctions are

Ψn1,n2(x+, x−) = ψ(ω+)
n1

(x+) · ψ(ω−)
n2

(x−) (2.8.9)
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Written in terms of the original coordinates x1, x2, this is

Ψ̃n1,n2(x1, x2) = ψ(ω+)
n1

(cosαx1 + sinαx2) · ψ(ω−)
n2

(− sinαx1 + cosαx2) , . (2.8.10)

We can expand these energy eigenfunctions in term of the eigenfunctions for the uncou-
pled system

Ψ̃n1,n2(x1, x2) =
∑
m1m2

A n1n2
m1m2

Ψm1m2(x1, x2) (2.8.11)

From the orthonormality of the wavefunctions

An1n2
m1m2

=

∫
dx1dx2ψ

∗ω1
m1

(x1)ψ
∗(ω2)
m2

(x2)
(
ψω+
n1

)
(cosαx1 + sinαx2)

×
(
ψω−
n2

)
(− sinαx1 + cosαx2) (2.8.12)

In the limit of no coupling we have

An1n2
m1m2

= δn1m1δn2m2

For a given pair of values, m1, m2, of the decoupled system the density matrix is

ρ n′
1n

′
2

n1n2
= An1n2

m1m2

(
An′

1n
′
2

m1m2

)∗
(2.8.13)

The reduced density matrix is constructed by tracing over n2, n
′
2

ρ̃ n′
1

n1
=
∑

n2A
n1n2
m1m2

(
An′

1n
′
2

m1m2

)∗
(2.8.14)

For zero coupling, this reduced density matrix contains only one non-zero diagonal ele-
ment (equal to unity). But for non-zero coupling the reduced density matrix has eigenvalues

λ
(m1m2)
n and the non-zero von Neumann entropy id the entropy of entanglement:

Hent = −
∑
n

λ(m1m2)
n log2

(
λ(m1m2)
n

)
(2.8.15)

For m1,m2 ≫ 1 the reduce density matrix will only have non-negligible support in the
region n1 ∼ m2, n1 ∼ m2 so that it should be possible to diagonalize it numerically. For
small interactions (ω2

12 ≪ ω2
1, ω

2
2), the integrals required to construct the non-negligible ma-

trix elements can be performed numerically after a suitable change of variable of integration.
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2.9 Von Neumann vs. Shannon Entropy.

For a given partition of the Hilbert space into two factors HY and HZ , the von Neumann
entropy of a particular entangled state is uniquely defined. The same is not true of the
Shannon entropy which, in general is larger than the von Neumann entropy.

The Shannon entropy (denoted by HSh.), is defined as

HSh. =
∑
i

pi ln pi, (2.9.1)

where pi the probability of finding the system in a given microstate i. However, this is not
uniquely defined as a unitary transformation of the microstates

|i⟩ → |i′⟩ ≡
∑
j

Ui′j|j⟩

will generally lead to different probabilities pi′ .

On the other hand, the von Neumann entropy

HvN =
∑
a

λ̃a ln λ̃a, (2.9.2)

where λ̃a are the eigenvalues of the reduced density matrix, ρ̃A. These are invariant under
a unitary transformation of the basis states. In the representation of the Schmidt decom-
position, the reduced density matrix is diagonal, so that the eigenvalues are the diagonal
elements of the density matrix and for that choice of basis vectors, the Shannon and von
Neumann entropies are equal.

Example 1: We consider a three dimensional Hilbert space HX for the body and a two
dimensional Hilbert space HZ for the environment. The system might be a pion in one of
three charge states and the environment could ve a spin-1

2
particle. The system is entangled

via a measuring apparatus which generated a magnetic field in the positive z-direction if
the pion is charged, forcing the spin-1

2
into the sz = +1

2
state (denoted by |+⟩), and in the

negative z-direction (denoted by |−⟩)if the pion is uncharged, forcing the spin-1
2
into the

sz = −1
2
state, The general entangled state may be written

|Ψ⟩ = cos θ|0⟩ ⊗ |−⟩+ sin θ cosϕ|1⟩ ⊗ |+⟩+ sin θ sinϕ| − 1⟩ ⊗ |+⟩

The selection imposed by the measuring apparatus sets the coefficients of |0⟩|+⟩ and |±1⟩|−⟩
to zero.

The reduced density matrix is

ρ̃A =

 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ 0
sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ 0

0 0 cos2 θ

 , (2.9.3)
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giving a von Neumann entropy

HvN = − cos2 θ log2
(
cos2 θ

)
− sin2 θ log2

(
sin2 θ

)
(2.9.4)

However, for the Shannon entropy we note that the probabilities for the three charge
states are

p+1 = sin2 θ cos2 ϕ, p0 = cos2 θ, p−1 = sin2 θ sin2 ϕ,

yielding a Shannon entropy

HSh. − − cos2 θ log2
(
cos2 θ

)
− sin2 θ cos2 ϕ log2

(
sin2 θ cos2 ϕ

)
− sin2 θ sin2 ϕ log2

(
sin2 θ sin2 ϕ

)
= HvN − sin2 θ

(
cos2 ϕ log2

(
cos2 ϕ

)
+ sin2 ϕ ln

(
sin2 ϕ

))
(2.9.5)

Since cos2 ϕln (cos2 ϕ) and cos2 ϕln (cos2 ϕ) are both negative semi-definite We see that

HSh. ≥ HvN ,

with the equality only applying if ϕ is a multiple of π/2.

Example 2: We consider three spin-1
2
particles and the Hilbert space of the system to be

the eigenstates of

JZ ≡
3∑

i=1

s(i)z

and we represent the environment Hilbert space in terms of the simultaneous eigenstates of
the independent operators

J2 ≡ 2s(2)z − s(1)z − s(3)z

J3 ≡ s(1)z − s(3)z

There are eight possible microstates corresponding to the two possible values of sz for each
particle. there are 4 possible macrostates corresponding to the 4 possible values of Jz

A maximally entangled superposition of the eight possible spin states

|Ψ⟩ =
1√
8
(| ↑↑↑⟩, +| ↑↑↓⟩, + | ↑↓↑⟩, + | ↓↑↑⟩, + | ↑↓↓⟩, + | ↓↑↓⟩, + | ↓↓↑⟩, + | ↓↓↓⟩) .

(2.9.6)
This can be written in terms of the eigenstates of JZ , J2, J3 as

|Ψ⟩ =
1√
8

(∣∣∣∣32
〉

Y

⊗ |0, 0⟩Z +

∣∣∣∣12
〉

Y

⊗ |1, 1⟩Z +

∣∣∣∣12
〉

Y

⊗ |−2, 0⟩Z +

∣∣∣∣12
〉

Y

⊗ |1,−1⟩Z +∣∣∣∣−1

2

〉
Y

⊗ |−1, 1⟩Z +

∣∣∣∣−1

2

〉
Y

⊗ |2, 0⟩Z +

∣∣∣∣−1

2

〉
Y

⊗ |−1,−1⟩Z +

∣∣∣∣−3

2

〉
Y

⊗ |0, 0⟩Z
)

(2.9.7)
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The reduced density matrix is

ρ̃Y =
1

8


1 0 0 1
0 3 0 0
0 0 3 0
1 0 0 1

 (2.9.8)

with eigenvalues

pα = 0,
1

4
,
3

8
,
3

8
,

so that the von Neumann entropy is

HvN = 3− 3

4
ln 3− 1

4
ln 2. (2.9.9)

On the other hand the numbers of states with Jz = 3/2, 1/2,−1/2,−3/2 is 1, 3, 3, 1
respectively, so that the probabilities, pJZ of the system being in a state with a given value
of JZ are

p3/2 =
1

8
, p1/2 =

3

8
, p−1/2 =

3

8
, p−3/2 =

1

8
,

leading to a Shannon entropy

HSh. = 3− 3

4
log2 3, (2.9.10)

which exceeds the von Neumann entropy by 1
4
ln 2.

Note that there are only two non-zero off-diagonal elements of the reduced matrix element
which occur when all the spins are in the same direction. This persists for ensembles of larger
numbers of spins. For N spin-1

2
particles, only the JZ = N/2 and JZ = −N/2 are both

entangled with the same environment state |0, 0, · · · 0⟩. For large ensembles the difference
between the von Neumann entropy and Shannon entropy becomes negligible.

Example 3: Again we take three spin-1
2
particles, but in this case, we assume that we are

interested (i.e. can measure) not only total JZ but also the eigenvalue of J3 ≡ s
(1)
z −s(3)z . The

12 basis vectors of HY are now labelled by the two eigenvalues of JZ and J3 and the 5 basis

vectors of the environment, HZ are labelled by the eigenvalues of J2 ≡
(
2s

(2)
z − s

(1)
z − s

(3)
z

)
.

A maximally entangled state is now written

|Ψ⟩ =
1√
8

(∣∣∣∣32 , 0
〉

A

|0⟩B +

∣∣∣∣12 , 1
〉

A

|1⟩B +

∣∣∣∣12 , 0
〉

A

| − 2⟩B +

∣∣∣∣12 ,−1

〉
A

|1⟩B+∣∣∣∣−1

2
, 1

〉
A

| − 1⟩B +

∣∣∣∣−1

2
, 0

〉
A

|2⟩B +

∣∣∣∣−1

2
,−1

〉
A

| − 1⟩B +

∣∣∣∣−3

2
, 0

〉
A

|0⟩B
)
(2.9.11)

The reduced density matrix is 12× 12 matrix whose eigenvalues are

1

4
,
1

4
,
1

4
,
1

8
,
1

8
, 0, 0, 0, 0, 0, 0, 0
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This gives a von Neumann entropy

HvN =
9

4
.

This differs from the previous case. Note that the entropy for the case where the system
is described by two variables is actually larger than the entropy in which it is described by
only one variable. On the other hand, the dimension of the environment HZ is smaller. The
von Neumann entropy is the same whether the trace is taken over HA or HB – the non-zero
eigenvalues of the reduced density matrices ρ̃Y and ρ̃Z are the same.

In this case there is always only one microstate for each macrostate (eigenstate of HA)
so that the Shannon entropy is simply

HSh. = 3,

which again is larger than the von Neumann entropy.

In general, the Shannon entropy will be larger than the von Neumann entropy unless
the reduced density matrix is diagonal in the basis used to label the states for the Shannon
entropy. In that case the diagonal elements of the reduced matrix elements are the eigenvalues
of the reduced density matrix and are also the sums of the probabilities of all the microstates
which form a given macrostate. The Shannon entropy and von Neumann entropies coincide
in that case.

A striking example of this is an ensemble of N non-interacting spin-1
2
particles. Let us

take the basis for the microstates to be the components of the spin of the particles along the
z-axis. If the macrostate is defined in terms of the total spin along the z-axis, the reduced
density matrix is diagonal with the ith elements equal to the probabilities for the ensemble to
have a total spin (N − i)/2 in the z direction and the von Neumann and Shannon entropies
are both equal to

H = log2
(
NCi

)
.

On the other hand, if we take as the basis for the microstates the components of microstates to
be the components of the spins along the x-axis, then the von Neumann entropy is unchanged,
since the reduced matrix element in the new basis is simply a unitary transformation of the
original reduced density matrix and its eigenvalues are unchanged. But we know that if the
component of spin in the x-direction is known then there is an equal probability that the
component of the spin in the z-direction being +1

2
or −1

2
. The Shannon entropy in this case

is N , which is larger than the von Neumann entropy (except in the case i = N/2).

2.10 Measurement

Measurement is an irreversible process. A body (the object whose macrostate properties
are to be determined by measurements) is brought into contact with an environment) the
measuring apparatus) in which a way that they form an entangled state - a sum of products
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of the body state in certain state and the apparatus in a corresponding state which registers
(some of) the properties of the body.

The state of the system before measurement can be written

|Ψ⟩< =
∑
{y}

a[{y}|{y}⟩ ⊗
∑
{z}

b[{z}|{z}⟩.

This is a factorizable state - there is no entanglement and the von Neumann entropy is zero.

After the measurement we have an entangled state, which may be written in the bases
Schmidt decomposition

|Ψ⟩> =
∑
α

√
pα|{yα}⟩ ⊗ |{zα}⟩,

Meaning that there is a probability pα that the body is in the macrostate labelled by
{yα}.

The measurement is not complete until the density matrix has been reduced to the
reduced density matrix by tracing over the variables {z}. This reduced density matrix has
a positive von Neumann entropy - indicating that an irreversible process has taken place.

There is no unitary transformation which performs this task – under unitary transforma-
tions an idempotent density matrix remains idempotent. Quantum physics does not perform
the task of constructing the reduced density matrix and needs to be supplemented in order
to describe the process of measurement. The formation of the reduced density matrix is
equivalent to the notion of “wavefunction collapse”.

2.10.1 Revisiting Schoedinger’s cat

In this example the system is the cat and the environment is a spin-1
2
particle is a superpo-

sition state
cos θ| ↑⟩+ sin θ| ↓⟩,

where again for simplicity I assume that the coefficients are real.

The cat “paradox” appears because usually we consider the body to be much smaller
than the environment so we would naturally take the cat to be the environment - i.e. we
treat the cat as a measuring device, but here we consider the cat to be the body and the
spin-1

2
particle is the envirpnment..

A live cat is in a state
|live⟩ =

∑
n↑

an↑ |n↑⟩,

where n↑ labels the quantum numbers of all states describing a live cat. A dead cat is in a
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state
|dead⟩ =

∑
n↓

bn↓|n↓⟩,

where n↓ labels the quantum numbers of all states describing a dead cat.

Initially the cat is alive and so the initial state of the system is in a separable state

|Ψi⟩ =

∑
n↑

an↑|n↑⟩

⊗ (cos θ| ↑⟩+ sin θ| ↓⟩, ) . (2.10.1)

The cat has has zero entropy as the state is separable

The interaction between the cat and the environment effects transitions

|n↑⟩ ⊗ | ↑⟩ −→
∑
m↑

U
(1)m↑
n↑ |m↑⟩ ⊗ | ↑⟩

|n↓⟩ ⊗ | ↑⟩ −→
∑
m↑

U
(2)m↑
n↓ |m↑⟩ ⊗ | ↑⟩

|n↓⟩ ⊗ | ↓⟩ −→
∑
m↓

U
(3)m↓
n↓ |m↓⟩ ⊗ | ↓⟩

|n↑⟩ ⊗ | ↓⟩ −→
∑
m↓

U
(4)m↓
n↑ |m↓⟩ ⊗ | ↓⟩ (2.10.2)

U (1), · · ·U (4) are unitary matrices.

After this interaction he system (the cat plus the spin-1
2
particle) is in an entangled state

is

|Ψf⟩ = cos θ
∑
n↑,m↑

an↑U
(1)m↑
n↑ |m↑⟩ ⊗ | ↑⟩+ sin θ

∑
n↑,m↓

an↑U
(4)m↓
n↑ |m↓⟩ ⊗ | ↓⟩ (2.10.3)

Now if we construct the density matrix trace over the states of the spin-1
2
particle (envi-

ronment), we find that the reduced density matrix for the cat is block-diagonal

ρcat =

(
cos2 θρalive 0

0 sin2 θρdead

)
(2.10.4)

where the density sub-matrices are is

(ρalive)
m
m′ =

∑
n,n′

ana
∗
n′U (1)m

n U
(1)†m′

n′

(ρdead)
m
m′ =

∑
n,n′

ana
∗
n′U (4)m

n U
(4)†m′

n′
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These sub-matrices can be diagonalized and each has one eigenvalues equal to unity, so the
von Neumann entropy is

HvN = −
(
cos2 θ log2

(
cos2 θ

)
+ sin2 θ log2

(
sin2 θ

))
(2.10.5)

and cos2 θ, sin2 θ are the classical probabilities to find the cat alive or dead. Note that the
for the maximally entangled state θ = π/4 and the entropy of the cat is 1.

This is certainly an over-simplification because the cat is probably not initially in pure
state, but is already part of an entangled state - i.e. the density matrix for the cat has many
eigenvalues as a result of previous interactions with a larger environment.

2.11 More Examples

2.11.1 Two spin-1
2
particles

The four possible states are | ↑↑⟩, | ↓↑⟩, | ↑↓⟩, | ↓↓⟩.

It is convenient to write the most general superposition of these four states in the form

|Ψ⟩ =
1√

1 + e−µ
(

(
cosα cos β − sinα sin βe−µ/2

)
| ↑↑⟩

+
(
cosα sin β + sinα cos βe−µ/2

)
| ↑↓⟩

+
(
sinα cos β + cosα sin βe−µ/2

)
| ↓↑⟩

+
(
sinα sin β − cosα cos βe−µ/2

)
| ↓↓⟩

)
(2.11.1)

The sum of the squares of the coefficients is unity and for convenience the phases have
been set to zero.

In the limit µ → ±∞, this superposition is an unentangled state and can be written

|Ψ⟩ = (cosα| ↑⟩+ sinα| ↓⟩)⊗ (cos β| ↑⟩+ sin β| ↓⟩) (2.11.2)

For any finite µ, we have an entangled state. The reduced density, ρ̃(1) matrix, generated
by tracing over the spin state of the second spin-1

2
is

ρ̃(1) =
1

(1 + e−µ)

(
cos2 α + sin2 α e−µ cosα sinα (1− e−µ)
cosα sinα (1− e−µ) sin2 α + cos2 α e−µ

)
(2.11.3)

The fact that the angle β drops out of the expression for the reduced density matrix is a
consequence of the Schmidt decomposition theorem.
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The eigenvalues of the reduced density matrix are

λ1 =
1

(1 + e−µ)
, λ2 =

e−µ

(1 + e−µ)
, (2.11.4)

For a canonical ensemble, these are the probabilities that particle 1 has z-component of spin
−1

2
and +1

2
respectively. µ is the conjugate variable to s

(1)
z .

The von Neumann entropy, which is a function of µ is

HvN(µ) = log2(1 + e−µ)− µ

(1 + eµ) ln 2
. (2.11.5)

This takes its maximum value of ln 2, when µ = 0 for which the superposition (2.11.1) is
maximally entangled. For infinite µ the entropy is zero – the component spin of particle 1
in the z-direction, s

(1)
z , is definitely ±1

2
. For finite µ the entanglement is maximal subject to

the condition

⟨s(1)z ⟩ = = Tr
(
ŝ(1)z ρ̃(1)

)
=

1

2
tanh(µ/2).

In this case the expectation of s
(1)
z is the only macrostate variable and so its expectation

value determined the degree entanglement. A quantity such as the square total spin, S2 which
could be used to describe the original entangled state, is lost when the reduced density matrix
is constructed because the operator Ŝ2 acts on the Hilbert space of both spin-1

2
particles.

2.11.2 Heisenberg Ferromagnet

This is an ensemble of N spin-1
2
particles with nearest neighbour interactions.

The states of this system can be labelled by eigenvalues of the total Jz operator, which
counts how many spins, n+ are “up”

Jz = n+ − N

2

This is an “integrable system”” so that there are a total of N mutually commuting
operators, i.e. (N − 1) operators that commute with Jz. One of these is the operator

J2 =

∣∣∣∣∣∑
i

si

∣∣∣∣∣
2

,

with eigenvalues J(J + 1). J takes values in integer steps between 0 to N/2 for even N and
between 1

2
to N/2 for odd N . We call the remaining N − 3 operators (classified by Bethe)

Q3 · · ·QN and they have eigenvalues q3 · · · qN .

Thus a pure state can be labelled ∣∣Jz, J2, q3 · · · qn⟩
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We will define the macrostates as states which are labelled only by Jz – the sum of the
z-components of the individual spins. The reduced density matrix, ρ̃, is then constructed by
tracing over the eigenvalues J and q3 · · · qN .

ρ̃JzJ ′
z

= |Jz, J, q3 · · · qn⟩⟨J ′
z, J

′, q′3 · · · q′n] δJJ ′δq3q′3 · · · δqnq′n (2.11.6)

The von Neumann entropy determined from this reduced matrix element coincides with
the Shannon entropy provided the pure quantum state is maximally entangled, meaning that
it is a superposition of states equal coefficients for all states with a given value of Jz.

The reduced density matrix can be diagonalized and the eigenvalues are the probabilities
of finding the state with a particular value of Jz. In that case the entropy is the logarithm
of the umber of ways that the N spins can be configured so that N/2 + Jz are spn-up and
the rest spin-0down, i.e the number of ways of selecting N.2 + Jz from N,

H = log2

(
N !

(N/2− Jz)! (N/2 + Jz)

)
≈ N log2

(
2N√

N2 − 4J2
z

)
− Jz log2

(
N − 2JZ
N + 2Jz

)

2.11.3 Two equal frequency coupled Harmonic Oscillators

We can get a little further analytically if we consider two coupled harmonic oscillators of the
same mass 9taken to be unity) and the same frequency

The Hamiltonian may then be written

H =
1

2

{
p21 + p22 +

(
ω2
+ + ω2

−
)
(x21 + x22) +

(
ω2
+ − ω2

−
)
2x1x2

}
(2.11.7)

Let x+ ≡ (x1 + x2)√
2

, x− ≡ (x1 − x2)√
2

,

This gives us two uncoupled harmonic oscillators with Hamiltonian

H =
1

2

{
p2+ + p2− + ω2

+x
2
+ + ω2

−x
2
−
}

(2.11.8)

Ground State:
The ground state wavefunction is

Ψ0(x+, x−) =
1√
π
(ω+ω−)

1/4 exp
{
−ω+x

2
+ − ω2

−x‘
2
−
}

(2.11.9)

In terms of x1, x2

Ψ0(x1, x2) =
1√
π
(ω+ω−)

1/4 exp

{
−
(
ω+ + ω−

2

)(
x21 + x22

2

)
−
(
ω+ − ω−

2

)
x1x2

}
(2.11.10)
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We find the reduced density matrix for oscillator 1 by tracing over the coordinate x2.
This leads to the entanglement of the two oscillators and yields the reduced density matrix

ρ̂(x1, x
′
1) =

1

π

√
ω+ω− exp

{
−
(
ω+ + ω−

2

)(
x21 + x′

2

1

2

)}

×
∫ ∞

−∞
dx2 exp

{
−
(
ω+ + ω−

2

)
x22 +

(
ω+ − ω−

2

)
x2 (x1 + x′1)

}
=

1√
π

√
(γ − β) exp

{
−γ
(
x21 + x′ 21

2

)
+ βx1x

′
1

}
, (2.11.11)

where

γ − β =
2ω+ω−

(ω+ + ω−)
, β =

1

4

(ω+ − ω−)
2

(ω+ + ω−)
(2.11.12)

Eigenfunctions and eigenvalues of reduced density matrix
First we show that exp(−αx2/2) is an eigenfunction for a particular value of α and calculate
the corresponding eigenvalue.

∫ ∞

−∞
dx′1

√
γ − β

π
exp

{
−γ
(
x21 + x′ 21

2

)
+ βx1x

′
1

}
exp

{
−αx′ 21 /2

}
=√

2 (γ − β)

γ + α
exp

{[
β2

(γ + α)
− γ

]
x21/2

}
. (2.11.13)

exp{−αx2/2} is an eigenfunction if

exp

{[
β2

(γ + α)
− γ

]
x21
2

}
= exp

{
−αx

2
1

2

}
,

which is true provided
β2

α + γ
= γ − α,

i.e.
α2 = γ2 − β2 = (γ − β)(γ + β). (2.11.14)

From (2.11.12) we have

γ + β =
4ω+ω− + (ω+ − ω−)

2

2(ω+ + ω−)
=

1

2
(ω+ − ω−), (2.11.15)

so that
α =

√
ω+ω− (2.11.16)
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The (lowest) eigenvalue, λ0, is given by

λ0 =

√
2 (γ − β)

γ + α
=

√
2(γ − β)(γ + α)

γ + α
=

√
2γ2 − 2βγ − 2αβ + 2αγ

γ + α

=

√
γ2 + α2 + β2 − 2βγ − 2αβ + 2αγ

γ + α
=

α + γ − β

α + γ
= (1− ξ), (2.11.17)

where, using (2.11.14),

ξ ≡ β

α + γ
=

γ − α

β
. (2.11.18)

γ + α =
8ω+ω− + ω2

+ + ω2
− − 2ω+ω− + 4

√
ω3
+ω− + 4

√
ω+ω3

−

4(ω+ + ω−)

=

(√
ω+ +

√
ω−
)4

4(ω+ + ω−)
, (2.11.19)

and we can write

β =

(√
ω+ +

√
ω−
)2 (√

ω+ −√
ω−
)2

4(ω+ + ω−)
(2.11.20)

so that

ξ =

(√
ω+ −√

ω−√
ω+ +

√
ω−

)2

. (2.11.21)

We may also write ξ as

ξ =
β′

1−
√
1− β′ 2

, (2.11.22)

where β′ ≡ β/γ.

Excited States:

Mehler’s formula realtes a Gaussian integrand with two variables into a sum of products
of Hermite polynomials:

1√
1− ξ2

exp

{
−ξ

2 (z2 + w2)

(1− ξ2)
+

2ξzw

(1− ξ2)

}
=

∞∑
n=0

ξn

2nn!
Hn(z)Hn(w), ) (2.11.23)

where Hn(x) are Hermite polynomials of x.

From (2.11.18),(
1− ξ2

)
= 1− β2

(γ + α)2

=
(γ + α− β)(γ + α + β)

(α + γ)2
=

(γ2 + α2 − β2 − 2αγ)

(α + γ)2

=
2 (α2 + αγ)

(α + γ)2
=

2α

(α + γ)
(2.11.24)
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ξ =
γ −

√
γ2 − β2

β (2.11.25)

α =
√
γ2 − β2 (2.11.26)

Using (2.11.23), setting
z ≡

√
αx1, w ≡

√
αx′1,

we have

ρ̂(x1, x
′
1) =

√
γ − β exp

{
−γ
(
x21 + x′ 21

)
/2 + βx1x

′
1

}
=

(1− ξ)√
2

√
(α + γ)(1− ξ2)

∞∑
n=0

ξ2

2nn!
Hn(

√
αx1)Hn(

√
αx′1) exp

{
−α
2

(
x21 + x′ 22

)}
= (1− ξ)

√
α

∞∑
n=0

ξ2

2nn!
Hn(

√
αx1)Hn(

√
αx′1) exp

{
−α
2

(
x21 + x′ 22

)}
(2.11.27)

Using the orthonormality relation of Hermite polynomials∫ ∞

−∞
dxHn

(√
αx
)
Hm

(√
αx
)
exp

{
−αx2

}
=

1√
α
2nn!δmn,

we see that
fn(x) ≡ Hn

(√
αx
)
exp{−αx2/2} (2.11.28)

are eigenfunctions of the reduced density matrix with eigenvalues

λn = (1− ξ)ξn. (2.11.29)

(Note that the sum of all the eigenvalues is one, as expected – the eigenvalues are the
probabilities to find the first harmonic oscillator in the state |n⟩.).

The entropy of entanglement is therefore

Hent. = −
∞∑
n=0

λn log2(λn) = −

(
log2(1− ξ) +

∞∑
n=0

nξn log2(ξ)

)

= −
(
log2(1− ξ) +

ξ

(1− ξ)
log2(ξ)

)
(2.11.30)

Fock Space Approach:

The ground state is |0⟩+ ⊗ |0⟩− and obeys the relations

a+ (|0⟩+ ⊗ |0⟩−) ≡
√

1

2

(
√
ω+ x+ + i

p+√
ω+

)
(|0⟩+ ⊗ |0⟩−) = 0

a−|0⟩+ ⊗ |0⟩− ≡ |0⟩+ ⊗
√

1

2

(
√
ω− x− + i

p−√
ω−

)
|0⟩− = 0 (2.11.31)
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Consider the operator

Â1 ≡ 1√
1− ξ

(
a1 +

√
ξa†2

)
=

1

2 (ω+ω−)
1/4

(
(
√
ω+ +

√
ω−) a1 + (

√
ω+ −√

ω−) a
†
2

)
(2.11.32)

where

a1(2) ≡ 1√
2

(
(ω+ω−)

1/4 x1(2) + i
p1(2)

(ω+ω−)
1/4

)
(2.11.33)

In terms of coordinates x+, x−, and momenta p+, p−

Â1 =
1

2

(
√
ω+ x+ +

√
ω− x− +

i
√
ω+

p+ +
i

√
ω+

p−

)
=

1√
2
(a+ + a−) (2.11.34)

Similarly

Â2 ≡ 1√
1− ξ

(
a2 +

√
ξa†1

)
=

1√
2
(a+ − a−) (2.11.35)

Both of these operators annihilate the ground state |0⟩+|0⟩−. From (2.11.32) and (2.11.21)
we therefore have

a1 (|0⟩+ ⊗ |0⟩−) = −
√
ξa†2 (|0⟩+|0⟩−) (2.11.36)

and from (2.11.34) we therefore have

a2 (|0⟩+ ⊗ |0⟩−) = −
√
ξa†1 (|0⟩+ ⊗ |0⟩−) (2.11.37)

We can expand the ground-state vector in the Hilbert space H+ ⊗ H−, i.e |0⟩+|0⟩− in
terms of basis vectors in the Hilbert-space H1 ⊗H2, i.e. |n⟩1 ⊗ |m⟩2

|0⟩+ ⊗ |0⟩− =
∑
n,m

Cnm|n⟩1 ⊗ |m⟩2 (2.11.38)

We may assume that the coefficients Cnm are real.

The reduced matrix density matrix formed by tracong over the Hilbert space H2 is then
given by

ρ̂nn′ =
∞∑

m=0

CnmCn′m (2.11.39)

Using the raising and lowering operator relations, (2.11.36) gives∑
n,m

Cn,m

√
n− 1|n− 1⟩1|m⟩2 = −

√
ξ
∑
n,m

Cn,m

√
m+ 1|n⟩1|m+ 1⟩2 (2.11.40)

Making the shifts n → (n− 1), m → (m+ 1), this may be rewritten

Cnm = −
√
ξ

√
m

n
C(n−1)(m−1) (2.11.41)
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Similarly (2.11.37) leads to

Cnm = −
√
ξ

√
n

m
C(n−1)(m−1) (2.11.42)

(2.11.41) and (2.11.42) are consistent provided

Cnm =
√

(1− ξ) (−ξ)n/2 δmn (2.11.43)

where the prefactor
√
1− ξ has been chosen to satisfy the normalization condition∑

mn

C2
nm = 1.

The reduced density matrix is therefore

ρ̂nn′ = (1− ξ)ξnδnn′ (2.11.44)

with eigenvalues given by (2.11.29), (calculated using the wavefunction representation).

We can now rewrite the ground state in the form

|0⟩+ ⊗ |0⟩− =
√
1− ξ exp

{
−
√
ξa†1a

†
2

}
|0⟩1 ⊗ |0⟩2 (2.11.45)

Excited States:

Consider the excited state, |1, 0⟩, defined by

|1, 0⟩ ≡ Â†
1|0⟩+ ⊗ |0⟩− (2.11.46)

where the raising operator A†
1 is the conjugate of the lowering operator, Â1, defined in

(2.11.32).

Using (the conjugate of) (2.11.32) and (2.11.45), we have

|1, 0⟩ =
(
a†1 +

√
ξa2

)
exp

{
−
√
ξa†1a

†
2

}
(|0⟩1 ⊗ |0⟩2)

=
(
a†1 +

√
ξ
[
a2, exp

{
−
√
ξa†1a

†
2

}])
(|0⟩1 ⊗ |0⟩2) , (2.11.47)

where we have used a2 (|0⟩1 ⊗ |0⟩2) = 0.

[
a2, exp

{
−
√
ξa†1a

†
2

}]
= −

√
ξ exp

{
−
√
ξa†1a

†
2

}
a†1 (2.11.48)

so that
Â1|0, 0⟩ =

√
1− ξ exp

{
−
√
ξa†1a

†
2

}
a†1 (|0⟩1 ⊗ |0⟩2) (2.11.49)
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Applying this raising operator n times se have

|n, 0⟩ ≡ 1√
n!
Ân

1 |0, 0⟩ =
1√
n!

√
(1− ξ)

(n+1)
exp

{
−
√
ξa†1a

†
2

}(
a†1

)n
(|0⟩1 ⊗ |0⟩2)

= (
√

1− ξ)(n+1) exp
{
−
√
ξa†1a

†
2

}
(|n⟩1 ⊗ |0⟩2) . (2.11.50)

The prefactor 1/
√
n! is required to ensure that |n, 0⟩ is properly normalized. Expanding the

exponential we have

|n, 0⟩ = (
√

1− ξ)(n+1)
∑
j

√
(n+ j)!

n!j!

(
−
√
ξ
)j

(|(n+ j)⟩1 ⊗ |j⟩2) , (2.11.51)

so that

⟨n, 0|n, 0⟩ = (1− ξ)(n+1)
∑
j

(n+ j)!

n!j!
ξj = 1 (2.11.52)

Here we have used ∑
j

(n+ j)!

n!j!
ξj = (1− ξ)(−n−1). (2.11.53)

We will also need its derivative w.r.t. ln ξ,∑
j

(n+ j)!

n!(j − 1)!
ξj = (n+ 1)ξ(1− ξ)(−n−2). (2.11.54)

We note that these states form a complete set and can be taken as a definition of excited
states but they are not eigenstates of the Hamiltonian, except for the ground state.

The density matrix for a system in the state |n, 0⟩ can be written in terms of the basis
vectors in the Hilbert space H1 ⊗H2 is

ρ ≡ |n, 0⟩⟨n, 0| = (1− ξ)(n+1)
∑
j,k

√
(n+ j)!(n′ + k)!

(n!)2j!k!
(−
√
ξ)(j+k)|(n+ j)⟩1⟨(n+k)|⊗ |j⟩2⟨k|

(2.11.55)

The reduced density matrix for oscillator one is obtained by tracing over the Hilbert
space H2, i.e. we replace |j⟩2⟨|k| by δjk to obtain a diagonal reduced density matrix

ρ̂(n+j),(n+j′) = (1− ξ)(n+1) (n+ j)!

n!j!
ξjδjj′ (2.11.56)

The entanglement entropy is therefore

Hent. = −(1− ξ)(n+1)
∑
j

(n+ j)!

n!j!
ξj log2

(
(1− ξ)(n+1) (n+ j)!

n!j!
ξj
)

(2.11.57)
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Using (2.11.53) and (2.11.54) this may be rewritten

Hent, = −
[
(n+ 1)

(
log2(1− ξ) +

ξ log2 ξ

(1− ξ)

)
+(1− ξ)(n+1)

∑
j

ξj
(n+ j)!

n!j!
log2

(
(n+ j)!

n!j!

)]
(2.11.58)

2.11.4 N Coupled Oscillators

We consider N coupled harmonic oscillators and form the reduced density matrix by tracing
over the coordinates of oscillators (n+ 1) · · ·N .

H =
N∑

α=1

[
1

2
P 2
α +

1

2

∑
β

Xα (Ω ·Ω)αβ Xβ

]
(2.11.59)

We define the macrostate to be labelled by vectors in the Hilbert space of oscillators
1 · · ·n and the environment to be the Hilbert space of oscillators (n+1) · · ·N . We therefore
write

X =
(
y1 · yn, z1 · · · z(N−n)

)
,

and the N ×N matrix

Ω =

(
ΩA ΩC

ΩT
C ΩB

)
,

where ΩA is an n× n matrix, ΩC is an (N − n)× (N − n) matrix, and ΩB is a rectangular
(N − n)× n matrix.

The ground-state wavefunction is

Ψ0(X) =

(
det

(
Ω

π

))1/4

exp

{
−1

2
X ·Ω ·X

}
, (2.11.60)

where
X ·Ω ·X = y ·ΩA · y + z ·ΩC · z+ y ·ΩB · z+ z ·ΩT

B · y (2.11.61)

Ω ·Ω =

(
ΩA ·ΩA +ΩB ·ΩT

B ΩA ·ΩB +ΩB ·ΩC

ΩT
B ·ΩA +ΩC ·ΩT

B ΩC ·ΩC +ΩT
B ·ΩB

)
(2.11.62)
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The reduced density matrix is obtained by tracing over the coordinates z, z′

ρ̂(y,y′) =

(
det

(
Ω

π

))1/2 ∫
d(N−n)z

exp

{
−1

2

(
y ·ΩA · y + z ·ΩC · z+ y ·ΩB · z+ y ·ΩT

B · x
)}

= N exp

{
−1

2
(x · Γ · x+ x′ · Γ · x′) + x ·∆ · x′

}
, (2.11.63)

where

∆ ≡ 1

2
ΩB ·Ω−1

C ·ΩT
B (2.11.64)

and
Γ = ΩA −∆. (2.11.65)

The prefactor N is not specified but is chosen to ensure conservation of probability, i.e.∫
dnx ρ̂(x,x) = 1.

We now change variables

y = → w ≡ U · ΓD
−1/2 · y,

where ΓD is the diagonalized matrix V · Γ ·VT ,

(ΓD)
b
a = γaδab,

and U is the orthogonal matrix that diagonalizes the matrix ΓD
−1/2 ·∆ · ΓD

−1/2,, i.e.(
U · ΓD

−1/2 ·∆ · ΓD
−1/2 ·UT

) b

a
= βaδab

The reduced density matrix in terms of the new variables w, w′ is

ρ̂(w,w′) =
n∏

a=1

√
1− βa
π

exp

{
−1

2

(
w2

a + w′ 2
a + βawaw

′
a

)}
. (2.11.66)

Again the normalization constant is appropriately chosen to ensure that the trace of the
reduced density matrix is unity.

This reduced density matrix is the product of n reduced density matrices for a “body”
oscillator coupled to a n environment oscillator whose individual eigenvalues are given by
(2.11.29).

λa = (1− ξa) ξ
ja
a , where ξa ≡

βa

1 +
√
1− β2

a

(2.11.67)
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(see (2.11.250, (2.11.26)).

The eigenvalues of the reduced density matrix (2.11.66) are labelled by n integers.
ja, (a = 1 · · ·n):

λj1···jn =
n∏

a=1

(1− ξa) ξ
ja
a , where ξa ≡

βa

1 +
√

1− β2
a

(2.11.68)

The entanglement entropy

Hent. = −
∑
j1···jn

λj1···jn log2 (λj1···jn)

= −
n∑

a=1

∏
k ̸=a

(∑
j

(1− ξk))ξ
j
k

)∑
l

(1− ξa) ξ
l
a log2

(
(1− ξa) ξ

l
a

)
(2.11.69)

Using ∑
j

(1− ξ)ξj = 1,

and ∑
j

(1− ξ)ξj ln
(
ξj
)

=
ξ

(1− ξ)
ln ξ

we arrive at

Hent. =
n∑

a=1

Ha
ent., (2.11.70)

where

Ha
ent. = −

(
log2 (1− ξa) +

ξa
(1− ξa)

log2 ξa

)
(2.11.71)

We consider the particular case where N = 2, n = 1, but unlike the above example the
frequencies without the interaction term are unequal.

Write

Ω ·Ω =

(
A B
B C

)
.

The square root matrix, Ω, has the form

Ω ≡
(
ωA ωB

ωB ωC

)
(2.11.72)
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where

ωA =
A±

√
AC −B2

√
D

ωB =
B√
D

ωC =
C ±

√
AC −B2

√
D

, with D = A+ C ± 2
√
AC −B2 (2.11.73)

For B ≪ A,C these become (to leading order in B and with positive values for both
diagonal elements)

ωA ≈
√
A

ωB ≈ B√
A+

√
C

ωC ≈
√
C (2.11.74)

In this case we have

∆ =
ω2
B

2ωC

(2.11.75)

Γ =
2ωA ωC − ω2

B

2ωC

(2.11.76)

β =
∆

Γ
=

ω2
B

(2ωAωC − ω2
B)

(2.11.77)

ξ =
ω2
B(√

ωA ωC +
√
ωA ωC − ω2

B

)2 (2.11.78)

We note that in the approximation

ωB ≪ ωA, ωC

ξ ≈ ω2
B

4ωA ωC

(2.11.79)

2.11.5 Free Massless Scalar Field

H =

∫
d3r

1

2

(
π(r2) + (∇ϕ(r)2

)
(2.11.80)
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We work in spherical polar coordinates, (r, θϕ), since we will be seeking the reduced
density matrix obtained by tracing over the field coordinates inside a sphere of a given
radius, R.

d3r = r2 sin θdθdϕdr

and expand the field ϕ(r) and conjugate momentum π(r) in spherical harmonics.

rϕ(r) =
∑
l,m

ϕlm(r)Ylm(θ, π) (2.11.81)

rπ(r) =
∑
l,m

πlm(r)Ylm(θ, ϕ). (2.11.82)

The Hamiltonian becomes
H =

∑
l,m

Hlm, (2.11.83)

where

Hlm =
1

2

∫
dr

(
πlm(r)

2 + r2
(
d

dr

ϕlm(r)

r

)2

+
l(l + 1)

r2
ϕlm(r)

2

)
(2.11.84)

The entanglement entropy obtained by tracing out the field values for r < R is the sum of
the entropies of each partial wave component. Moreover, the azimuthal symmetry tells us
that for each value of l the sum over the magnetic quantum number, m, just introduces a
factor of (2l + 1) and so we may write

Hent.(R) =
∑
l

(2l + 1)H l
ent.(R) (2.11.85)

where H l
ent.(R) is the entropy of a system whose Hamiltonian is Hlm (for any m between

±l.)

Next we discretize the radial direction r in steps of δ, so that r = jδ and the entanglement

radius R =

(
n+

1

2

)
δ. The field only has support on concentric spheres whose radial

separation is δ. In this way we introduce an ultraviolet cut-off, 1/δ. We can introduce an
infrared cut-off by imposing a maximum value, of N for the index j, i.e. we confine the
system to a sphere of radius Rmax. = Nδ.

Transforming: ∫
dr → δ

N∑
j=1

,

ϕlm(r) → ϕj,

πlm → πj/δ,

r
d

dr

ϕlm(r)

r
→ 1

δ

(
j +

1

2

)(
ϕj+1

j + 1
− ϕj

(j)

)
. (2.11.86)
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ϕk and πj obey the commutation relation

[πj, ϕk] = −iδjk (2.11.87)

The Hamiltonian for partial wave l for this discretized field, (set of coordinates) ϕj is
then

Hl ({πj} , {ϕj}) =
1

2δ

N∑
j=1

(
π2
j +

(
j +

1

2

)2(
ϕj

j
− ϕj+1

(j + 1)

)2

+
l(l + 1)

j2
ϕ2
j

)
(2.11.88)

.

This is the Hamiltonian of (2.11.59) with the square frequency

(Ω ·Ω)jk =

((
j +

1

2

)2

+ l(l + 1)
1

j2

)
δjk −

(
j +

1

2

)2
1

j(j + 1)
δk(j+1)

−
(
j − 1

2

)2
1

j(j − 1)
δk(j−1) (2.11.89)

The reduced density matrix is obtained by tracing over ϕj, j = 1 · · ·n.

There are only nearest neighbour interactions. Nevertheless, in general, there will be
entanglement between the first ϕj outside the sphere of radius R. ϕn+1 and all of the
coordinates ϕj, j = 1 · · ·n). The entanglement entropy has to be calculated using the
method for N coupled oscillators, with the matrix Ω obtained by finding the square root of
Ω ·Ω given by (2.11.89).

However, if the angular momentum, l, is sufficiently large ( l ≫ N), the entanglement
between ϕn and ϕ(n+1) is of order 1/l

2 (the diagonal terms in Ω ·Ω dominate the off-diagonal
terms by O(l2)) and so, to leading order in 1/l2, we need only consider the entanglement
between ϕn and ϕ(n+1), the entanglement between ϕj and ϕ(n+1) (j < n)) being higher order
in 1/l2.

Furthermore the n, (n+ 1) sub-matrix of Ω may be written(
ωA ωB

ωB ωC

)
where, to leading order in 1/l2

ωA ≈
√
l(l + 1)

n
(2.11.90)

ωB ≈
(
n+ 1

2

)
2
√
l(l + 1)

(2.11.91)

ωC ≈
√
l(l + 1)

(n+ 1)
(2.11.92)
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Then using (2.11.79)

ξn ≈ ω2
B

4ωa ωC

≈
(
n+ 1

2

)2
n(n+ 1)

16l(l + 1)
(2.11.93)

H l,n
ent = −

(
log2(1− ξn) +

ξn log2 ξn
(1− ξn)

)
≈ −ξn (log2 ξn − 1) (2.11.94)

(since ξn ≪ 1).

This contribution to the total entanglement entropy seems to grow as n4. so that for large
radius R, it increases as R4. This is not the dominant contribution to the total entanglement
entropy, but has been calculated in order to demonstrate that the sum over angular momen-
tum l is convergent. The dominant contribution comes from smaller angular momentum and
has to be calculated numerically. Numerical calculations yield an entanglement entropy that
grows as n2 – in other words the entanglement entropy is proportional to the surface area of
the sphere as is the case for the Beckenstein entropy of a black hole.
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