
11 The Electromagnetic Field

The photon has spin one and is represented by a 4-vector field Aµ. In terms of this field the
components of the electric and magnetic field are given by first constructing the antisymmetric
tensor

Fµν = ∂µAν−∂νAµ

where the components of the electric and magnetic field Ei, Bi are

F0i =−Fi0 = Ei (i = 1, · · ·3)

and
εi jkFjk =−Bi.

The Lagrangian density for this field is

LA = −1
4FµνFµν

Note that there is no mass term since the photon is massless.

The Euler Lagrange equations of motion are

∂µFµν = 0

This reproduces two of Maxwell’s equations in free space (i.e. with no electric charge density or
current)

∇ ·E = 0

∇×B =
d
dt

E

The other Euler-Lagrange equation is

εµνρσ∂νFρσ = 0,

where we have introduced the totally antisymmetric (Levi-Civita) tensor in 4-dimensions

εµνρσ = 1 for {µ,ν,ρ,σ} even permutation of {1,2,3,0}
= −1 for {µ,ν,ρ,σ} even permutation of {0,1,2,3}
= 0 otherwise (11.1)

Take care that because of the form of the Minkowski metric

εµνρσ ≡ gµµ′gνν′gρρ′gσσ′εµ′ν′ρ′σ′ = −εµνρσ

This reproduces the other two Maxwell equations

∇ ·B = 0
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∇×B =−∂E
∂t

The canonical momentum is again defined by

πµ =
∂L
∂Ȧµ

Here we have
π0 = 0,

meaning that care needs to be taken in quantising the field since the zero component does not
possess a conjugate momentum. For the spae-like components,

πi = Ei

Using this canonical momentum we can construct the Hamiltonian density

H =
1
2

π2
i +

1
4
(

∂iA j−∂ jAi
)2

=
1
2
(

|E|2 + |B|2
)

For the space-like components, the equal time commutation relations are
[

πi(x, t),A j(y, t)
]

= −iδ3(x−y)δi j

Since the photon has spin, we define a photon state not only by its momentum p but also specifiy
its helicity, λ, (the component of its spin in its direction of motion). The field Aµ can be expanded
in terms of creation and annihilation operators for photons of momentum p helicity λ, which obey
the commutation relations

[

a(p,λ)a†(p′,λ′)
]

= (2π)32Epδ3(p−p′)δλλ′

The photon, being massless, can only have two possible helicities ±1, in contrast to a massive
spin-one particle (described by a vector field with a mass term) which has three, corresponding to
the three possible components of its spin in its direction of motion.

The expansion of the photon field is

Aµ(x) =

Z

d3p
(2π)32Ep

∑
λ=±1

(

a(p,λ)εµ(p,λ)e−ip·x +a†(p,λ)ε∗µ(p,λ)e+ip·x,
)

For a photon moving along the z-direction the polarisation vectors may be written

εµ(p,∓1) =
1√
2

(0,1,±i,0)),
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having components perpendicular to the momentum of the photon. The ±i in the y-direction
correspond to a photon with right/left circular polarisation.

However there is some ambiguity in these polarisation vectors, arising form the fact that we have
a“gauge invariance”, i..e under the transformation

Aµ(x) → Aµ(x)+∂µΛ(x),

which can be seen to leave the tensor Fµν unchanged and so it has no effect on the physical electric
and magnetic fields. This freedom allows us to make corresponding changes to the polarisation
vectors the polarisation vectors by adding a term proportional to the photon momentum pµ

The above choice of representation for the polarisation vectors is called the “Coulomb gauge” and
in this gauge

∑
λ=±1

εi(p,λ)ε∗j(p,λ) = δi j−
pi p j

|p|2

This is not terribly convenient and a gauge can be found in which this sum can be written in
covariant notation

∑
λ=±1

εµ(p,λ)ε∗ν(p,λ) = −gµν +ξ
pµ pµ

p2 ,

where ξ is the “gauge parameter” and can take any value without changing the result of the calcu-
lation of any physical process (this is a consequence of the gauge invariance).

From now on we will choose the Feynman gauge for which ξ = 0 is that

∑
λ=±1

εµ(p,λ)ε∗ν(p,λ) = −gµν.

The Feynman propagator
i∆F(x,y)µν = 〈0|TAµ(x)Aν(y)|0〉>,

can be deduced from this expansion and is given by

∆F(x,y)µν = lim
ε→0

Z

d4 p
(2π)4

∑λ=±1 εµ(p,λ)ε∗ν(p,λ)

p2 + iε

In Feynman gauge this simply becomes

∆F(x,y)µν = lim
ε→0

Z

d4 p
(2π)4

−gµν

p2 + iε

As in the case of the scalar field, we can invert the expansion for the field Aµ and its time derivative
to obtain expressions for the creation and annihilation operators for the “in” and “out” states in
terms of these fields. We find

ain(p,λ) = iεµ(p,λ)
Z

d3xeip·x ↔∂0 Aµ
in(x)
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a†
in(p,λ) = −iε∗µ(p,λ)

Z

d3xe−ip·x ↔∂0 Aµ
in(x),

with similar expressions for the “out” states.

From this, we can go through the same steps as we did for the scalar field to obtain the LSZ
reduction for the S-matrix element for an incoming state of n photons with momenta p1 · · · pn

and helicities λ1 · · ·λn and an outgoing state of m photons with momenta q1 · · ·qn and helicities
λ′1 · · ·λ′n. The expression is

〈q1,λ′1, · · ·qm,λ′m,out|p1,λ1, · · · pn,λn, in〉 =

(

i√
Z

)n+m Z

d4x1 · · ·d4xnd4y1 · · ·d4ym

e−i∑n
j=1 p j·x je+i∑m

k=1 qk·ykεν′1(q1,λ′1) · · ·εν′m(qm,λ′m)ε∗µ′1(p1,λ1) · · ·ε∗µ′n(pn,λn)
(

−gµ′1µ12x1

)

· · ·
(

−gµ′nµn2xn

)(

−gν′1ν12y1

)

· · ·
(

−gν′mνm2ym

)

〈0|TAµ1(x1) · · ·Aµn(xn)Aν1(y1) · · ·Aνm(ym)|0〉

As in the case of the scalar field the operators gµµ′
2 acting on the external propagators between

an external photon field and an intenral filed (coming form the interaction Lagrangian) gives a
delta-function which is absorbed by the integration over d4x.

11.1 Angular Momentum Operator

The angular momentum operator fopr a spin-1 field contains an extra term, not present in the case
of a scalar field, which ccounts for the spin of the particles. Thus we have

Mµν =

Z

d3x
(

: xµT ν0− xνT µ0 :
)

+Σµν,

where
Σµν =

Z

d3x :
(

Aµ(x)Ȧν(x)−Aν(x)Ȧµ(x) :
)

In terms of creation and annihilation operators this is

Σµν = i
Z

d3p
(2π)32Ep

∑
λ=±1

(εµ∗(p,λ)εν(p,λ)− εν∗(p,λ)εµ(p,λ))a†(p,λ)a(p,λ)

For a particle moving along the z-direction with helicity λ

Sz|pz,λ〉 = Σxy|pz,λ〉 = i(εx∗(λ)εy(λ)− εy∗(λ)εx(λ))

setting εx(λ) = 1/
√

2, and εy(λ) =−iλ/
√

2 we see that this measures the helicity λ, as required.
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