
3 Britto, Cachazo, Feng (BCF) Reduction

This is a reduction formula which enables one to calculate a next-to-MHV (NMHV) ampli-
tude (i.e. an amplitude with three negative helicity gluons), in terms of MHV amplitudes
(and the extended triple-gluon vertex discussed at the end of the last section).

The reduction can then be iterated so that NNMHV (i.e. four negative helicity states) can
be calculated in terms of NMHV and MHV amplitudes, etc.

Useful Notation: Suppose we consider an n-point amplitude with external momenta
p1 · · · pn.

Define momenta

qkl = −qlk = pk + pk+1 + · · · pl

(if k > l then we mean pk + · · · pn + p1 + · · · pl).

If k = 1, we will just write this as ql.

Let Ã(1, 2, · · ·n) be a coloured ordered n-point amplitude. Using the cyclic symmetry we
can always choose particle n to have positive helicity and particle n − 1 to have negative
helicity.

Now define the analytic function of z, Ã(1, 2, · · ·n; z), which is the above amplitude but
where the “marked” momenta pn−1 and pn have been continued into complex momenta by
the transformations on spinors

|pn〉 → |p̂n(z)〉 = |pn〉 + z|pn−1〉

|pn−1] → |p̂n−1(z)] = |pn−1] − z|pn]

Note that we still have conservation of momentum

n−2
∑

i

pi + pn−1 + pn =
n−2
∑

i

pi + p̂n−1(z) + p̂n(z) = 0

So that what we want is the value of this analytic function (strictly a meromorphic function)
at z = 0. On the other hand, provided Ã(1, 2, · · ·n; z) → 0 as |z| → ∞ (BCF and Witten
proved this laboriously - we shall take it as read), then the function is uniquely determined
by the residues Ri of the poles at z = zi

Ã(1, 2, · · ·n; z) =
∑

i

Ri

(z − zi)
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∑
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..

..

..h −h

q̂i,n−1(z)

pi

pi+1

pn−2

p̂−n−1(z)

pi−1

pi−2

p1

p̂+
n (z)

In order to find these poles and their residues we split the amplitude, in all possible ways,
into a left-handed amplitude and a right-handed amplitude with a single gluon propagating
between them. We only consider terms in which the gluon (n − 1) is on the opposite side
from gluon n. The poles occur for values of z for which the intermediate gluon propagator
diverges - i.e. it carries light-like momentum.

If both the marked gluons are on the same side of the split, then the intermediate gluon must
carry momentum (from the side which contains no marked momenta) which is independent
of z and therefore cannot contribute to the poles.

Thus we have

Ã(1, 2, · · ·n; z) =
n−3
∑

i=1

∑

h=±
AL(pi, pi+1, · · · p̂n−1(z), h)

1

q̂i,n−1(z)2
AR(p̂n(z), p1, · · · pi−1,−h),

where
∑

h=± indicates that we need to consider the intermediate gluon propagating for right-
helicity to left-helicity and vice-versa.

Now
(1 + γ5)

2
γ · qi,n−1 = |pi〉[pi| + |pi+1〉[pi+1| + · · · |pn−1〉[pn−1|

so that
(1 + γ5)

2
γ · q̂i,n−1(z) =

1

2

(

1 + γ5
)

γ · qi,n−1 − z|pn〉[pn−1|
and

q̂i,n−1(z)2 = q2
i,n−1 − z[pn−1|γ · qi,n−1|pn〉.

This vanishes when

z ≡ zi =
q2
i,n−1

[pn−1|γ · qi,n−1|pn〉
Furthermore, at this value the intermediate propagating gluon is on-shell, so that the factors
on the left and right (whose product gives the residues of the poles) are on-shell amplitudes
(albeit with complex momenta) and so we finally arrive at

Ã(1, 2, · · ·n) =
n−3
∑

i=1

∑

h=±
Ã(pi, pi+1, · · · p̂n−1(zi), q̂

h
i,n−1(zi))

1

q2
i,n−1

Ã(p̂n(zi), p1, · · · pi−1,−q̂−h
i,n−1(zi)).
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If Ã(1, 2, · · ·n) is an NMHV amplitude then the amplitudes on the left and right will either
be MHV amplitudes or amplitudes with fewer than two negative helicities, which we discard,
with the exception of the triple-gluon vertex with helicities (+, +,−).

For further reductions (e.g.NNMHV) the amplitudes on the left and right of the intermediate
gluon will also include NMHV amplitudes, etc.

Thus, the procedure for calculating an NMHV amplitude is as follows:

1. Mark two adjacent gluon lines (n− 1), n, where the first has negative helicity and the
second has positive helicity (they don’t actually need to be adjacent, but it simplifies
things if they are.)

2. Draw all diagrams in which one marked gluon is on the left and the other is on the right,
with an intermediate gluon propagating from helicity, h to helicity −h, and where the
amplitudes on either side are either MHV amplitudes or a triple-gluon vertex.

3. Calculate the MHV (or triple-gluon) amplitudes on the left and right with momenta
and helicities

phi

i , p
hi+1

i+1 , · · · p̂n−1(zi)
−, q̂i,n−1(zi)

h

and

p̂n(zi)
+, ph1

1 , · · ·phi−1

i−1 ,−q̂i,n−1(zi)
−h,

respectively, where

zi =
q2
i,n−1

[pn−1|γ · qi,n−1|pn〉
and

|p̂n(zi)〉 = |pn〉 + zi|pn−1〉

|p̂n−1(zi)] = |pn−1] − zi|pn]

q̂i,n−1(zi) = −
n−2
∑

i

pi − p̂(zi)

Note that

q̂i,n−1(zi)
2 = 0.

4. Sum

Ã(pi, pi+1, · · · p̂n−1(zi), q̂i,n−1(zi)
h)

1

q2
i,n−1

Ã(p̂n(zi), p1, · · ·pi−1,−q̂i,n−1(zi)
−h)

over all such diagrams.
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The result needs some manipulation in order to simplify it. The following relations are useful
in this respect

〈k|q̂i,n−1(zi)〉[q̂i,n−1(zi)|pn] = 〈k|γ · qi,n−1|pn]

〈pn−1|q̂i,n−1(zi)〉[q̂i,n−1(zi)|k] = 〈pn−1|γ · qi,n−1|k].

These are seen from the fact that

(1 + γ5)

2
γ · q̂i,n−1(z) =

1

2
(1 + γ5)γ · qi,n−1 + z|pn−1〉[pn|

Example 1:
As a first example, we apply this to the n-point MHV vertex in order to prove the Parke-
Taylor formula by induction, assuming that it is correct for the (n − 1)-point function.

There is only one permitted graph, which has an MHV vertex at one end containing both the
negative helicity external gluons, and a triple-gluon vertex with two positive helicity external
gluons at the other end. The intermediate gluon propagates with the positive helicity end
attached to the MHV vertex and the negative end attached to the triple gluon vertex.

..

..

..

p̂+
n (z)

p+
1

+ −
q̂2,n−1(z)

p2

p3

pn−2

p̂−n−1(z)

p−j

The left-handed “vertex” is an (n − 1)-point MHV vertex

i(−g)(n−3) 〈pj|p̂n−1(z)〉4
〈p2|p3〉 · · · 〈p̂n−1(z)|q̂2,n−1(z)〉〈q̂2,n−1(z)|p2〉

but |p̂n−1(z)〉 = |pn−1〉 so we may write this as

i(−g)(n−3) 〈pj|pn−1〉4
〈p2|p3〉 · · · 〈pn−1|q̂2,n−1(z)〉〈q̂2,n−1(z)|p2〉

The right-handed vertex is the conjugate of the MHV triple-gluon vertex (as it is a (+, +,−)
vertex)

−ig
[p̂n(z)|p1]

3

[p1|q̂2,n−1(z)][q̂2,n−1(z)|[p̂n(z)]

In this case |p̂n(z)] = |pn−1], so we may write this as

−ig
[pn|p1]

3

[p1|q̂2,n−1(z)][q̂2,n−1(z)|[pn]
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and the propagator is
−i

q2
2,n−1

=
−i

(pn + p1)2
=

i

〈p1|pn〉[p1|pn]

Combining pairs denominator terms and using

(1 + γ5)

2
γ · q̂i,n−1(z) =

1

2
(1 + γ5)γ · qi,n−1 + z|pn−1〉[pn|,

we have

〈p2|q̂2,n−1(z)〉[q̂2,n−1(z)|pn] = 〈p2|γ · q2,n−1|pn] = 〈p2|p1〉[p1|pn],

where we have used q2,n−1 = p1 + pn and γ · pn|pn] = 0

Similarly

〈pn−1|q̂2,n−1(z)〉[q̂2,n−1(z)|p1] = 〈pn−1|γ · q2,n−1|p1] = 〈pn−1|p1〉[pn−1|pn].

Piecing together we see that there are three factors of [p1|pn] in the denominator which cancel
[p1|pn]3 in the numerator and we are left with

i(−g)(n−2) 〈pj|pn−1〉4
〈p1|p2〉〈p2|p3〉 · · · 〈pn−1|pn〉〈pn|p1〉

,

which is the Parke-Taylor result for the n-point amplitude.

Since we have shown explicitly that the Parke-Taylor formula works for n = 4, this completes
the inductive proof that it works for any n-point amplitude.

Example 2:
Now we calculate a 6-point NMHV amplitude, Ã(p−1 , p−2 , p−3 , p+

4 , p+
5 , p+

6 ).

There are two permitted graphs

(a) (b)p̂+
4 (z)

p+
5

p+
6

p−1 p−2

p̂−3 (z)

p+
5

p̂+
4 (z)

p̂−3 (z)

p−2

p−1

p+
6

− +− +

Graph (b) can be obtained from graph(a) by complex conjugation and a change of momentum
variables, so we will just look at graph (a).
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The right vertex is

−ig
〈p2|p̂3(z)〉3

〈p̂3(z)|q̂2,3(z)〉〈q̂2,3(z)|p2〉
which we may write as

−ig
〈p2|p3〉3

〈p|q̂2,3(z)〉〈q̂2,3(z)|p2〉
,

since |p̂3(z)〉 = |p3〉.

The left “vertex” is

ig4 〈p1|q̂2,3(z)〉3
〈q̂2,3(z)|p̂4(z)〉〈p̂4(z)|p5〉〈p5|p6〉〈p6|p1〉

The propagator is
−i

〈p2|p3〉[p3|p2]

and

z =
〈p2|p3〉[p3|p2]

〈p3|γ · (p2 + p3)|p4]
=

[p2|p3]

[p2|p4]
,

(using 〈p3|p3| = 0)

〈p1|q̂2,3(z)〉[q̂2,3(z)|p4] = −〈p1|γ · (p2 + p3)|p4]

or

〈p1|q̂2,3(z)〉 = −〈p1|γ · (p2 + p3)|p4]

[q̂2,3(z)|p4]

and

〈p2|q̂2,3(z)〉[q̂2,3(z)|p4] = −〈p2|γ · (p2 + p3)|p4]

or

〈p2|q̂2,3(z)〉 = −〈p2| · p3|p4]

[q̂2,3(z)|p4]

and

〈p3|q̂2,3(z)〉[q̂2,3(z)|p4] = −〈p3|γ · (p2 + p3)|p4]

or

〈p3|q̂2,3(z)〉 = −〈p3|γ · p2|p4]

[q̂2,3(z)|p4]
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Also,

|p̂4(z)〉 = |p4〉 + z|p〉 = |p4〉 +
[p2|p3]

[p2|p4]
|p3〉

which leads to

〈p̂4(z)|p5〉 = 〈p4|p5〉 +
[p2|p3]〈p3|p5〉

[p2|p4]
=

p2|γ · (p3 + p4)|p5〉
[p2|p4]

The most difficult one is

〈p̂4(z)|q̂2,3(z)〉[q̂2,3(z)|p4] = 〈p̂4(z)|γ · (p2 + p3)|p4]

= 〈p4|γ · (p2 + p3)|p4] +
[p2|p3]

[p2|p4]
〈p3|γ · (p2 + p3)|p4]

= 〈p4|γ · (p2 + p3)|p4] + [p2|p3]〈p3|p2〉
= 2(p2 · p4 + p3 · p4 + p2 · p3) = (p2 + p3 + p4)

2

Piecing together we find that the [q̂2,3(z)|p4] factors cancel and we are left with

ig4 1

(p2 + p3 + p4)2

〈p1|γ · (p2 + p3)|p4]
3

〈p2|p3〉〈p3|p4〉〈p5|p6〉〈p6|p1〉〈p5|γ · (p3 + p4)|p2]

To this we must add the contribution from graph (b) (which can be obtained from the
conjugate of the above expression with a rotation of momenta), so the final result becomes
quite complicated. In the next session we will discuss an effective field theory from which
the result can be obtained far more simply.
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