8 Reduction of n-point Scalar Integral to ($n-1$)-point Integrals

This reduction technique was developed by Bern, Dixon and Kosower (BDK).

$$
\begin{aligned}
& \left(l+q_{1}\right) \text { (l+q-q-1)} \\
& I_{n}[1] \equiv-i(\pi)^{\epsilon-2} \int \frac{\left.q_{j}\right)}{\left(l^{2}-m_{0}^{2}\right)\left(\left(l+q_{1}\right)^{2}-m_{1}^{2}\right) \cdots\left(\left(l+q_{n-1}\right)^{2}-m_{n-1}^{2}\right)}, \\
& \left(q_{j}=p_{1}+\cdots p_{j}, \quad q_{0}=0\right)
\end{aligned}
$$

p_{i}^{2} are referred to as "masses". If r of these p_{i}^{2} are non-zero then this is called the r-mass n-point scalar integral.

After Feynman parametrisation and shifting we obtain

$$
\begin{aligned}
I_{n}[1] & =-i(\pi)^{\epsilon-2} \Gamma(n) \int_{0}^{1} d \alpha_{1} d \alpha_{2} \cdots d \alpha_{n} \delta\left(1-\sum_{i=1}^{n} \alpha_{i}\right) \int \frac{d^{4-2 \epsilon} l}{\left(l^{2}+A^{2}\right)^{n}} \\
& =(-1)^{n} \Gamma(n-2+\epsilon) \int_{0}^{1} \frac{d \alpha_{1} d \alpha_{2} \cdots d \alpha_{n} \delta\left(1-\sum_{i} \alpha_{i}\right)}{\left(-A^{2}\right)^{n-2+\epsilon}}
\end{aligned}
$$

where

$$
A^{2}=\sum_{i=1}^{n}\left(q_{i-1}^{2}-m_{i-1}^{2}\right) \alpha_{i}-\sum_{i, j=1^{n}} \alpha_{i} \alpha_{j} q_{i-1} \cdot q_{j-1}
$$

Consider the integral $I_{n-1}^{(1)}[1]$, which is the $(n-1)$-point integral obtained by taking the n-point integral and "pinching out" the first propagator. This may be written as

$$
I_{n-1}^{(1)}[1]=-i(\pi)^{\epsilon-2} \int d^{4-2 \epsilon} l \frac{\left(l^{2}-m_{0}^{2}\right)}{\left(l^{2}-m_{0}^{2}\right)\left(\left(l+q_{1}\right)^{2}-m_{1}^{2}\right) \cdots\left(\left(l+q_{n}\right)^{2}-m_{n}^{2}\right)},
$$

We Feynman parametrise and shift as in the case of $I_{n}[1]$. The numerator shifts to

$$
l_{2}-m_{0}^{2} \rightarrow l^{2}+\sum_{i, j=1}^{n} q_{i} \cdot q_{j} \alpha_{i} \alpha_{j}-m_{0}^{2}=l^{2}+A^{2}-2 A^{2}+\sum_{i=1}^{n}\left(q_{i-1}^{2}-m_{i-1}^{2}\right) \alpha_{i}
$$

so that

$$
\begin{aligned}
I_{n-1}^{(1)}= & -i(\pi)^{\epsilon-2} \Gamma(n) \int_{0}^{1} d \alpha_{1} d \alpha_{2} \cdots d \alpha_{n} \delta\left(1-\sum_{i} \alpha_{i}\right) \int d^{4-2 \epsilon} l\left\{\frac{1}{\left(l^{2}+A^{2}\right)^{n-1}}-\frac{2 A^{2}}{\left(l^{2}+A^{2}\right)^{n}}\right\} \\
& +\sum_{i}\left(q_{i-1}^{2}-m_{i-1}^{2}\right) I_{n}\left[\alpha_{i}\right] \\
= & \int_{0}^{1} d \alpha_{1} d \alpha_{2} \cdots d \alpha_{n} \delta\left(1-\sum \alpha_{i}\right) \frac{(-1)^{n-1}}{\left(-A^{2}\right)^{n-3+\epsilon}} \Gamma(n-3+\epsilon\{(n-1)-2(n-3+\epsilon)\} \\
& +\sum_{i}\left(q_{i-1}^{2}-m_{i-1}^{2}\right) I_{n}\left[\alpha_{i}\right]
\end{aligned}
$$

But

$$
\Gamma(n-3+\epsilon) \frac{(-1)^{n}}{\left(-A^{2}\right)^{n-3+\epsilon}}=-i(\pi)^{\epsilon-3} \int \frac{d^{6-2 \epsilon} l}{\left(l^{2}+A^{2}\right)^{n}}
$$

i.e. the n-point scalar integral calculated in $6-2 \epsilon$ dimensions.

So we get

$$
I_{n-1}^{(1)}[1]=(n-5+2 \epsilon) I_{n}[1]^{d=6-2 \epsilon}+\sum_{i}\left(q_{i-1}^{2}-m_{i-1}^{2}\right) I_{n}\left[\alpha_{i}\right] .
$$

Similarly, by multiplying $I_{n}[1]$ by one of the other propagator denominator factors we obtain

$$
\begin{equation*}
I_{n-1}^{(j)}=(n-5+2 \epsilon) I_{n}[1]^{d=6-2 \epsilon}-2 \sum_{i} S_{i j} I_{n}\left[\alpha_{i}\right], \tag{8.1}
\end{equation*}
$$

where

$$
S_{i j}=\frac{1}{2}\left(m_{i-1}^{2}+m_{j}^{2}-q_{(i-1), j}^{2}\right), \quad S_{i i}=0
$$

$\left(q_{(i-1), j} \equiv p_{i-1}+p_{i} \cdots p_{j}\right)$.
We would like to invert this set of equations to get a set of expressions for $I_{n}\left[\alpha_{i}\right]$. However, care must be taken for $n \geq 6$ because the fact that only four of the momenta are linearly independent means that the matrix $S_{i j}$ is not invertible (in the case of zero internal masses).

Define parameters $b_{i}, i=1 \cdots n$, such that

$$
S_{i j}=\frac{\rho_{i j}}{b_{i} b_{j}}
$$

where $\rho_{i j}$ is a "conveniently chosen" invertible matrix with inverse $\eta_{i j}$.
This assignment is not unique.

Example 1:

$n=4$, internal masses set to zero $\left(s=q_{12}^{2}, t=q_{23}^{2}\right)$.
A possible assignment is

$$
b_{1}=b_{3}=\frac{1}{\sqrt{\left|q_{12}^{2}\right|}}
$$

$$
\begin{gathered}
b_{2}=b_{4}=\frac{1}{\sqrt{\left|q_{23}^{2}\right|}} \\
\rho=\left(\begin{array}{cccc}
0 & \hat{p}_{1}^{2} & 1 & \hat{p}_{4}^{2} \\
\hat{p}_{1}^{2} & 0 & \hat{p}_{2}^{2} & 1 \\
1 & \hat{p}_{2}^{2} & 0 & \hat{p}_{3}^{2} \\
\hat{p}_{4}^{2} & 1 & \hat{p}_{3}^{2} & 0
\end{array}\right), \\
\hat{p}_{i}^{2} \equiv \frac{p_{i}^{2}}{\sqrt{\left|q_{12}^{2} q_{23}^{2}\right|}}
\end{gathered}
$$

On the other hand, if only one of the external masses is non-zero $\left(p_{1}^{2} \neq 0\right)$ then we can choose an assignment in which the matrix ρ is independent of the kinematics, as follows:

$$
\begin{gathered}
b_{1}=\sqrt{\left|\frac{q_{23}^{2}}{q_{12}^{2} p_{1}^{2}}\right|} \\
b_{2}=b_{3}=\sqrt{\left|\frac{p_{1}^{2}}{q_{12}^{2} q_{23}^{2}}\right|} \\
b_{4}=\sqrt{\left|\frac{q_{12}^{2}}{q_{23}^{2} p_{1}^{2}}\right|}
\end{gathered}
$$

and

$$
\rho=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

If two adjacent masses are non-zero $\left(p_{1}^{2} \neq 0\right.$ and $\left.p_{2}^{2} \neq 0\right)$ then we can also make an assignment for which ρ is independent of the kinematics:

$$
\begin{aligned}
& b_{1}=\sqrt{\left|\frac{p_{2}^{2}}{q_{12}^{2} p_{1}^{2}}\right|} \\
& b_{2}=\sqrt{\left|\frac{q_{12}^{2}}{p_{1}^{2} p_{2}^{2}}\right|} \\
& b_{3}=\sqrt{\left|\frac{p_{1}^{2}}{q_{12}^{2} p_{2}^{2}}\right|} \\
& b_{4}=\sqrt{\left|\frac{p_{1}^{2} p_{2}^{2}}{q_{23}^{4} q_{12}^{2}}\right|}
\end{aligned}
$$

and

$$
\rho=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Example 2:

$n=5$, internal and external masses set to zero.
A possible assignment is

$$
b_{i}=\sqrt{\left|\frac{q_{i+1, i+2}^{2} q_{i+2, i+3}^{2}}{q_{i+3, i+4}^{2} q_{i+4, i+5}^{2} q_{i+5, i+6}^{2}}\right|},
$$

(all subscripts are MOD 5)

$$
\rho=\frac{1}{2}\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Multiplying both sides of eq.(8.1) by $b_{k} \sum_{j} \eta_{k j} b_{j}$ we get

$$
I_{n}\left[\alpha_{k}\right]=\frac{1}{2} b_{k} \sum_{j} \eta_{k j} b_{j} I_{n-1}^{(j)}[1]+\frac{(n-5+2 \epsilon)}{2} b_{k} \sum_{j} \eta_{k j} b_{j} I_{n}[1]^{d=6-2 \epsilon}
$$

Now sum over k using the constraint on the Feynman parameters

$$
\sum_{k=1}^{n} \alpha_{k}=1
$$

to obtain

$$
I_{n}[1]=\frac{1}{2} \sum_{k, j=1}^{n} \eta_{k j} b_{k} b_{j} I_{n-1}^{(j)}+\frac{(n-5+2 \epsilon)}{2}\left(\sum_{k, j=1}^{n} \eta_{k j} b_{k} b_{j}\right) I_{n}[1]^{d=6-2 \epsilon}
$$

For zero internal masses it can be shown that

$$
\sum_{k, j} \eta_{k j} b_{j} b_{k}=\left(\prod_{i} b_{i}^{2}\right) \frac{\operatorname{det}^{\prime}\left(p_{i} \cdot p_{j}\right)}{\operatorname{det} \rho}
$$

where det' means that one of the momenta is omitted because of momentum conservation so this is the determinant of the remaining $(n-1) \times(n-1)$ matrix. This means that in the case where the internal masses are all zero

$$
I_{n}[1]=\frac{1}{2} \sum_{k, j} \eta_{k j} b_{k} b_{j} I_{n-1}^{(j)}+\frac{(n-5+2 \epsilon)}{2 \operatorname{det} \rho} \operatorname{det}^{\prime}\left(p_{1} \cdot p_{j}\right) I_{n}^{d=6-2 \epsilon}[1]
$$

For $n=5$ the integral $I_{n}^{d=6-2 \epsilon}[1]$ is neither UV nor IR divergent so it contains no pole and the last term may be set to zero in the four-dimensional limit.

Furthermore for $n \geq 6$ the quantity $\operatorname{det}^{\prime}\left(p_{1} \cdot p_{j}\right)$ vanishes because only four of the momenta can be linearly independent (assuming that the external momenta are defined in four dimensions). We can therefore drop the term involving the $6-2 \epsilon$ dimensional integral for all $n>4$.

It is convenient to define "reduced integrals"

$$
\hat{I}_{n}[1] \equiv \frac{1}{\prod_{i} b_{i}} I_{n}[1]
$$

so that the above reduction formula becomes (for $n>4$)

$$
\hat{I}_{n}[1]=\frac{1}{2} \sum_{k, j} \eta_{k, j} b_{k} \hat{I}_{n-1}^{(j)}[1] .
$$

Example

Pentagon $(n=5)$ integral with all internal and external masses set to zero $\left(p_{i}^{2}=0\right)$.

$$
\begin{gathered}
\frac{q_{i, i+1}^{2}}{q_{i+3, i+4}^{2}}=\frac{b_{i+3}}{b_{i+2}} \\
\eta=\rho^{-1}=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right),
\end{gathered}
$$

so that in terms of the reduced integrals

$$
\hat{I}_{5}[1]=\frac{1}{2} \sum_{j}\left(b_{j-2}-b_{j-1}+b_{j}-b_{j+1}+b_{j+2}\right) \hat{I}_{4}^{(j)}
$$

Collecting the coefficient of b_{i} this may be written

$$
\hat{I}_{5}[1]=\frac{1}{2} b_{5}\left(\hat{I}_{4}^{(5)}-\hat{I}_{4}^{(4)}-\hat{I}_{4}^{(3)}+\hat{I}_{4}^{(2)}-\hat{I}_{4}^{(1)}\right)+\text { cyclic }
$$

The $\hat{I}_{4}^{(j)}$ are one-mass box $(n=4)$ integrals

$$
\hat{I}_{4}^{(5)}[1] \equiv \hat{I}_{1 m}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=2 c\left(\frac{\left(b_{2} b_{3}\right)^{\epsilon}}{\epsilon^{2}}+\mathrm{Li}_{2}\left(1-\frac{b_{1}}{b_{2}}\right)+\mathrm{Li}_{2}\left(1-\frac{b_{4}}{b_{3}}\right)-\frac{\pi^{2}}{6}\right)
$$

where c is a factor present in all one-loop integrals with zero internal masses

$$
c \equiv \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}
$$

and

$$
\operatorname{Li}_{2}(x) \equiv-\int_{0}^{x} \frac{\ln (1-y)}{y} d y
$$

Similarly

$$
\hat{I}_{4}^{(4)}=\hat{I}_{1 m}\left(b_{5}, b_{1}, b_{2}, b_{3}\right), \text { etc. }
$$

Inserting these expressions we find several cancellations and end up with

$$
\begin{gathered}
\hat{I}_{5}[1]=c\left(b_{5}\right)^{1+2 \epsilon}\left(\frac{1}{\epsilon^{2}}+2 \operatorname{Li}_{2}\left(1-\frac{b_{4}}{b_{5}}\right)+2 \operatorname{Li}_{2}\left(1-\frac{b_{1}}{b_{5}}\right)-\frac{\pi^{2}}{6}\right)+\text { cyclic. } \\
\frac{b_{4}}{b_{5}}=\frac{q_{15}^{2}}{q_{23}^{2}}, \quad \frac{b_{1}}{b_{5}}=\frac{q_{34}^{2}}{q_{12}^{2}} . \\
b_{5}=\left(\frac{q_{12}^{2} q_{23}^{2}}{q_{34}^{2} q_{51}^{2}}\right) \quad b_{1} b_{2} b_{3} b_{4}=\frac{1}{q_{12}^{2} q_{23}^{2}},
\end{gathered}
$$

so that finally we get

$$
I_{5}[1]=\frac{c}{q_{12}^{2} q_{23}^{2}}\left(-\frac{q_{12}^{2} q_{23}^{2}}{q_{34}^{2} q_{45}^{2} q_{51}^{2}}\right)^{\epsilon}\left\{\frac{1}{\epsilon^{2}}+2 \operatorname{Li}_{2}\left(1-\frac{q_{15}^{2}}{q_{23}^{2}}\right)+2 \operatorname{Li}_{2}\left(1-\frac{q_{34}^{2}}{q_{12}^{2}}\right)-\frac{\pi^{2}}{6}\right\}+\text { cyclic }
$$

The zero-mass 5-point integral has been expressed in terms of one-mass box integrals.
Had we applied the BDK reduction formula twice to a 6 -point zero-mass integral, we would have obtained a sum of one-mass and two-mass box integrals, summed over all possible ways that two of the denominators can be "pinched out".

In general, the application of the Veltman-Passarino reductions, followed by the Bern-DixonKosower reductions, reduces any one-loop integral to a linear combination of the following scalar integrals

- zero-mass box integrals $\left(I_{4}(s, t, 0,0,0,0)\right)$

- one-mass box integrals $\left(I_{4}\left(s, t, p_{1}^{2}, 0,0,0\right)\right)$

- two-mass-easy box integrals $\left(I_{4}\left(s, t, p_{1}^{2}, 0, p_{3}^{2}, 0\right)\right)$

- two-mass-hard box integrals $\left(I_{4}\left(s, t, p_{1}^{2}, p_{2}^{2}, 0,0\right)\right) \quad p_{1}>0$
- three-mass box integrals $\left(I_{4}\left(s, t, p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, 0\right)\right)$

- four-mass box integrals $\left(I_{4}\left(s, t, p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, p_{4}^{2}\right)\right)$

- one-mass triangle integrals $\left(I_{3}\left(p_{1}^{2}, 0,0\right)\right)$

- two-mass triangle integrals $\left(I_{3}\left(p_{1}^{2}, p_{2}^{2}, 0\right)\right)$

- three-mass triangle integrals $\left(I_{3}\left(p_{1}^{2}, p_{2}^{2}, p_{3}^{2}\right)\right)$

- bubble integral $I_{2}\left(p^{2}\right)$
- tadpole integral (for non-zero internal mass) $I_{1}\left(m^{2}\right)$

plus one tensor bubble integral

$$
-i(\pi)^{\epsilon-2} \int d^{4-2 \epsilon} l \frac{l^{\mu} l^{\nu}}{\left(l^{2}-m_{0}^{2}\right)\left((l+p)^{2}-m_{1}^{2}\right)} .
$$

All but the last of these integrals has a unique imaginary part, as a function of the kinematic variables on which the integrals depend, which enables one to reconstruct the loop- amplitude from the coefficients of the cut graphs.

