8 Reduction of n-point Scalar Integral to (n — 1)-point
Integrals

This reduction technique was developed by Bern, Dixon and Kosower (BDK).
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p? are referred to as “masses”. If r of these p? are non-zero then this is called the r-mass
n-point scalar integral.

After Feynman parametrisation and shifting we obtain
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Consider the integral Iq(ll_)l[l], which is the (n — 1)-point integral obtained by taking the

n-point integral and “pinching out” the first propagator. This may be written as
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We Feynman parametrise and shift as in the case of I,,[1]. The numerator shifts to
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so that
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i.e. the n-point scalar integral calculated in 6 — 2¢ dimensions.

So we get
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Similarly, by multiplying I,,[1] by one of the other propagator denominator factors we obtain
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We would like to invert this set of equations to get a set of expressions for I,,[«;]. However,

care must be taken for n > 6 because the fact that only four of the momenta are linearly
independent means that the matrix S;; is not invertible (in the case of zero internal masses).

Define parameters b;, @ = 1---n, such that
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where p;; is a “conveniently chosen” invertible matrix with inverse 7;;.

This assignment is not unique.

Example 1:
n = 4, internal masses set to zero (s = ¢ly, t = q33).

A possible assignment is
1
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On the other hand, if only one of the external masses is non-zero (p? # 0) then we can choose
an assignment in which the matrix p is independent of the kinematics, as follows:
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If two adjacent masses are non-zero (p? # 0 and p3 # 0) then we can also make an assignment
for which p is independent of the kinematics:

b3
bl ==
Cﬁz p%

2
by = di2
b1z

by b1
Cﬁz p%

3
DN
s
NN

by =

423 di2

50



and

—_
_ = O O
—_— o O O
_ o O =
O =

Example 2:
n = 5, internal and external masses set to zero.
A possible assignment is
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(all subscripts are MOD 5)
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Multiplying both sides of eq.(8.1) by by >, ni;b; we get
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Now sum over k using the constraint on the Feynman parameters
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For zero internal masses it can be shown that
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where det’ means that one of the momenta is omitted because of momentum conservation
so this is the determinant of the remaining (n — 1) X (n — 1) matrix. This means that in the
case where the internal masses are all zero
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For n = 5 the integral I¢=672¢[1] is neither UV nor IR divergent so it contains no pole and
the last term may be set to zero in the four-dimensional limit.

Furthermore for n > 6 the quantity det’(p;-p;) vanishes because only four of the momenta can
be linearly independent (assuming that the external momenta are defined in four dimensions).

We can therefore drop the term involving the 6 — 2e dimensional integral for all n > 4.

It is convenient to define “reduced integrals”
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so that the above reduction formula becomes (for n > 4)
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Example
Pentagon (n = 5) integral with all internal and external masses set to zero (p? = 0).
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so that in terms of the reduced integrals
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Collecting the coefficient of b; this may be written
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The [ are one-mass box (n = 4) integrals
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where c is a factor present in all one-loop integrals with zero internal masses
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Inserting these expressions we find several cancellations and end up with
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so that finally we get
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The zero-mass 5-point integral has been expressed in terms of one-mass box integrals.

Had we applied the BDK reduction formula twice to a 6-point zero-mass integral, we would
have obtained a sum of one-mass and two-mass box integrals, summed over all possible ways

that two of the denominators can be “pinched out”.

In general, the application of the Veltman-Passarino reductions, followed by the Bern-Dixon-
Kosower reductions, reduces any one-loop integral to a linear combination of the following

scalar integrals
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one-mass triangle integrals (I3(p?,0,0))
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two-mass triangle integrals (I3(p?, p3,0))
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e bubble integral I (p?)

e tadpole integral (for non-zero internal mass) I;(m?)

plus one tensor bubble integral
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All but the last of these integrals has a unique imaginary part, as a function of the kinematic
variables on which the integrals depend, which enables one to reconstruct the loop- amplitude
from the coefficients of the cut graphs.
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