
10 Cut Construction

We shall outline the calculation of the colour ordered 1-loop MHV amplitude in N = 4
SUSY using the method of cut construction.

All 1-loop N = 4 SUSY amplitudes can be expressed in terms of scalar box integrals
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where rmax = (n − 4)/2 for even n and rmax = (n − 5)/2 for odd n.
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where rmax = (n − 6)/2 for n even and (n − 5)/2 for n odd.
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where rmax = (n − 6)/2 for n even and (n − 7)/2 for n odd.

We need to examine the cuts in order to determine the coefficients C1m
i , C2me

i,r , C2mh
i,r , C3m

i,r,r′, C4m
i,r,r′,r′′ .

Consider the one-loop MHV amplitude from a gluon loop a cut between external legs i − 1
and i and between legs j−1 and j and suppose that the cut negative helicity external states
k and m are on either side of the cut.
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The product of the MHV’s on either side of the cut is

(−ig)n 〈pk|l2〉4

〈l1|pi〉 · · · 〈pj−1|l2〉〈l2|l1〉

〈l1|pm〉4

〈l2|pj〉 · · · 〈pi−1|l1〉〈l1|l2〉

which we can write as

−i
Atree(p

+
1 · · · p−k · · ·p−m · · ·p+

n )

〈pk pm〉4
〈pj−1|pj〉〈pi−1|pi〉〈pk|l2〉4〈l1|pm〉4

〈l1|l2〉2〈pj−1|l2〉〈l1|pi〉〈pi−1|l1〉〈l2|pj〉

Now add the contribution from internal gluons with the helicities of the internal gluons
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reversed (l1 ↔ l2) and the contributions from the 4 Majorana fermions and the three complex
scalars, obtained using the supersymmetry Ward identities.

After some considerable algebra we end up with
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Exercise: Show that if both the negative helicities are on one side of the cut then the only
contributing graphs are the ones with internal gluons and that this leads to a cut graph with
the same form as the above expression.

Multiplying top and bottom by
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then the denominators become propagators
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If we now use the Schouten identity
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we see that we can always cancel two of the denominator factors in the hexagon and end up
with four cut box integrals and we end up with four terms of the form
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which is a contribution to the imaginary part of the loop-integral is a contribution to the
imaginary part of the integral (noting that the numerator can be written as a trace)

(−ig)nAtree
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where
l2 = l1 − p1 · · · − pi−1.
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But we see that since p2
i and p2

j are both zero this is a 2-mass-easy integral.

There are still factors of l in the numerator and when these are reduced using VP reduction
they give rise to triangle and bubble graphs, but when all the terms are added together these
triangles and bubble integrals cancel as expected for N = 4 SUSY.

The four different terms obtained by cancelling either 〈pi−1|l1〉 or 〈pi|l1〉 and either 〈pj−1|l2〉
or 〈pj|l2〉 in the denominator give the four different cuts of the I2me

4 integral:
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The momentum labels of the external lines have been shuffled a little, but we need to sum
over all possible (distinct) ways of cutting, (i.e. over i and j).

It has been shown rigorously by Brandhuber, Spence and Travaglini, that the two-mass-easy
integral I4(s, t, p

2
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3, 0) can be constructed from these four cuts using the sum of dispersion

integrals in the cut kinematic variable
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The coefficient of this I2me
4 integral is obtained from the part of the trace

Tr (γ · piγ · l1γ · pjγ · l2) = −2 (l1 · l2pi · pj − pi · l1pj · l2 −−pi · l2pj · l1)
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Using
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plus terms proportional to (l1 + pi)
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2 (or both), which give the triangle or bubble
graphs that cancel between the four cuts.

Summing over all possible cuts and recalling that for some of these cuts we will generate
one-mass integrals, we end up with
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For non-MHV amplitudes, we would expect terms which involve the other box integrals, and
for N = 1 SUSY we would also expect to pick up triangle and bubble integrals.

10.1 Use of Quadruple Cuts

It would be convenient if we could identify the coefficients of the required box integrals
in N = 4 SUSY without having to go through all the manipulations involving the spinors
constructed from the loop momentum. Indeed, for non-MHV amplitudes the identification of
a particular cut does not unambiguously identify one of the box integrals because a particular
cut can be shared by more than one box integral.
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Britto, Cachazo, and Feng noticed, however, that there is a “leading singularity” associated
with each box integral and that these leading singularities are unique to the integral.

For example, if we look at the four-mass box integral,

I4m
4 ≡ I4(q
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2
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and let the variable q2
i,i+r become much larger than any of the other kinematic variables then

the integral has a double logarithm term
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,

which does NOT occur in any other integral with the same number of external particles. All
other integral have a similar unique leading logarithm in the limit where one of the kinematic
variables becomes large.
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The coefficient of this leading singularity is obtained from the “quadruple cuts” that is the
graph cut in the s-channel and t−channel in such a way that all the internal propagators
are on shell. The corners of the graph are nothing other than on-shell tree-level amplitudes
(not necessarily MHV). The leading cut is therefore given by
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×Atree(l, pi · · · l + qi,i+r)Atree(l + qi,i+r, pi+r+1 · · · l + qi,i+r′)

×Atree(l + qi,i+r′, pi+r′+1 · · · l + qi,i+r′′)Atree(l + qi,i+r′′, pi+r′′+1 · · · l)

The four delta functions determine the loop momentum l so there is no further integration.
There may be a discrete set of solutions lm, m = 1 · · · s and the cut is obtained from
averaging over these. The integral merely gives the Jacobian of the arguments of the delta-
function w.r.t. the components of l. Writing the integral as I4(s, t, m
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λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

The leading singularity of the four-mass box integral is then

1

J
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s
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×Atree(lm + qi,i+r′, pi+r′+1 · · · lm + qi,i+r′′)Atree(lm + qi,i+r′′, pi+r′′+1 · · · lm).

By comparing this with the coefficient of the double logarithm of the four-mass box integral
we can then obtain the coefficient of the four-mass box integral for that particular (pinched)
diagram.

We can do exactly the same for the other box integrals, but care must be taken in the case
of boxes with massless legs.
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The factor
Atree(l1, pi, l1 + pi)

only exists if we make the transformation to complex momentum and then use the 3-point
MHV vertex or its conjugate, as appropriate. (Britto, Cachazo, Feng solved this problem by
working with a metric whose signature was (-1,-1,1,1), which yields the same results).
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