
4 Cachazo, Svrcek, Witten (CSW) Algorithm

A somewhat simpler algorithm was devised by Cachazo, Svrcek, Witten. Here we consider
“sewing together” MHV amplitudes which are treated as vertices, in order to draw effective
Feynman graphs for any amplitude that we wish to calculate.

Note that we really mean MHV vertices and not MHV vertices. Thus we include the triple-
gluon vertex (−,−, +) but not the (+, +,−) vertex.

A typical diagram may look like
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where we have indicated that internal gluon propagators have opposite helicities at the ends.
Propagators have the usual tree-level form

P+−(Q) = − i

Q2

Each “vertex” had exactly two gluons with negative helicity.

The difficulty is that we need to extend one or more legs of each vertex so that the internal
lines may be off-shell.

We do this by defining the light-like vector qµ which has the same components as the off-shell
momentum Qµ except for the component in a particular light-like direction nµ

qµ = Qµ − Q2

2q.n
nµ

The spinor |q〉 can be written as

|q〉 =
γ · Q
[q|n]

|n],

25



as can be seen by left multiplying both sides by γ · Q, and using γ · q|q〉 = 0.

Thus all we need to do is to draw all possible graphs involving MHV vertices and gluon
propagators between them and use as the vertices the MHV amplitudes with the spinor for
each off-shell gluon of momentum Q replaced by |q〉.

As an example we re-visit the six-point NMHV amplitude Ã(p−1 , p−2 , p−3 , p+
4 , p+

5 , p+
6 )

There are six possible graphs which are:
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We will concentrate on graph (a), for which the internal propagator has momentum Q6,1 and
we replace the right hand spinor by αγ · (p1 + p6)|n], where α−1 = 〈q6,1|n〉, but this factor
will cancel out, so we leave it as α.

The MHV vertex on the left is

−ig3 〈p2|p3〉3
〈p3|p4〉〈p4|p5〉〈p5|q6,1〉〈q6,1|p2〉

The MHV vertex on the right is

−ig
〈1|q6,1〉3

〈p6|p1〉〈q6,1|p6〉

and the propagator is
−i

〈p1|p6〉[p6|p1]

We can simplify this by making a choice of the vector n. If we choose it to be equal to p3
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(we run into zero over zero problems if we select p1, p2 or p6) then

|q6,1〉 = α(|p1〉[p1|p3] + |p6〉[p6|p3])

and the contribution from graph (a) to this amplitude simplifies to

−ig4 〈p2|p3〉3[p6|p3]
3

〈p3|p4〉〈p4|p5〉[p6|p1][p3|p1] (〈p5|p1〉[p1|p3] + 〈p5|p6〉[p6|p3]) (〈p1|p2〉[p1|p3] + 〈p6|p2〉[p6|p3])

CSW demonstrated the equivalence of this method with the BCF reduction in several cases.
They also demonstrated that all the soft- and collinear singularities of amplitudes were
correctly reproduced, and that the result was always independent of the choice of vector
n. In their own words this was at best a “heuristic proof” and the demonstration that the
method was valid was finally established by an effective field theory derived by Mansfield.
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5 Effective Field Theory

We begin by discussing QCD in the light-cone axial gauge and using light-cone quantisation.
This means that “time” is along light-like direction n+, and we choose the gauge A− = 0,
leaving components A+,A and A, where the latter two are the transverse components treated
as complex (holomorphic and anti-holomorphic) degrees of freedom (colour indices have been
suppressed).

It is convenient to define AL (longitudinal) which is the superposition of A+,A and A,.

AL ≡ A+ − 1

∂−

(

∂A + (∂A
)

In terms of the variables AL,A and A, we obtain a Lagrangian density in which AL has
no “time” dependence - i.e. no terms in ∂+AL. This means that AL has no canonical
momentum and so it is not a quantised degree of freedom. As such it can be eliminated form
the Lagrangian using its (linear) equation of motion

∂2
−AL − g (∂−A)A − g

(

∂−A
)

A = 0

After this elimination we obtain an effective QCD Lagrangian (with non-local terms) which
we may write as

L = L+− + L++− + L−−+ + L−−++

with
L+− = A(∂+∂− − ∂∂)A

L++− = −g

((

∂
1

∂−
A

)

A∂−A

)

L−−+ = −g

((

∂
1

∂−
A

)

A∂−A

)

L−−++ = −g2
(

A∂−A
) 1

∂2
−

(

A∂−A
)

The momentum conjugate to A is ∂−A (and vice-versa) so the equal “time” commutation
relations are

[

∂−A(x+, x−,x),A(x+, y−,y)
]

= iδ(x− − y−)δ2(x − y)

This effective Lagrangian (which is none other than QCD in light-cone gauge and light-cone
quantisation) is not ready to be applied to an algorithm using only MHV vertices because
of the term.
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We can, however, perform a canonical transformation of the transverse field variables. This
transformation can be non-local and non-polynomial as long as the canonical quantisation
relations are maintained. Thus we define a holomorphic field B

B(x+, x0,x) =
∑

n

∫

dy−
1 d2y1 · · ·dy−

n d2ynΓn(y−
1 ,y1 · · · y−

n ,yn)A(x+, y−
1 ,y1) · · ·A(x+, y−

n ,yn)

The antiholomorphic field B is then determined by the requirement that the transformation
should be canonical, which leads to

∂−A(x+, y−y) =
∫

dx−d2x
δB(x+, x−,x)

δA(x+, y−,y)
∂−B(x+, x−,x)

The coefficients Γn are chosen so that the above term L++− is absorbed into the quadratic
term in terms of B and B, i.e.

L+− + L++− = B(∂+∂− − ∂∂)B

We now never have any terms with more than two powers of B, but we get an infinite series
of interaction terms of the form

gn−2
∫

dx−
1 d2x1 · · ·dx−

n d2xnVn(y−
1 ,y1, · · · y−

n ,yn)B(x+, y−
1 y1)B(x+, y−

2 ,y2)B(x+, y−
3 ,y3)

× · · ·B(x+, y−
n ,yn),

which contain two factors of B corresponding to negative helicity gluons and many B factors
corresponding to positive helicity gluons. Ettle and Morris have demonstrated explicitly that
these “vertices”, V generate the MHV amplitudes.

The transverse components of the gluon polarisation vectors in this gauge are given by

ε− = ε+ =
[n−|γ|p〉√

2[n−|p]
,

where γ, γ are the transverse components of γµ. It turns out that this is just a phase,
independent of the momentum, p, of the gluon. This means that for an off-shell gluon with
momentum Q we may write this as

ε− = ε+ =
[n−|γ|q〉√

2[n−|q]
,

where |q〉 can be any spinor. The CSW prescription is a special case.
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In order to quantise the theory we need to expand the fields B and B is terms of creation
and annihilation operators for and right- and left helicity gluons. The field B destroys right-
handed positive “energy” gluons and creates left-handed negative “energy” gluons, so we
Fourier expand this as

B(x+, x−,x) =
1

(2π)3

∫

dp+d2p
(

a+(p+,p, x+)e−i(p+x−−xp
∗−x

∗
p) + a†

−(p+,p, x+)ei(p+x−−xp
∗−x

∗
p)
)

and the expansion for B is obtained by interchanging the creation/annihilation operators
for positive and negative helicity.

The canonical quantisation relations are equivalent to the equal “time” commutation relation
of the creation and annihilation operators

[

a±(p+,p, x+), a†
±(q+,q, x+)

]

= iδ(p+ − q+)δ2(p − q).

For a free-field obeying the free-field equations of motion, the x+ dependence of the creation
and annihilation operators is given by

a±(p+,p, x+) ∼ e−ip−x+

a†
±(p+,p, x+) ∼ eip−x+

,

where

p− =
pp

p+

.

To linear order in B the canconical transformation is such that A = B, so that for on-shell
particles the field B is interpreted as creating or annihilating transverse gluons in the same
way that A, but the interacting fields differ.

For an interacting field, e.g a field representing an off-shell internal gluon, the x+ dependence
of the creation and annihilation operators are different, but the canonical commutation
relations are the same. The quantisation therefore remains valid if we associate with the
off-shell vector Q a light-like vector q, whose components are identical with the exception of
the q− component (i.e. the component conjugate to the direction selected to be the “time
direction”.
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