
MODERN METHODS IN PETURBATIVE QCD

1 Tree-Level Helicity Amplitudes

1.1 Clearing the air !!

We are discussing high-energy QCD and for the moment without heavy flavours. We can
therefore set all masses to zero and consider a gauge theory with massless gluons interacting
with massless fermions (massless scalars can also be added to the theory with ease).

This means that all particles can come in two possible helicities. In the helicity amplitude
approach, we calculate amplitudes for a given assignment of particle helicities. This is in
contrast to the conventional Feynman rule approach in which helicities are summed over by
taking traces - and indeed only after these traces have been performed do we get a result for
the square matrix elements, in terms of kinematic variables (scalar products of momenta).
If individual helicities are required then a helicity projection operator is inserted into the
trace.

In this approach individual helicity amplitudes are calculated directly, and the results are
obtained in terms of scalar products of momenta and phases, which can also be determined
from the kinematics.

The convention used is that all particles are considered to be incoming, and are assigned a
momentum and a helicity. If a particle is in reality outgoing, the helicity must be flipped as
well as the momentum.

FORGET ABOUT COLOUR FOR THE MOMENT!!!

Later we will discuss a relatively straightforward algorithm for accounting for colour factors
in helicity amplitudes. For the moment we just strip these off.

A consequence of doing this is that for any helicity amplitude, we can order the mo-
menta/helicities of the external particles and we consider planar graphs only, i.e. we drop
graphs in which any two lines are crossed over.

Thus we look at graphs of the form
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Now it may appear that the ordering of graph(b) is ambiguous since it would be equally valid
to draw it with particles 3 and 4 reversed. It turns out that these two configurations carry
different colour factors and this matter is dealt with when the colour factors are restored.
The upshot is that these planar graphs are associated with a particular colour factor and for
this reason they are known as “colour ordered” graphs.

1.2 Colour Ordered Feynman Rules
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1.3 Mapping light-like vectors to chiral spinors

Any light-like vector, p (momentum of a massless particle) can be mapped into a positive
helicity spinor

|p〉 ≡ (1 + γ5)

2
u(p) =

1√
2

(

χ+(p)
χ+(p)

)

where

χ+(p) =
√

2p





cos
(

θ
2

)

e−iφ

sin
(

θ
2

)





(Here we are using the Dirac rep. for the γ-matrices, rather than dotted or undotted nota-
tion),
OR into a negative helicity spinor

|p] ≡ (1 − γ5)

2
u(p) =

1√
2

(

χ−(p)
−χ−(p)

)

where

χ−(p) =
√

2p





− sin
(

θ
2

)

cos
(

θ
2

)

eiφ



 , χ−(p)α = εαβχ+∗(p)β

The conjugate spinors are defined as

〈p| ≡ ū(p)
(1 + γ5)

2
= u†(p)

(1 − γ5)

2
γ0 =

1√
2

(

χ−(p)
χ−(p)

)

and

[p| ≡ ū(p)
(1 − γ5)

2
= u†(p)

(1 + γ5)

2
γ0 =

1√
2

(

χ+(p)
−χ+(p)

)

Thus we have the amplitudes:

〈p|q〉 = −〈q|p〉 = εαβχ+(p)αχ+(q)β =
√

2p · qeiη(p,q)

[p|q] = −[q|p] = εαβχ−(p)αχ−(q)β = −
√

2p · qe−iη(p,q)

(signs are a nightmare !!)
where the phase η(p, q) is given by

e2iη =
(p−qT − q−pT )

(p−q∗T − q−p∗T )

p− = p0 − pz, pT = px + ipy, q− = q0 − qz, qT = qx + iqy. We also have

[p|q〉 = 〈p|q] = 0
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Furthermore
〈p|q〉[p|q] = −2p · q

Note that these two maps are non-linear. The spinor |p〉 + |q〉 is another massless spinor,
but it can’t be used to represent the vector p + q, which is not light-like (massless).

On the other hand we have the linear map

|p〉[p| =
(1 + γ5)

2
γ · p

|p]〈p| =
(1 − γ5)

2
γ · p

and so we can write
(1 + γ5)

2
γ · (p + q) = |p〉[p| + |q〉[q|

or
(1 − γ5)

2
γ · (p + q) = |p]〈p| + |q]〈q|

1.4 Useful Identities

1.
〈p|γµ|q] = [q|γµ|p〉 = εαβ

σ
µ
βγχ

+(p)αχ−(q)γ (σµ = (1, σi))

2.
〈p|γµ|p] = 2pµ

This follows by contracting with any light-like vector, q, to obtain

〈p|γ · q|p〉 = [p|q]〈q|p] = 2p · q

3. Fierz identity
〈p|γµ|q]〈k|γµ|l] = 2〈p|k〉[q|l]

This follows from the relation

gµνσ
µ
αβσν

γδ = 2εαγεβδ

4. Schouten identity
〈p|q〉〈k|l〉 = 〈p|k〉〈q|l〉 + 〈p|l〉〈k|q〉,

which follows from the relation

εαβεγδ = εαγεβδ + εαδεγβ

(Jacobi identity)
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1.5 Gluon Polarization

The polarisation vector for a gluon with a given helicity, ελ
µ(k) and momentum k is not

unique as a result of gauge invariance. External gluons will be described in light-cone axial
gauge, and will depend on an external light-like vector nµ, such that

n · ε = 0

Since p and n are light-like we can express ε in terms of massless spinors with momenta k

and n as

ε+
µ (k, n) =

〈n|γµ|k]√
2〈n|k〉

and

ε−µ (k, n) =
[n|γµ|k〉√

2[k|n]

When an external gluon is attached to a fermion line we get (a sum of) terms of the form

〈p|ε(k, n) · γ|q]

Using the Fierz identity we get
√

2
[k|q]〈n|p〉
〈n|k〉]

for a positive helicity spinor, and
√

2
[n|q]〈k|p〉

[k|n]

for a negative helicity spinor. So if we choose n = p for a positive helicity and n = q for
negative helicity then this particular term vanishes and the result can be simplified. (Note
that 〈p|p〉 = [q|q] = 0)

A judicious choice of the auxiliary vectors n can simplify the calculations of helicity ampli-
tudes enormously.

NOTE: It is NOT a requirement of gauge invariance that the auxiliary vector should be
the same for all external gluons. We can choose the most convenient gluon for each gluon.
However, when more than one Feynman graph contributes to a given helicity amplitude, it
is essential to use the same assignment of auxiliary vectors to all graphs.

Furthermore, it is permitted to use a different gauge for the internal gluons from the external
ones. So we will use the light-like axial gauge(s) for the external gluons and Feynman gauge
for all internal gluons. Again this must be done consistently for all graphs contributing to a
given amplitude.

If we do choose to assign the same auxiliary vector n to two gluons the Fierz identity leads
to the following useful relations.

ε+(k1, n) · ε+(k2, n) = ε−(k1, n) · ε−(k2, n) = 0,
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which again can be use to simplify calculations.

Moreover of we have the scalar product of two gluons with opposite helicity

ε+(k1, n1) · ε−(k2, n2)

then this vanishes if either n1 = k2 or n2 = k1.

1.6 Simple Examples

We are now in a position to calculate any helicity matrix element in terms of the overlap
amplitudes of the form 〈p|q〉 or [p|q].

Example 1:
Quark-antiquark to quark-antiquark

p2 +

p1−

p3+

p4−

Applying the colour-ordered Feynman rules the amplitude is simply

A(p−1 , p+
2 , p+

3 , p−4 ) = i
g2

2s
[p1|γµ|p2〉[p4|γµ|p3〉

Using the Fierz identity this is

A(p−1 , p+
2 , p+

3 , p−4 ) = i
g2

s
[p1|p4]〈p2|p3〉

Note that [p1|p4] and 〈p2|p3〉 are both equal to
√

t up to a phase (recall that all momenta
are incoming), then the amplitude is

A(p−1 , p+
2 , p+

3 , p−4 ) = η
g2t

s

where η is a phase, which doesn’t matter on this case since there is only one graph.

If we calculate the amplitude for the helicities of the final state fermions reversed we have

A(p−1 , p+
2 , p−3 , p+

4 ) = i
g2

2s
[p1|γµ|p2〉[p3|γµ|p4〉,

giving

A(p−1 , p+
2 , p−3 , p+

4 ) = η′g
2u

s
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Now if we square these amplitudes and sum, we get

g4 (t2 + u2)

s2

which (up to a colour factor) is precisely what you get from taking traces of the square
Feynman graph.

Example 2:

Quark antiquark to two gluons with opposite helicity

(a)

p+
2

p−1

p+
3

p−4

p2 +

p1−

p3+

p4−
(b)

We do not include the graph in which the outgoing gluons are attached in the other order
as this is not a planar graph (it carries a different colour factor).

We make the following choice of auxiliary vectors for gluons (3 & 4)

|n4] = |p1]

|n3〉 = |p2〉
Recall that we may write

γ · (p1 + p4) = |p1〉[p1| + |p4〉[p4|

we see that graph (a) always gives us a term of the form

[p1|γµ|q〉ε−µ (4) =
[p1|γµ|q〉[n4|γµ|p4〉√

2[p4|n4]
=

√
2
[p1|n4]〈q|p4〉

[p4|n4]
,

so the choice |n4] = |p1] gives zero and this graph vanishes.

Two of the three terms from graph (b) also vanish. One of them again gives a term pro-
portional to [p1|γµ|q〉ε−µ (4) and another gives a term proportional to [q|γµ|p2〉ε+

µ (3) and we
can use the same argument to show that this is proportional to 〈n3|p2〉, which vanishes if we
choose |n3〉 = |p2〉.

We are left with a term

A(p−1 , p+
2 , p+

3 , p−4 ) =
ig2

2s
ε+(3) · ε−(4)[p1|γ · (p3 − p4)|p2〉
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Using momentum conservation and the Dirac equations

[p1|γ · p1 = γ · p2|p2〉 = 0

we have
[p1|γ · (p3 − p4)|p2〉 = −2[p1|p4]〈p4|p2〉

and using the Fierz identity

ε+(3) · ε−(4) =
[p1|p3]〈p2|p4〉
[p4|p1]〈p2|p3〉

So the amplitude is

−ig2 〈p2|p4〉2[p1|p3]

〈p3|p4〉[p3|p4]〈p2|p3〉
where we have written

s = −〈p3|p4〉[p3|p4]

We can rewrite this as

A(p−1 , p+
2 , p+

3 , p−4 ) = −ig2 〈p2|p4〉3
〈p1|p2〉〈p2|p3〉〈p3|p4〉

×
{

[p1|p3]〈p1|p2〉
[p3|p4]〈p2|p4〉

}

The expression inside {· · ·} is actually -1. It can be written as

[p3|γ · p1|p2〉
[p3|γ · p4|p2〉

Again using momentum conservation and the Dirac equation we have

[p3|γ · p1|p2〉 = −[p3|γ · p4|p2〉

So the amplitude is simply

ig2 〈p2|p4〉3
〈p1|p2〉〈p2|p3〉〈p3|p4〉

Exercise:
Calculate the amplitude for quark-antiquark scattering into two gluons of the same helicity.
[Hint: Choose the auxiliary vectors for the external gluons both to be equal to one of the
fermion momenta.]

1.7 Spinor Transformations

Before considering some more examples, we look at a rather peculiar transformation of
spinors, which we will need in future manipulation, and to which we will return in due
course.
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|p〉 → |p̂(z)〉 = |p〉 + z|n >

|p] → |p̂(z)] = |p]

where nµ is a light-like vector.

Here we have performed a transformation on the right-helicity spinor but not on the left-
helicity spinor (we could also have done this the other way around). This means that we
lose the relation between the two spinors because we now have

χ+
α (p̂(z)) 6= εαβχ−∗

β (p̂(z)),

which is possible provded we allow the components of the momentum p̂(z) to be complex.

For a complex momentum the normalized spinors are

χ+(p̂(z)) =

√

2p̂(z)
√

| sin
(

θ
2

)

|2 + | cos
(

θ
2

)

|2 exp(2=m(φ))





cos
(

θ
2

)

e−iφ

sin
(

θ
2

)





and

χ−(p̂(z)) =

√

2p̂(z)
√

| sin
(

θ
2

)

|2 + | cos
(

θ
2

)

|2 exp(−2=m(φ))





− sin
(

θ
2

)

cos
(

θ
2

)

eiφ





Clearly if θ and φ are real the denominator is equal to one in each case, but if not, then
we can find complex values which will equate these spinors to the defined spinors |p̂(z)〉 and
p̂(z)] above.

Example: Start with a spinor with momentum magnitude p making an angle of 600 with
the z-axis (in the z − x plane)

χ+(p) =
√

2p

( √
3

2
1
2

)

χ−(p) =
√

2p

(

−1
2√
3

2

)

Now perform the transformation with

z =
√

2p
(2 −

√
3)√

2

and

χ+(n) =
1√
2

(

1
−1

)

,

so that we have

χ+(p̂) =
√

2|p|
(

1
2√
3

2

)
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χ−(p̂) =
√

2|p|
(

−1
2√
3

2

)

These are the right- and left- spinors for momentum p̂ with components

p̂ = |p|
(

1,
2√
3
,

i√
3
, 0

)

Note that although the components are complex, the vector is still light-like,

p̂(z) · p̂(z) = 0

This is expected because we are still mapping the complex vector p̂(z) onto chiral spinors.
We have

(1 + γ5)

2
γ · p = |p̂(z)〉[p̂(z)| = |p〉[p| + z|n〉[p|
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