Problem Sheet 2

- 1. Consider one-loop the photon self-energy graph, with photon momentum q. Show explicitly that the contribution from this graph proportional to $q^{\mu} q^{\nu}$ is $-q^2$ times the contribution (calculated in the lectures) proportional to $g^{\mu\nu}$.
- 2. For a charged scalar particle of charge e, the Feynman rule for the vertex coupling to a photon with Lorentz index μ is

$$-i e (p_1 + p_2)^{\mu},$$

where p_1 and p_2 are the momenta of the charged particle flowing into and out of the vertex, respectively.

For such a charged scalar particle, calculate the pole parts of Z_1 , Z_2 and the contribution from a scalar particle loop to Z_3

(if you are feeling energetic you might try to calculate the finite parts as well - but leave your answers in terms of integrals over Feynman parameters wherever necessary.)