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1 Vector Spaces.

Special Relativity is concerned with the rules for determining a set of quantities, such as
the location and time of an event or the momentum and energy of a particle, measured in
one inertial reference frame compared with with the same quantities measured in a different
inertial frame. These rules derive from the postulate that there are certain invariant quanti-
ties, such as the mass of a particle or the speed of light, which are the same in all reference
frames. In order for the laws of physics to be the same in all inertial reference frames, as
postulated in Special Relativity, all laws of physics must be expressible in terms of equalities
between quantities which transform in the same way under a change in frame of reference

Non-relativistic physics also has rules which determine the transformation of certain
quantities measured in different coordinate bases, also derived from the existence of invari-
ants, which remain the same in any coordinate basis. The fact that a physical law cannot
depend on the coordinates basis in which the quantities are measured means that the laws of
physics must be expressible in terms of equalities between quantities which transform in the
same way between different coordinate systems. “Different coordinate systems” might mean
simply a rotation between coordinates so that the axes in one frame are rotated relative to
another frame, or could mean using a different system for labelling a point, such as using
polar coordinates rather than Cartesian coordinates.

An example of this is the statement of Newton’s second law of motion in the case of a
body whose mass, m, remains unchanged

F = ma (1.1)

This is an equation relating two vectors – force and acceleration, both of which transform in
the same way under a change of coordinate system. However, the components of force and
acceleration are different in different coordinate systems. In system A the three components
of force are Fx, Fy, Fz and the components of acceleration are ax, ay, az, whereas in coordinate
system, B which is rotated relative to A’s and may use a different origin the three components
of force are F ′

x, F
′
y, F

′
z and the components of acceleration are a′x, a

′
y, a

′
z, so that the three

components of (1.1) are different in the two coordinate systems although they describe the
same physics. The relationship between the coordinates F ′

x, F
′
y, F

′
z and Fx, Fy, Fz is such that

the modulus of the force vector F is the same in both coordinate systems, so that

F 2
x + F 2

y + F 2
z = F ′2x+ F ′2

y + F ′2
z ,

and similarly for the acceleration vector a.

a2x + a2y + a2z = a′2x + a′2y + a′2z ,

Since (1.1) (which is actually a set of three equations – one for each component, is valid in
both frame A and frame B the relation between (F ′

x, F
′
y, F

′
z) and (Fx, Fy, Fz) is exactly the

same as the relation between (a′x, a
′
y, a

′
z) and (ax, ay, az). Both transform as the components

of a vector under a rotation, which maintains the magnitude of the vector.
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1.1 Basis vectors (axes)

We now wish to generalise the description of vectors in different coordinate systems.

Consider an n-dimensional space with a set of n vectors called “basis vectors” or “axes”,
ei, i = 1 · · ·n, which are linearly independent, i.e. none of them can be written as a linear
sum of the others. In the standard notation the basis vectors are unit vectors and are
orthogonal to each other. Such examples are usually easier to deal with, but it is not a
requirement.

Any point in the vector space can be labelled by a set of coordinates, xi, such as the
vector from the origin to the point is

x =
n∑

i=1

xiei ≡ xiei, (1.2)

where we have introduced the repeated index notation, namely that an expression with a
superscript index i and the same subscript index implies a summation over all values of that
index. This notation is used widely and henceforth will be adopted throughout.

The vector ds between two neighbouring points with coordinates xi and xi + dxi can be
written as

ds = dxi ei, (1.3)

The same points can be labelled in a different coordinate frame with basis vectors e′j by
components yj and yj + dyj, so that the vector ds may also be written as

ds = dyj e′j, (1.4)

This gives us the relation (locally) between the two sets of basis vectors

e′j =
∂xi

∂yj
, ei (1.5)

More generally, a vector V may be written in the coordinate system with basis vectors
ei as

V = V iei,

where V i are the components of the vector V. Alternatively, in the coordinate system with
basis vectors e′j we may write the same vector as

V = V ′je′j,

Since this is the same vector, we can use (1.5) to obtain the transformation rule between the
components of the vector in the two coordinate systems .

V j {x}→{y}−→ V ′j =
∂yj

∂xi
V i. (1.6)
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We see that the components of a vector transform in the opposite way from the basis vectors.
Such vectors are called “contravariant vectors”.

In the case where the functions yj(x) 1 are such that

∂yi

∂xj

=
∂yj

∂xi
, and det

(
∂yi

∂xj

)
= 1,

then the transformation of coordinates is a rotation of the axes. The orthogonal rotation
matrix, R, is

Rj
i =

∂yj

∂xi
,

with the properties RT = R−1 and detR = 1.

1.2 Metric

We can also define a “covariant vector” whose components Vi are given by

Vi = gijV
j, (1.7)

where
gij ≡ ei · ej, (1.8)

is a tensor called the “metric tensor”.

The set of basis vectors possess a dual set ei where

ei · ej = δij, (1.9)

and the metric has an inverse
gij ≡ ei · ej,

such that
gikgkj = δij.

In the coordinate system with basis vectors e′j, the metric tensor is

g′kl ≡ e′k · e′l =
∂xi

∂yk
∂xj

∂yl
gij (1.10)

The components of a covariant vector transform under a change of coordinate xi → yj,
the same way that the basis vectors ei transform, namely

Vj
{x}→{y}−→ V ′

j =
∂xi

∂yj
Vi. (1.11)

1A function f of position is written f(x). This means a function of all he coordinates x1 · · ·xn
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For any two vectors V and W, the “scalar product”

W ·V ≡ WiV
i = W iVi = gijV

iW j

is invariant, i.e. it takes the same value in all coordinate systems.

In particular, the distance between two neighbouring points, is

ds2 = gijdx
idxj. (1.12)

In Euclidean space, it is always possible to choose an orthonormal set of basis vectors,
ei whose α component is δiα, throughout the space. For this choice of coordinate system,
the metric is simply given by gij = δij and the components of a contravariant and covariant
vector are the same. Such coordinates is called “Cartesian coordinates” However, there are
other choices of coordinate system, for which this is not the case.

Example:
A point a two-dimensional Euclidean space can be labelled by Cartesian coordinates x, y as

xex + yey,

where

ex =

(
1
0

)
, ey =

(
0
1

)
.

A vector V has components V x and V y. In Cartesian coordinates, the components of the
contravariant and covariant vectors are equal.

θ x

y

P

Q

x′

y′

dx

dy

dx′

dy′

ds

Figure 1: Two neighbouring points P and Q whose x- and y-coordinates differ by dx and
dy in one coordinate (red), and by dx′ and dy′ in another coordinate system (blue), which
is rotated by an angle θ. The distance, ds, between the two points is the same in both
coordinate systems.

If the axes are rotated through an angle θ we obtain new axes ex′ , ey′ where

ex′ =

(
cos θ
sin θ

)
, ey′ =

(
− sin θ
cos θ

)
.

8



and the components of the vector V are transformed to

V x → V x′
= V x cos θ + V y sin θ

V y → V y′ = −V x sin θ + V y cos θ.

The new coordinates are also Cartesian coordinates and the metric remains unchanged gij =
δij.

Alternatively, we can also describe the point in terms of plane-polar coordinates ρ, ϕ
where

x = ρ cosϕ, y = ρ sinϕ.

Using (1.5), the basis vectors, eρ and eϕ are given by

eρ = cosϕ ex + sinϕ ey

eϕ = −ρ sinϕ ex + ρ cosϕ ey

The metric tensor, g′, in this coordinate system, has components

g′ρρ = 1, g′ρϕ = g′ϕρ = 0, g′ϕϕ = ρ2,

and the inverse metric has components

g′ ρρ = 1, g′ ρϕ = g′ϕρ = 0, g′ϕϕ =
1

ρ2
. (1.13)

The components of the contravariant vector V′ are related to V x, V y by

V ρ = cosϕV x + sinϕV y

V ϕ =
1

ρ
sinϕV x +

1

ρ
cosϕV y.

There is also a covariant vector whose components are

Vρ = cosϕV x + sinϕV y

Vϕ = ρ sinϕV x + ρ cosϕV y.

An invariant quantity is a quantity, which takes the same value in all coordinate systems.
It is, in general, a function of the point in space at which the quantity is measured, but
independent of the coordinate system used to specify that point, i.e. for coordinate systems
in which a point is labelled by coordinates xi or yi respectively, an invariant quantity, Φ
is a function of the point at which it is measured so it takes the same value as a function
of (x1 · · · xn) in one coordinate system as it does as a function of and (y1 · · · yn) in another
system.

Φ(x) = Φ′(y).
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The functional dependence on the coordinates, Φ and Φ′ are different, but if the arguments
of these functions are the coordinates of the same point, then the value of the two functions
are equal.

An example is the distribution of temperature in a room, which depends on the point
at which the temperature is measured, but not on the coordinate system used to label that
point.

The gradient of a position dependent invariant quantity, known as a “scalar field”, Φ,
transforms as the (position dependent) components of a covariant vector, Vi, called a“vector
field’;,

Vj
{x}→{y}−→ V ′

j =
∂

∂yj
Φ′(y) =

∂xi

∂yj
∂

∂xi
Φ(x) =

∂xi

∂yj
Vi.

The set of operators ∂
∂xi transform as the components of a covariant vector. Therefore the

(covariant) quantity

ei
∂Φ

∂xi

is invariant under coordinate transformation - the covariant transformation of the derivative
operators is cancelled by the contravariant transformation of the dual basis vectors.

An example of a vector constructed from the derivatives of a scalar, is an electric field
vector, E, which is the gradient of an electric potential, Φ(x)

E = −∇Φ,

or in components

Ei =
∂

∂xi
Φ(x).

The notation ∂i is often used to denote the derivative operator ∂/∂xi. Under a change of
coordinate systems the components of the electric field transform as

Ei(x) → E ′
i(y) =

∂xj

∂yi
Ej(x) (1.14)

Note that not all vectors can be written as the gradients of invariant quantities, but
the gradient of an invariant quantity (also called a “scalar” quantity) transforms as (the
components of) a covariant vector.

1.3 Volume Element

In Cartesian coordinates an element of volume in n-dimensions is given by

dv =
n∏

i=1

dxi

10



In any other coordinate system with metric g, this becomes

dv = | det g|1/2
n∏

i=1

dxi (1.15)

| det g|1/2 = ϵα1α2···αn

n∏
i=1

e1α1e2α2 · · · enαn ,

eiα being the Cartesian coordinates of the basis vector ei. and ϵα1α2···αn is the totally anti-
symmetric Levi-Civita tensor in n-dimensions.

As an example the volume element in two dimensions in plane polar coordinates is

dv = | det g′|1/2 dρ dϕ,

with the elements of g′ given by (1.13), such that

dv = ρ dρ dϕ

11



2 Tensors

A rank-r contravariant tensor in an n-dimensional space has n× r components, which, in a
given coordinate system {x}, can be written

T iii2···ir .

Under a transformation of coordinates to a coordinate system {y}, these components
transform as

T j1j2···jr {x}→{y}−→ T ′ j1j2···jr =
∂yj1

∂xi1

∂yj2

∂xi2
· · · ∂y

jr

∂xir
T iii2···ir .

We can write the tensor in an invariant form

T ≡ T iii2···irei2 · · · eir.

This is invariant under change of coordinate system, since the components transform in the
opposite way to the basis vectors.

A vector is a tensor of rank one.

An example of a rank-two tensor is the electric quadrupole moment due to a charge
distributions ρ(x)

Qij ≡
∫

dnxxixjρ(x)

We can also construct corresponding covariant tensors with coefficients

Tj1j2···jr ≡ gi1j1gi2j2 · · · girjrT iii2···ir ,

which transform covariantly, namely

Tk1k2···kr
{x}→{y}−→ T ′

k1k2···kr =
∂xl1

∂yk1
∂xl2

∂yk2
· · · ∂x

lr

∂ykr
Tl1l2···lr

We can also have mixed tensors in which some of the components transform contravari-
antly and others transform covariantly. A tensor with r1 contravariant indices and r2 covari-
ant indices is known as as “rank-(r1, r2) tensor”. For example the tensor with components
T jk
i is a rank-(2,1) tensor. A rank-(1,1) tensor is a matrix.

2.1 Irreducible Tensors

For a rank-two tensor we can define the “trace”

Tr(T) = gijT
i,j

This is an invariant quantity - it transforms into itself under a change of coordinates.
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The remaining n2 − 1 components,

T ij − 1

n
gijgklT

kl,

transform into each other under other a transformation of coordinates. These may be further
partitioned into a tensor T ij

S which is symmetric under the interchange of the two indices
and a tensor T ij

A which is anti-symmetric under the interchange of the two indices. Symmet-
ric and anti-symmetric tensors retain their symmetry or anti-symmetry properties under a
coordinate transformation. Therefore, a rank-two tensor may be written as the sum of three
tensors which transform into themselves under a transformation of coordinates:

T ij =
1

n
gijTr(T) + T ij

A + T ij
S

where the 1
2
n(n+ 1) components of TS are given by

T ij
S =

1

2

(
T ij + T ji

)
− 1

n
gijTrT

the 1
2
n(n− 1) components of TS are given by

T ij
A =

1

2

(
T ij − T ji

)
The components of TS and TA transform into linear superpositions of themselves under a
coordinate transformation and are known as “irreducible” tensors.

An example of an anti-symmetric (covariant) tensor is a magnetic field defined in terms
of the magnetic (covariant) vector potential A

Bij ≡ ∂

∂xi
Aj −

∂

∂xj
Ai.

We are used to thinking of magnetic field an an axial vector. But this is an accident of the
fact that we live in three space dimensions and we can define a vector B, whose components
are

Bi ≡ 1

2
ϵijkBjk,

where ϵijk is the totally anti-symmetric (Levi-Civita) tensor, but it is only a rank-three tensor
in three dimensions.

Tensors of higher rank can also be partitioned into irreducible tensors, whose components
transform into linear superpositions of themselves under a transformation of coordinates.

2.2 Covariant Derivatives

We have seen above that the gradient of a scalar field generates a vector field. We can
generate a rank-(1,1) tensor field by taking the gradient of a vector field V, but we need to

13



be careful when we are in a coordinate system for which the basis vectors (and metric) are
also position-dependent. The quantity

ei
∂

∂xi

(
ejV

j
)
,

is unchanged under a change of coordinate system since the contravariant transformation
in the dual basis vector ei is cancelled by the covariant transformation of the vector op-
erator ∂/∂xi and covariant change in the basis vector ej is cancelled by the contravariant
transformation of the vector V j. We may write this as

ei
∂

∂xi

(
ejV

j
)
= eiejT j

i ,

where T j
i are the components of a rank-(1,1) tensor. However T j

i ̸= ∂V j/∂xi, but rather it
is the “covariant derivative”,

T j
i = (∇iT ))

j ≡ (∇i)
j
k V

k =

(
∂

∂xi
δjk + Γj

ik

)
V k (2.1)

where

Γj
ik = ej · ∂

∂xi
(ek.) .

The operator ∇ is called the “covariant derivative” operator and (2.1) defines the covariant
derivative of a contravariant vector. The quantities Γj

ik are called the “Christoffel symbols
of the second kind”. They are symmetric in the lower indices i, j. In Cartesian coordinates
for which the basis vectors are independent of position these quantities are zero, but they
are non-zero in a general coordinate system.

In the appendix to this section we show that the Christoffel symbols are given in terms
of the derivatives of the metric, gi(x) by

Γl
ij =

1

2
gkl
(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)
(2.2)

From (1.9) we see that the partial derivative of the dual basis vector is given by

∂ej

∂xi
= −Γj

ike
k,

and so the covariant derivative of a covariant vector is given by

(∇iV )j ≡ (∇i)
k
j Vk =

(
∂

∂xi
δkj − Γk

ij

)
Vk. (2.3)

We can extend the definition of a covariant derivative to the covariant derivatives of a
tensor. For example, the covariant derivative of a rank-(2,0) tensor, T jk, is given by

(∇iT )
jk ≡ (∇i)

jk
lm T lm =

(
∂

∂xi
δjl δ

k
m + Γj

ilδ
k
m + Γk

imδ
j
l

)
T lm (2.4)
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This quantity transforms as a rank-(2,1) tensor

Note that the Christoffel symbols themselves do not transform as a rank-(1,2) tensor -
i.e. they do not transform into a linear suoerposition of themselves under a transformation
of coordinates {x} → {y}. The transformation generates an in-homogeneous term:

Γi
jk

{x}→{y}−→ ∂yi

∂xl

∂xm

∂yj

∂xm

∂yk
Γl
mn +

∂2xl

∂yj∂yk
∂yi

∂xl
(2.5)

For a covariant derivative of a vector, V i, this in-homogeneous term exactly compensates
for the in-homogeneous term in the transformation of the partial derivative ∂jV

i under
coordinate transformations. This implies that one can always choose a coordinate system in
such a way that at a given point in space, the metric is Euclidean and at that point (only)
the Christoffel symbols vanish.

Example:
We consider a vector in two-dimensional Cartesian coordinates (x, y), V, with components
V x and V y. We can construct of rank-(1,1) tensor T j

i (x) with components

T x
x =

∂

∂x
V x, T x

y =
∂

∂y
V x, T y

x =
∂

∂x
V y, T y

y =
∂

∂y
V y

Now change to plane polar coordinates (ρ, ϕ) which has a metric

gρρ = 1, gρϕ = gϕρ = 0, gϕϕ = ρ2

Using (2.2), the non-zero Christoffel symbols are

Γϕ
ϕρ = Γϕ

ρϕ =
1

ρ
, Γρ

ϕϕ = −ρ (2.6)

The components of the contravariant vector V ρ, V ϕ in this coordinate system are related
to the Cartesian components by

V ρ = cosϕV x + sinϕV y

V ϕ = −1

ρ
sinϕV x +

1

ρ
cosϕV y

The differential operators w.r.t. ρ or ϕ are related to the differential operators w.r.t. x and
y by

∂

∂ρ
= cosϕ

∂

∂x
+ sinϕ

∂

∂y

∂

∂ϕ
= −ρ sinϕ

∂

∂x
+ ρ cosϕ

∂

∂y

15



Taking the derivatives of the components in plane polar coordinates we find

∂

∂ρ
V ρ = cos2 ϕT x

x + cosϕ sinϕT x
y + cosϕ sinϕT y

x + sin2 ϕT y
y

=
∂x

∂ρ

∂x

∂ρ
T x
x +

∂x

∂ρ

∂y

∂ρ
T x
y +

∂y

∂ρ

∂x

∂ρ
T y
x +

∂y

∂ρ

∂y

∂ρ
T y
y

∂

∂ϕ
V ρ = ρ

(
− sinϕ cosϕT x

x − cos2 ϕT x
y − sin2 ϕT y

x + sinϕ cosϕT y
y

)
− sinϕV x + cosϕV y

=
∂x

∂ρ

∂x

∂ϕ
T x
x +

∂y

∂ϕ

∂x

∂ρ
T x
y +

∂x

∂ϕ

∂y

∂ρ
T y
x +

∂y

∂ρ

∂y

∂ϕ
T y
y − ρV ϕ

∂

∂ρ
V ϕ =

1

ρ

(
− sinϕ cosϕT x

x − cos2 ϕT x
y + sinϕT y

x + sinϕ cosϕT y
y

)
+

1

ρ2
(− sinϕV x + cosϕV y)

=
∂x

∂ϕ

∂x

∂ρ
T x
x +

∂y

∂ρ

∂x

∂ϕ
T x
y +

∂x

∂ρ

∂y

∂ϕ
T y
x +

∂y

∂ϕ

∂y

∂ρ
T y
y +

1

ρ
V ϕ

∂

∂ρ
V ϕ = sin2 ϕT x

x + cos2 ϕT y
y − cosϕ sinϕT x

y − cosϕ sinϕT y
x − 1

ρ
(cosϕV x + sinϕV y)

=
∂x

∂ϕ

∂x

∂ϕ
T x
x +

∂y

∂ϕ

∂x

∂ϕ
T x
y +

∂x

∂ϕ

∂y

∂ϕ
T y
x +

∂y

∂ϕ

∂y

∂ϕ
T y
y − 1

ρ
V ρ (2.7)

see that these derivatives are not just linear superpositions of the tensor components in
Cartesian coordinates but there are “bits left over”. However, we can see that the compo-
nents,

∂

∂ρ
V ρ,

∂

∂ϕ
V ρ + Γρ

ϕϕV
ϕ,

∂

∂ρ
V ϕ + Γϕ

ρϕV
ϕ,

∂

∂ϕ
V ϕ + Γϕ

ϕρV
ρ,

with Γρ
ϕϕ,Γ

ϕ
ρϕ, Γϕ

ϕρ given by (2.6) are linear superpositions of the components in Cartesian
coordinates and are therefore themselves components of a tensor.

We can show by explicit calculation that all components of the covariant derivative of
the metric vanish. We can understand this without going through the messy calculation. In
Cartesian coordinates where the metric is constant, the Christoffel symbols vanish and all
components of the rank-(0,3) tensor (∇ig)jk are zero. Under a change of coordinates these
components transform into linear sums of each other - so that in any coordinate system the
components must be zero .

2.3 Appendix: Derivation of Christoffel Symbols

The Christoffel symbol is defined as

∂ej
∂xi

= Γl
ijel

and the metric is defined as
gjk = ej · ek (2.8)
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Differentiating (2.8) w.r.t. xi we have

∂

∂xi
gjk = Γl

ijel · ek + Γl
ikel · ej

= Γl
ijglk + Γl

ikglj

= Γkij + Γjik, (2.9)

where Γkij = glkΓ
l
ij, are the “Christoffel symbols of the first kind”.

Now we can write

∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij = Γkij + Γjik + Γijk + Γkij − Γjki − Γijk = 2Γkij. (2.10)

(We have used the symmetry property Γjik = Γjki). Finally, we contract with the inverse
metric gkl to arrive at

Γl
ij =

1

2
gkl
(

∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

)
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3 Minkowski Space

Special Relativity is concerned with the relationship between the positions and times of
events in different reference frames, moving with a constant velocity relative to each other.

In reference frame A, an event is labelled by four coordinates - three space coordinates
x1
A, x

A
2 , x

A
3 and a time coordinate time tA. We can describe this using the technology devel-

oped above, but with a coordinate system consisting of four coordinates (a four-dimensional
coordinate space) with coordinates x0, x1, x2x3 where x0 = ct. The difference between these
coordinates for two neighbouring events, in reference frame A is a four component vector
with coordinates2, dxµ

A, µ = 0 · · · 3

dxµ
A =

(
dx0

A, dx
1
A, dx

2
A, dx

3
A

)
.

In frame B the four coordinates of the vector dx are

dxµ
B =

(
dx0

B, dx
1
B, dx

2
B, dx

3
B

)
Some or all of these coordinates may be different depending on the direction of the velocity
of B relative to A. However, we know that the proper time, dτ is invariant - it takes the
same value in all inertial frames. The proper time is defined by

c2dτ 2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = ηµνdx
µdxν (3.1)

The proper time is the time interval between the two events in the reference frame where
the events occur at the same position.

We have written this as the scalar product of the vector dxµ with itself, using the metric
ηµν for which3

η00 = 1, η11 = η22 = η33 = −1, ηµν = 0, (µ ̸= ν) (3.2)

This metric is known as the “Minkowski metric”. For any two four-vectors, V µ, W µ the
scalar product

V ·W ≡ ηµνV
µW ν , (3.3)

is invariant under a general Lorentz transformation between two frames

For a general transformation between frames A and B the components, V µ of any four-
vector are related by

V µ
B = Λµ

νV
ν
A (3.4)

where Λµ
ν is a rank-(1,1) tensor (i.e. a matrix) with real, space-time independent components

which obey the relation
ηρµΛ

µ
νΛ

ρ
σ = ηνσ, (3.5)

2Conventionally we use middle Greek letters λ, µ, ν · · · as indices for these four-vectors, and they run over
0,1,2,3.

3There are two conventions for the assignment of the signs in the Minkowski metric. Most physicists use
the sign convention used in (3.2), and most mathematicians use the opposite sign for each element.
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which guarantees the invariance (3.3)

For example, for a Lorentz boost with velocity v in the direction-1 the non-zero compo-
nents of the tensor Λ are

Λ0
0 = Λ1

1 =
1√

1− v2/c2
, Λ0

1 = Λ1
0 =

v/c√
1− v2/c2

, Λ2
2 = Λ3

3 = 1,

Applying the transformation (3.4) to the vector dx, using this value of Λ and using t = x0/c
we obtain the familiar Lorentz transformation

dxi
B = γ

(
dx1

a − vdtA
)

dtB = γ
(
dta − v/c2dx1

A

)
,

with

γ =
1√

1− v2/c2

Note that a pure rotation is a subset of these generalised Lorentz transformation, For
example the tensor Λ, whose non-zero components are

Λ0
0 = Λ3

3 = 1, Λ1
1 = Λ2

2 = cos θ, Λ1
2 = −Λ2

1 = sin θ

is a rotation about the third axis through angle θ. A general Lorentz transformation consists
of a Lorentz boost and a rotation.

Note that, in general, a Lorentz boost and a rotation do not commute. The Lorentz
transformation tensor, Λ for a rotation about the third axis followed by a Lorentz boost
along the first axis has non-zero components

Λ0
0 = γ, Λ0

1 = −γv cos θ/c, Λ0
2 = −γv sin θ/c, Λ1

0 = γv/c, Λ1
1 = γ cos θ, Λ1

2 = γ sin θ,

Λ2
1 = − sin θ, Λ2

2 = cos θ, Λ3
3 = 1

whereas for a Lorentz boost in the first direction followed by a rotation about the third axis
we have

Λ0
0 = γ, Λ0

1 = −γv/c, Λ1
0 = −γv cos θ/c, Λ1

1 = γ cos θ, Λ1
2 = sin θ,

Λ2
0 = v sin θ/c, Λ2

1 = −γ sin θ, Λ2
2 = cos θ, Λ3

3 = 1

We can think of a general Lorentz transformation as a “rotation” in a four-dimensional
Minkowski space in which a rotation between a space-like axis and the time axis signifies a
Lorentz boost between two frames. As in the case of rotations in three space-like dimensions,
rotations about different axes do not commute,
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x1
A

x0
A

P

Q

x1
B

x0
B

∆x1
A

∆x0
A

∆x1
B

∆x0
B

Figure 2: Two events P and Q at locations x1
A, x

1
A + dx1

A in frame A and x1
B, x

1
B + dx1

B in
frame B and at times x0

A/c, (x
0
A + dx0

A)/c in frame A and x0
B/c, (x

0
B + dx0

B)/c in frame B,
which is moving relative to A in the x1 direction.

3.1 Minkowski Diagrams

We can represent events in Minkowski space by selecting one of the axes to be the time
axis x0. In Figure 2 we display the x1 and time (x0) axes. These are called “Minkowski
diagrams” and an event is represented by a point in such a diagram. In Figure 2, P and Q
are two events assumed to occur at the same values of x2 and x3. We have chosen to plot
them with the axes at right-angles in frame A. Under a Lorentz boost in the x1 direction the
x1 and axes rotate in opposite senses, in such a way that the proper time interval between
the events P and Q remains unchanged. The angle through which the axes rotate increases
with increasing relative velocity. The maximum possible relative velocity is that for which
the x1 and x0 axes coincide and this corresponds to a relative velocity v = c. No body can
move with a relative velocity that exceeds the speed of light.

3.2 Energy and momentum

We can construct a four-vector from the energy, E (including its rest energy) of a particle
of mass m with three momentum p = (p1, p2, p3). This 4-vector is

pµ =
(
p0, p1, p2, p3

)
The zero component, p0 = E/c The scalar product of this four-vector, with itself is4

p2 ≡ p · p = ηµνp
µpν =

1

c2
E2 −

∑
i=1,3

p2i = m2c2. (3.6)

4The scalar product of a vector V , with itself is often written simply as V 2.
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The mass5 of a particle is invariant under Lorentz transformations, so we were justified in
combining the energy and the three-momentum p into a quantity which transforms as a
4-vector under Lorentz transformations.

The individual component pµ change between different reference frames by the transfor-
mation rules for a 4-vector

pµB = Λµ
νp

ν
A

For a Lorentz boost in he x1 direction this leads to the energy and momentum transfor-
mation rules

EB = γ
(
EA − p1Ac

)
p1B = γ

(
p1A − vEA/c

2
)

In order for the Laws of Physics to be independent of the reference frame, they must be
in the form of equations which relate quantities that transform as scalars, vectors, or tensors
in Minkowski space.

For example, in the scattering of N1 incoming particles with four-momenta pµi , (i =
1 · · ·N1) to N2 outgoing particles with four-momenta pµj , (j = 1 · · ·N2), the law of con-
servation of energy and momentum is combined into one single equation relating all the
components of four-vectors

N1∑
i=1

pµi =

N2∑
j=1

pµj (3.7)

This is clearly obeyed in any frame of reference as both sides of (3.7) transform as a 4-vector
in Minkowski space. The µ = 0 component of (3.7) is the law of conservation of energy
and the other three components give the law of conservation of the the three (space-like)
components of momentum.

3.3 Action for a Relativistic Free Particle

The four coordinates xµ of a free particle of mass m sweeps out a “world-line” in Minkowski
space, xµ(λ), where λ is a parameter which varies from 0 to 1 so that the coordinates take
their initial value at λ = 0 and their final value at λ = 1:

xµ
i = x(0)µ, xµ

f = xµ(1).

The action, S, is the mass multiplied by the integral of the proper time, defined by (3.1),
over that world-line, i.e.

S = mc2
∫

dτ = mc

∫ 1

0

dλ
√

ηµν ẋµ(λ)ẋν(λ), (3.8)

5The term “mass” used here is often called the “rest mass” – the inertia of a body increases with increasing
momentum, but the rest mass is invariant.
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where the four-vector

ẋµ(λ) ≡ d

dλ
xµ(λ),

transforms as a contravariant vector.

The canonical momentum vector pµ is given by

pµ = ηµρ
δS

δẋρ
= m

dxµ

dλ

dλ

dτ
= m

dxµ

dτ
(3.9)

where we have used
dλ

dτ
= c (ηµν ẋ

µ(λ)ẋν(λ))−1/2

to obtain the expression for the momentum vector which is a function of proper-time, inde-
pendent of the parametrisation.

The Lagrange equation of motion for a free particle is

dpµ

dλ

dλ

dτ
=

dpµ(τ)

dτ
= 0. (3.10)

This is the relativistic generalisation of the conservation of momentum for a free particle.

Using (3.9) we may write this
d2xµ(τ)

dτ 2
= 0, (3.11)

A free particle sweeps out a “world-line” which is a straight line on the Minkowski diagram
the world-line with gradient

dxi

dt
= βi,

where

βi =
dxi

dλ
/
dx0

dλ
,

is the constant velocity in units of c. In the rest-frame of the particle itself, the world-line is
parallel to the time axis (the space-like components remain constant)

3.4 The Klein-Gordon Equation

The Schrodinger equation for a particle wavefunction Ψ(x), (of a particle with spin-0) is
replaced in Special Relativity by the Klein-Gordon Equation which may be written

ℏ2gµν∂µ∂νΨ(x) + m2c2Ψ(x) = 0. (3.12)

This is the equation (3.6) in which the four momentum, pµ is replaced by the quantum
operator

pµ = −iℏ∂µ.
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3.5 Three Dimensional Volume element

A three-dimensional volume element in Cartesian coordinates

dv ≡ d3x

is not invariant under Lorentz transformations.

In order to reformulate a physical law involving an integral over volume, so that it is
valid in any reference frame, we need to interpret a volume element as the zeroth component
of a four vector dSµ, so that dv = dS0.

Likewise a density ρ (this could mean charge density or mass density or the density of
any other quantity) needs to be interpreted as the zeroth component of a four-vector jµ.

In the case of electromagnetism, the space-like components are ji/c, i = 1 · · · 3, where
ji are the components of current density . The invariant total electric charge, Q, in a given
volume is

Q =

∫
jµdS

µ.

In the non-relativistic limit (found by setting 1/c to zero) this reduces to the non-relativistic
expression

Q ≈
∫

ρdv.

The continuity equation
∂ρ

∂t
+∇ · j = 0

can be written in the manifestly invariant form (dividing throughout by c)

∂j0

∂x0
+ ∂ij

i = ∂µj
µ = 0. (3.13)

Both sides are Lorentz invariant quantities and so this conservation law is valid in any
reference frame.

We have introduced the covariant vector derivative operator

∂µ ≡
(

∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
. (3.14)

The corresponding contravariant four-vector operator is (in Minkowski space)

∂µ ≡
(

∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
. (3.15)
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Figure 3: A region of space of volume v in the reference frame in which it is at rest, It
contains a mass (energy) distribution, ρ(x, t) and a momentum density at the surface π.

3.6 Stress-Energy Tensor

Consider a volume v of a fluid or ensemble of many particles of density ρ(x). In non-
relativistic physics in the frame in which the volume v is stationary the rate of change of the
mass inside the volume is

d

dt

∫
v

ρdv.

By continuity, the is equal to the ingoing momentum flux integrated over the surface, S,
of the volume

d

dt

∫
v

ρdv = −
∫
S

π · dS, (3.16)

where π is the three-momentum per unit volume. Using Gauss’ theorem we may rewrite
this as ∫

V

(
∂ρ

∂t
+∇ · π

)
dv (3.17)

To convert this into an equation which is valid in any reference frame we need two steps

1. Replace c ρ by the zeroth component of a 4-vector whose space-like components are
the components of momentum density, πi. π0 is then the energy density (divided
by c). Energy means total relativistic energy and in the non-relativistic limit π0 is
approximated by - c multiplied by the mass per unit volume. (3.17) then becomes∫

v

∂µπ
µdv = 0 (3.18)

2. (3.18) is only valid in the reference frame in which the volume is stationary. In order
to formulate this in a format which is valid in all frames we must replace the volume
element by the (covariant) 4-vector dSν whose zeroth component is dv, i.e. dv = dS0.
The vector dSν is a three dimensional surface element in four-dimensional Minkowski
space– and each component of πµ is itself the (µ, 0) component of a tensor T µν , known
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as the “stress-energy tensor” or sometimes “energy-momentum tensor”. (3.18) then
becomes ∫

S

∂µT
µνdSν = 0 (3.19)

This must be true for any three-dimensional surface of Minkowski space, which means
that the integrand must vanish

∂µT
µν = 0. (3.20)

The divergence of the stress-energy tensor is zero6

The component T 00 of the stress-energy tensor is the energy density and the com-
ponents T 0i = T i0 are the components of the momentum density. The remaining
components are a little more complicated to interpret. T ii is the momentum flux (the
rate of change of momentum per unit area) in the direction i . In the case where
T 11 = T 22 = T 33, this value is the pressure. The components T ij i ̸= j are called the
components of “shear stress”.

6We have assumed a Minkowski metric whose space-like coordinates are Cartesian. If we use a different
coordinate system then the partial derivative needs to be replaced by the covariant derivative.
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4 Two Particle Scattering

We look in more detail at the kinematics of a particle of mass m1 with four-momentum
pµ1 scattering against a particle of mass m2 with four-momentum pµ2 and producing two (in
general different) final-state particles - one with mass m3, four-momentum pµ3 and the other
with mass m4 and four-momentum pµ4

The conservation of energy and momentum gives us four equations

pµ1 + pµ2 = pµ3 + pµ4 , (µ = 0, 1, 2, 3) (4.1)

From (3.6) we have

p21 = m2
1c

2, p22 = m2
2c

2, p23 = m2
3c

2, p24 = m2
4c

2, (4.2)

4.1 Mandelstam s variable

We define the Mandelstam variable s as the invariant quantity

s ≡ (p1 + p2) · (p1 + p2) = (p3 + p4) · (p3 + p4), (4.3)

where we have used energy-momentum conservation (4.1). The interpretation of s is that s
is the invariant square total momentum.

Using (4.2) we may write

s = m2
1c

2 +m2
2c

2 = 2p1 · p2 = m2
1c

2 +m2
2c

2 + 2

(
E1E2

c2
− p1 · p2

)
, (4.4)

where the boldface p stands for three-momentum. Whereas s is invariant under Lorentz
transformations, the quantities E1, E2, p1, p2 on the RHS of (4.4) are frame-dependent but
are always related to each other as given by (4.4).

Similarly we have,

s = m2
3c

2 +m2
4c

2 = 2p3 · p4 = m2
3c

2 +m2
4c

2 + 2

(
E3E4

c2
− p3 · p4

)
, (4.5)

There are two reference frames which are of particular interest – the centre-of-mass (CM)
frame in which the sum of the three-momenta of the participating particles is zero - i.e. their
three-momenta are equal and opposite, and the rest-frame of one of the target-particles (e.g.
particle 2) which is the frame of reference relevant for fixed target experiments.

26



Centre-of-Mass Frame Rest Frame

E1, pi E2, pi

E3, pf

θ

E4, pf

E1, pi m2

E3, p3

E4, p4

Figure 4: Two-particle to two-particle scattering - in the centre-of-mass frame in which the
sum of the three momentum of the two (incoming or outgoing) particles is zero (left) and in
the rest-frame of target particle (2) (right).

4.2 Centre-of-Mass frame

In the centre-of-mass frame, the quantity
√
s is the total relativistic energy of the two

incoming (or two outgoing) particles.

Without loss of generality we can assume that the incoming particles are moving along
the third axis with magnitude of three-momentum pi The four momenta of the incoming
particles may therefore be written

pµ1 =

(
E1

c
, 0, 0, pi

)

pµ2 =

(
E2

c
, 0, 0,−pi

)
where

E2
1 = p2i c

2 +m2
1c

4, E2
2 = p2i c

2 +m2
2c

4.

Using (4.4) and after some algebra we arrive at

pµ1 =
1

2
√
s

(
s+

(
m2

1 −m2
2

)
c2, 0, 0, λ1/2

(
s,m2

1c
2,m2

2c
2
))

pµ2 =
1

2
√
s

(
s+

(
m2

2 −m2
1

)
c2, 0, 0,−λ1/2

(
s,m2

1c
2,m2

2c
2
))

, (4.6)

where the Källën function, λ(x, y, z),

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz

This function simplifies in the case y = z (equal masses m1 = m2) to

λ(x, y, y) = x(x− 4y)
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Similarly

pµ3 =
1

2
√
s

(
s+

(
m2

3 −m2
4

)
c2, λ1/2

(
s,m2

3c
2,m2

4c
2
)
sin θ, 0, λ1/2

(
s,m2

3c
2,m2

4c
2
)
cos θ,

)
pµ4 =

1

2
√
s

(
s+

(
m2

4 −m2
3

)
c2,−λ1/2

(
s,m2

3c
2,m2

4c
2
)
sin θ, 0,−λ1/2

(
s,m2

3c
2,m2

4c
2
)
cos θ

)
,

(4.7)

where θ is the scattering angle in the centre-of-mass frame7. Note that the scattering angle
is frame-dependent - so that the angle used in (4.7) is the centre-of-mass scattering angle.

4.3 Rest frame

In the rest frame of target particle 2 the incoming 4-momenta are

pµ1 =

(
E1

c
, 0, 0, p1

)
pµ2 = (m2c, 0, 0, 0)

The Mandelstam variable s is then

s =
(
m2

1 +m2
2

)
c2 + 2E1m2,

E1 being the energy of the projectile particle in the rest frame of he target particle. The
incoming four-momentum of the projectile particle is by

pµ1 =
1

2m2c

((
s−m2

1c
2 −m2

2c
2
)
, 0, 0, λ1/2(s,m2

2,m
2
2)
)

(4.8)

4.4 Mandelstam t variable

A further invariant quantity is t define as

t ≡ (p1 − p3) · (p1 − p3) = (p2 − p4) · (p2 − p4) (4.9)

This is the invariant square of the momentum transferred from particle 1 to particle 3 in the
scattering process.

We may write this as
t = m2

1c
2 +m2

3c
2 − 2p1 · p3

In the non-relativistic limit with equal masses m1 = m3 and

E1 ≈ m1c
2 +

1

2m1

|p1|2, E3 ≈ m3c
2 +

1

2m3

|p3|2,

7We have arbitrarily set the azimuthal angle to zero as kinematics is invariant under azimuthal rotations
about the third axis.
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t is approximated by
−t ≈ |p1 − p3|2 ,

which is indeed the square of the momentum transferred.

We can use (4.6) and (4.7) to show that there is a relation between s, t, the particle
masses and the scattering angle:

t = − 1

2s

(
s2 − s(m2

1‘ +m2
2 +m2

3 +m2
4)c

2 + (m2
1 −m2

2)(m
2
3 −m2

4)c
4

+λ1/2(s,m2
1c

2,m2
2c

2)λ1/2(s,m2
3c

2,m2
4c

2) cos θ
)

(4.10)

In the rest frame, there is a fairly simple relation between t and the energy of particle-4
(the other outgoing particle), since we may write

t = (p2 − p4) · (p2 = p4) = m2
2c

2 +m2
4c

2 − 2p2 · p4 = m2
2c

2 +m2
4c

2 − 2m2E4 (4.11)

4.5 Mandelstam u variable

There is one more invariant quantity u defined by

u ≡ (p1 − p4) · (p1 − p4) = (p2 − p3) · (p2 − p3) . (4.12)

However, this is not an independent variable.

s+ t+ u =
1

2
((p1 + p2) · (p1 + p2) + (p3 + p4) · (p3 + p4) + (p1 − p3) · (p1 − p3)

+(p2 − p4) · (p2 − p4) + (p1 − p4) · (p1 − p4) + (p2 − p3) · (p2 − p3))

=
1

2
(p1 + p2 + p2 + p4) · (p1 + p2 − p3 − p4) + p21 + p22 + p23 + p24 (4.13)

But (p1 + p2 − p3 − p4)
µ = 0 and using the relations p2i = m2

i c
2 for each of the four particles

we arrive at
s+ t+ u =

(
m2

1 +m2
2 +m3

3 +m2
4

)
c2 (4.14)
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5 Relativistic Electromagnetism

If we have an electric charge distribution ρ(x) in a frame A in which this charge density is
stationary, then in another frame moving with velocity v relative to A we observe both an
electric charge density and a current density j. This leads us to combine current density and
charge density and current density into a single four-vector jµ whose zeroth component is c ρ.
We have already seen that conservation of electric charge can be expressed in a manifestly
Lorentz invariant format

∂µj
µ = 0

We also know that if in a particular reference frame we have a static electric field, E,
then in a frame moving relative to that frame there will be both an electric fields and a
magnetic field B. This means that in order to formulate the laws of electromagnetism in a
frame-independent way we need a quantity with six independent components - three of which
correspond to the components of the electric field E and three corresponding to the three
components of the magnetic field, which transforms in a well-defined way under Lorentz
transformations.

Such a quantity is the two-rank anti-symmetric tensor

F µν = −F νµ

This tensor can be constructed from the four-vector Aµ which combines the electrostatic
potential Φ and the magnetic vector potential A. The zeroth component of Aµ is Φ/c.

The electromagnetic field tensor is then defined as

F µν = ∂µAν − ∂νAµ (5.1)

Recalling that the contravariant derivative operator

∂µ =

(
1

c

∂

∂t
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
The components of electric field and magnetic field are given by

Ei =
∂Ai

∂t
− ∂ϕ

∂xi

Bi = ϵijk
∂Aj

∂k
,

where ϵijk is the completely anti-symmetric Levi-Civita tensor in three dimensions.

The components of the contravariant electromagnetic field tensor are therefore

F 0i = −F i0 = −Ei

c
(5.2)
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F ij = −F ji = −ϵijkBk (5.3)

For the covariant electromagnetic field tensor

Fµν = ηµρηνσF
ρσ

the sign of the electric field components is reversed but the sign of the magnetic field com-
ponents is unchanged.

The sress-energy tensor for an electromagnetic field is

Tµν = − 1

µ0

(
gαβFµαFνβ −

1

4
gµνFρσF

ρσ

)
(5.4)

This has components (in terms of electric field E and magnetic field B),

T00 =
1

2

(
ϵ0|E|2 +

1

µ0

|B|2
)

Tii = ϵ0

(
1

2
|E|2 − E2

i

)
+

1

µ0

(
1

2
|B|2 −B2

i

)
T0i = −

√
ϵ0
µ0

(E×B)i

Tij = ϵ0EiEj −
1

µ0

BiBj, (5.5)

where we have made use of the relation c2 = (ϵ0µ0)
−1.

The components T0i are proportional to the Poynting vector and represent the momentum
density.

Note that the trace of the stress-energy tensor, gµνTµν , vanishes.

5.1 Transformations of Electric and Magnetic Field

The transformation of the components of electric and magnetic fields under a Lorentz trans-
formation can be obtained from the transformation of the electromagnetic field tensor

F µν −→ F ′µν = Λµ
ρΛ

ν
σF

ρσ (5.6)

For a Lorentz boost of velocity v, the components of electric and magnetic fields in the
direction of v (the longitudinal components) remain unchanged, whereas the transverse
components of the fields transform into each other

ET → E′
T = γ (ET − v ×BT ) (5.7)

BT → B′
T = γ

(
BT +

1

c2
v × ET

)
(5.8)
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In 1905 Einstein did not now about tensors. They were introduced to him by Marcel
Grossman in 1912 and were used extensively in General Relativity. In his 1905 paper Einstein
derived these results the hard way. From the Lorentz transformations of x am and time, t,
he deduced the Lorentz transformations of the operators ∇ and the time derivative. He then
deduced the transformations of the components of electric and magnetic fields from the fact
that Maxwell’s equation (in a vacuum) had to be valid on all reference frames. The algebra is
much simpler if we use tensors in Minkowski space, although Einstein’s long-winded method
provides more physical insight.

5.2 Gauge Transformations

The components of the four-vector Aµ are not unique.

We see that if we add to Aµ any the derivative of any Lorentz invariant (scalar) function
Ω(x)

Aµ → Aµ + ∂µΩ (5.9)

then we can see immediately for (5.1) that the components the terms proportional to Ω
cancel and of the electromagnetic field tensor remain the same.

The transformation (5.9) is called a “gauge transformation”” and the fact that such a
transformation does not affect the components of the electric or magnetic field tells us that
the components of Aµ are not physical observables. Only the components of the electric and
magnetic field are physically measurable quantities.

We are free to choose a gauge at our convenience, by imposing a condition on the four-
vector potential. There are three popular gauges which are often used:

• Landau Gauge:
∂µA

µ = 0

This is useful when looking at the wave equation obeyed by Aµ.

• Coulomb Gauge:
∇ ·A = 0

This is useful for electrostatic problems but it explicitly breaks Lorentz invariance and
so it is rarely used in relativistic problems.

• Axial gauge
n · A = 0

where n is some suitably chosen four-vector. This also breaks manifest Lorentz invari-
ance and also rotation invariance, but it is nevertheless sometimes useful.
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5.3 Relativistic Form of Maxwell’s Equations

Two of Maxwell’s equations of electromagnetism relate derivatives of electric or magnetic
fields to components of current density or charge density. These can be combined into a
single equation relating four-vectors

∂µF
νµ = µ0j

ν , (5.10)

where µ0 is the permeability of the vacuum, related to c and the permittivity of the vacuum,
ϵ0

c2 =
1

µ0ϵ0

For ν = 0, (5.10) becomes

∇ · E =
ρ

ϵ0

and for ν = i the equations are the components of

∇×B− 1

c2
∂E

∂t
= µ0j.

(5.10) is an equation between two quantities which transform as a four-vector under Lorentz
transformations. It is therefore valid in any reference frame.

If we use (5.1) to write F µν in terms of the vector potential Aµ then (5.10) becomes

∂ν∂
νAµ − ∂µ (∂ · A) = µ0j

µ (5.11)

we can fix the gauge such that ∂ · A = 0 and this becomes the standard (in-homogeneous)
wave equation for each remaining component of Aµ,

□Aµ ≡ gαβ∂α∂β A
µ = µ0j

µ (5.12)

The other two Maxwell’s equations require the totally anti-symmetric (covariant) Levi-
Civita tensor in Minkowski space ϵµνρσ. The components of this tensor vanish if any two of
the indices are equal, take the value 1 if µ, ν, ρ, σ is an even permutation of (1,2,3,4) and
-1 for sn odd permutation. The contravariant tensor ϵµνρσ (in Minkowski space) has the
opposite sign.

The tensor ∂ρ∂µAν is symmetric under the interchange of indices ρ ↔ µ and likewise
the tensor ∂ρ∂νAµ is symmetric under the interchange of indices ρ ↔ ν. Since ϵµνρσ is
antisymmetric under the interchange of any pair of indices, it follows that

ϵµνρσ∂
νF ρσ = ϵµνρσ∂

ν∂ρAσ − ϵµνρσ∂
ν∂σAρ = 0 (5.13)

This can be rewritten as a Bianchi identity

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (5.14)

33



For µ = 0 (5.13) becomes
∇ ·B = 0

and for µ = i we get the components of

∇× E = −∂B

∂t
.

Again as this is an equation involving a quantity which transforms as a covariant vector
under Lorentz transformations, it is valid in any reference frame.

5.4 Particle Moving in Electromagnetic Field

The action for a particle of mass m and charge q in an electromagnetic field derived from
an electromagnetic four-vector potential, Aµ, in Minkowski space, is obtained by adding the
interaction term

q c

∫
dλ ηµν ẋ

µAν

(· meaning differentiating w.r.t the parameter λ)

S = c

∫
dλ
{
m (ηµν ẋ

µẋν)1/2 + q ηµν ẋ
µAν

}
, (5.15)

The Lagrange equation of motion is

d

dλ

{(
ηρσ

dxρ

dτ

dxσ

dτ

)−1/2

ẋν +
q

m
Ȧν

}
=

q

m
ηµνηρσẋ

ρ∂A
σ

∂xµ
(5.16)

Using

dλ

dτ
= c

(
ηρσ

dxρ

dτ

dxσ

dτ

)−1/2

,

and expressing Ȧν as

Ȧν = ηµν
∂Aµ

∂xρ
ẋρ

we can rewrite (5.16) as

d

dλ

(
dxν

dτ

)
=

q

m
ηµνηρσ

dxρ

dτ

∂Aσ

∂xµ

dτ

dλ
− q

m
ηµν

∂Aµ

∂xρ

dxρ

dτ

dτ

dλ

and finally
d2xν

dτ 2
=

q

m
ηµνFµρ

dxρ

dτ
(5.17)
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Both sides of (5.17) transform as a four-vector and so the equation of motion is valid in
any reference frame.

In the non-relativistic limit, we may set dτ ≈ dt and for space-like indices ν = i of (5.17)
gives the non-relativistic law for the force, Fem, acting on a charged particle moving in an
electric and magnetic field

Fem = m
d2x

dt2
= q (E+ v ×B)
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6 Principle of Equivalence

So far we have been considering Special Relativity, in which gravity is neglected and inertial
frames move with a constant velocity relative to other inertial frames.

6.1 Weak Equivalence Principle

The weak equivalence principle states that any point particle follows the same path in a
gravitational field - i.e its gravitational mass mG, which determines its coupling to gravity
is identical to its inertial mass mI , which determined how it responds to the application
of a force. In Newtonian mechanics, this means that if the force acting on a particle in a
gravitational field, G is given by

F = mGG

and the acceleration a resulting from the application of that force is given by

F = mIa

then
mG = mI

This was tested extensively by Eötvös who carried out experiments between 1885 and
1909, using a torsion balance. Galileo suspected that this principle was true three centuries
earlier when he performed his experiment of dropping objects of different mass but the same
volume from the tower of Pisa and showed that they took the same time to fall to the ground
.

6.2 Strong Equivalence Principle

The weak equivalence principle refers to gravitational interactions. The strong equivalence
principle, which is an axiom of General Relativity, extends this to all laws of physics. It states
that one cannot perform an experiment which can distinguish between a non-accelerating
frame of reference in a uniform gravitational field and a frame in which gravity is absent,
but which is accelerating uniformly.

If we are in a windowless laboratory on Earth and we drop an object, it accelerates
towards the centre of the Earth at a rate of 9.81m s−2. If we were in a windowless laboratory
in outer space where gravity is negligible then this would not happen and we would experience
weightlessness. However, if the laboratory in outer space were to accelerate upwards at a
rate of 9.81m s−2, the object would fall to the ground in the same way. The strong principle
of equivalence tells us that this is the case for any physics experiment that one can devise8.

8For the Earth’s gravitational field this is not completely correct, because the gravitational field is not
uniform as it is pointed radially towards the centre of the Earth, giving rise to “;l effects” which will be
discussed later.
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A reference frame moving with constant velocity on Earth is not really an inertial frame
as it is equivalent to an accelerating frame. An inertial frame is therefore redefined as a
frame which is in free fall in a gravitational field and is only the same as a non-accelerating
frame in the absence of a gravitational field. The first postulate of Special Relativity is
then amended to “ the laws of physics are the same in any frame which is in free fall in a
gravitational field” .

6.3 Light Bent by Gravity

Figure 5: Path of a light beam in no gravitational field (left) and in an upward accelerating
frame equivalent to a downward gravitational field (right).

An immediate consequence of this is that light is bent by gravity as shown in Figure 5 in
which the right-hand diagram shows an upwardly accelerated frame. Between the time that
the light is emitted from the source and the time it hits the far wall, the upward velocity of
the module, in which the experiment is being conducted, has increased and so the light beam
lands at a place which is lower down in the module. Since upward acceleration is equivalent
to a downward gravitational field, this means that light is bent by gravity.

The bending of light by gravity was demonstrated by two observations of a solar eclipse
in 1919 – one by a team led by Arthur Eddington on the island of Principe off the coast of
West Africa and another by a team led by Andrew Crommelin in Sobral, Brazil. During this
eclipse Eddington was able to observe a group of stars known as Hyades, which was directly
behind the sun, but could nevertheless be observed owing to the bending of the light from
Hyades caused by the gravitational field of the sun.
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A

E

Figure 6: Two objects, either side of observer A. All three are in free fall. The two objects
are seen to approach each other as they fall.

6.4 Tidal Effects

The Principle of Equivalence refers to reference frames in a uniform gravitational field, i.e.
everywhere of the same magnitude and in the same direction. The gravitational field of the
Earth points radially towards the centre - and therefore not always in the same direction. If
an observer, A, is in free fall in the Earth’s gravitational field and there are objects either
side of the observer which are also in free fall, then, as seen by a free-falling observer, B, in
outer space, where the Earth’s gravitational field is negligible, those two objects will have
a very small component of acceleration perpendicular to the direction of the acceleration
of observer A. The two objects therefore are accelerating relative to observer A and their
motion towards each other can be observed by A. This is called the “tidal effect”.

The presence of tidal effects provides a restriction to the validity of the principle of
equivalence. An observer, E, on Earth (not accelerating but in a gravitational field, will
observe B and C to be accelerating towards each other. But this would not be the case if the
Earth were absent but E was accelerating in th direction of A - th principle of equivalence
is only valid “locally” i.e. over distances for which variations in th gravitational field may
be neglected.

6.5 Curved Space-Time

The bending of light in a gravitational field implies an re-interpretation of the law of recti-
linear propagation, which tells us that light travelling in a vacuum, moves in straight lines

Consider two inertial frames A and B in free-fall in the Earth’s gravitational field, but
where B is closer to the Earth than A so that the gravitational field is stronger. B is
accelerating relative to A - but they are both inertial frames. If B shines a light beam
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across, perpendicular to the direction of acceleration of her space-module, then she will
observe it to travel in a straight line across the module. However, as observed by A the light
path is bent due to the acceleration of B relative to A.

This apparent dilemma is removed if “straight line” is interpreted as “the shortest dis-
tance between two points”. This can appear to be other than a straight line if space-time is
curved. In a space with curvature, a straight line is defined as the shortest distance between
two points and is known as a “geodesic’. The interpretation of gravity in General Relativity
is that in a gravitational field space-time is curved but there is no “force” in the curved
space-time - so that an object travelling in a gravitational field travels also along a geodesic
in curved space-time. Conversely, matter (which generates a gravitational field) induces the
curvature of space-time in a manner described by the equation of General Relativity.

B C

rA

tA

0

Figure 7: Two observers B and C at rest relative to two objects falling to Earth from opposite
sides, as seen from an observer A in outer space. In either frame B or C the world-lines are
parallel to the time axis, but in frame A they curve towards each other (as shown on the
right) and collide at the centre of the Earth (marked as ’O’).

A further demonstration of the curvature of space-time induced by a gravitating object
can be seen by imagining two objects, released at the same time from the same distance
from the centre of the Earth, but from opposite sides. We will also imagine that there is a
hole through the Earth so that these objects can eventually collide.

In the inertial (free-falling) frames, B and C, of each of these objects, they are stationary.
In other words, their world-lines are straight lines running parallel to the time axis. However,
as seen by an observer A in outer space where the Earth’s gravitational field is negligible, the
world-lines of B and C start off parallel to the time axis, but then turn towards each other,
as shown on the right of Figure 7, so that they meet at the Earth’s centre. So we see that a
straight line in one inertial frame of reference appears as a curve in another inertial frame.
In General Relativity the effect of the gravitational field is not to generate a force acting on
a falling object but rather to induce a curvature on space-time so that the curved world-line
obtained by plotting distance (in a given direction) against time is actually a geodesic path
in the curved space-time. The falling object is not subjected to a force, but moves along a
geodesic in the curved space.

39



7 Two Dimensional Curved Space

The geometry in flat space – Euclidean geometry – is a set of theorems concerning the
properties of shapes drawn on a flat sheet of paper, such as the sum of the angles of a
triangle, the circumference of a circle of a given radius, Pythagoras’ theorem etc.

The study of geometry in curved space is called “Riemannian geometry”.

We cannot imagine curved space in three dimensions, let alone a curved four-dimensional
space-time, but we can consider geometry in a two-dimensional sub-space which is curved,
such as the surface of a balloon or a globe. On such a curved surface, many of the theorems
of Euclidean geometry do not hold.

14/10/2021, 11:26 Google Maps

https://www.google.com/maps/@40.6976701,-49.7824701,4z 1/1

Map data ©2021 Google, INEGI 500 km 

Total distance: 6,890.27 km (4,281.41 mi)
Measure distance

Figure 8: Shortest path between Rome and New York. It is not due West, but has a starting
direction 55◦ North

The cities of New York and Rome are approximately at the same latitude, but distance
between these cities along a path pointing East-West is 7130 km long, whereas the shortest
distance between the cities is only 6891 km. The path (geodesic on the Earth’s curved
surface) starts in a direction which is approximately North-West from Rome to New York.

Figure 9: Octant of a sphere whose boundary is a triangle with three right-angles

The sum of angles in a triangle drawn on the Earth’s surface depends on the size of
the triangle. If the triangle is much smaller than the radius of the Earth then it is almost
indistinguishable from a triangle drawn on a flat surface, so the sum of their angles is very
close to 180◦, but for larger triangles we get a larger angle sum. For example, start at
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the North pole and draw a line down the Greenwhich meridian (longitude 0◦) as far as
the equator, turn through a right-angle and go due East until you get to the meridian at
longitude 90◦, turn again through a right-angle and return along the 90◦ meridian to the
North pole. You approach the North pole at 90◦ to the Greenwich meridian. This triangle
is a boundary of one octant of the sphere as shown in Figure 9 This means that you have
drawn a triangle with three right-angles - a sum of 270◦.

The circumference of a circle of radius R is less than 2πR and depends on the size of
the circle. Again, for small circles whose radius is much smaller than the Earth’s surface
the curvature, has a negligible effect. On the other hand, suppose we draw a circle whose
radius, R, is 1

4
of the circumference of the Earth, with its centre at the North pole. Such a

circle is, in fact, the equator and the circumference is therefore equal to the circumference
of the Earth which is 4R - somewhat less than 2πR for a circle of the same radius drawn in
flat space.

Consider an observer A on the equator in a village (village (A)) in Gabon, at longitude 9◦

East. He sets the origin of his coordinate system at the centre of the village with the x axis
pointing East and the y-axis pointing North. He drives to a neighbouring village 12 km due
North and 16 km due East. Since these distances are extremely small compared with the
radius of the Earth, the direct distance between the villages is given by Pythagoras’ theorem
- 20 km. Furthermore it makes no difference if A travels north and then east or East and
then North.

A now travels to observer B located at village (B) which is 53◦ North and 83◦ East. .
He arrives there by travelling 8000 km due East and then 6000 km due North. Pythagoras
theorem would suggest that the distance between village(A) and village (B) is 10000 km,
whereas the distance along the geodesic path linking the two villages is only 9600 km.
Furthermore, if A travels 6000 km North followed by 8000 km East (rather than the other
way around) he would end up 1300 km East of village (B). On a curved surface, the order
in which A travels over a series of paths of given length affects the destination.

Observer B sets her coordinate system up in the same way as observer A - namely she
places her origin at the centre of her village at 53◦ North and 83◦ East. with the x-axis
pointing East and the y-axis pointing North. But if observer A looks at her coordinate
system he sees her x-axis pointing in the same direction as his, whereas he sees her y-axis
as pointing at an angle of 125◦ to the x-direction rather than at right-angles. Moreover, the
inclination of (North-pointing) y-axis in observer B’s frame increases as one goes North and
this means that observer A’s view of the y-axis in observer B’s frame is actually curved (see
Figure 10).

All this can be encoded by amending the expression for the distance, ∆s, between two
neighbouring points. This is achieved by generalising the expressions for the components of
the metric. The distance ds between two neighbouring points (in a two-dimensional space)
is given (see (1.12)) by

ds2 = gxxdx
2 + gyydy

2, (7.1)
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yB
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yA

A B

Figure 10: Observer A’s view of observer (from village (A) at 0◦ N, 9◦ E ) of B’s axes which
are rectilinear in observer frame located at village (B) which is 53◦ North, 85◦ East. Note
that B’s y-axis is seen to be inclining to the West and curved. We can picture the y-axes in
A’s and B’s frames as two meridian lines at different longitudes.

but now the components, gxx, gyy of the metric gij vary from position to position on the
spherical surface – they are themselves functions of x and y, unlike the case of flat Euclidean
space where gxx = gyy = 1. For small x and y - where we are near the origin, they are both
very close to one and flat-space (Euclidean) geometry is a very good approximation.

On the equator the lines of longitude are parallel and perpendicular to the lines of latitude,
so that the metric is approximately Euclidean near any one point. We could try to stick
a postage stamp on a point. The postage stamp would have to be “scrunched up” to be
stuck over the surface but if the stamp was sufficiently small compared with the radius of the
sphere this would be a negligible effect9. On the other hand, we can choose the “equator”
to run through any point. For geographical reasons we choose the Earth’s to be in the
plane normal to its axis of rotation, but in general the equator could be any great circle on
the sphere, passing through any point. This means that we can always choose a coordinate
system such that in the neighbourhood of a given point on the sphere the metric is Euclidean,
its derivatives with respect to the coordinates vanish and the Christoffel symbols vanish. In
the above example we could choose a coordinate system which was Euclidean at the location
of observer B. She would then see the longitude lines of observer A as being curved. In four-
dimensional space-time this is extended to mean that for any curved space-time there exists
a coordinate system such that for a sufficiently small region surrounding any space-time
point the metric is Minkowskian up to any given approximation.

In the case of a spherical surface of radius r, gxx and gyy are

gxx =

√
1− y2

r2

gyy = 1,

9Strictly a flat postage stamp only touches the sphere at one point. The Euclidean axes on the stamp
are axes in the “tangent space” at the point of contact.
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so we see that if y is much smaller than the radius R the effect of the curvature is negligible.
But for points with larger values of y, the x-axis “shrinks”. On a globe this is equivalent to
the fact that the distance between places with a given difference in longitude, decreases as
one moves away from the equator. The distance between two places on the equator whose
longitudes differ by 1◦ is 111 km, whereas the distance between Pisa and Florence which are
almost at the same latitude – 44◦ North – and approximately 1◦ apart in longitude, is only
80 km.

We can, of course, have other types of curves surfaces for which gxx has a different
dependence of position (x, y), and gyy differs from one (and we can also have a metric with
a non-zero off-diagonal component, gxy.

xA

tA

A

xB

tB

B a

Figure 11: Observer A’s view of observer B’s space-time coordinate system. B is at a point
of lower gravitational potential and is therefore accelerating relative to B As seen by A, the
x- and time coordinates in observer B’s frame are curved. The angular rotation of the time
and x-coordinates for two coordinates systems (Minkowski diagrams) which are separated
in space and time is interpreted as a Lorentz transformation between the two coordinate
systems. The curved dashed line (green) is the path of a light beam (along a geodesic) as
seen by observer A.

A similar thing happens in curved space-time. Return to the example of observers A
and B released from starting points a long way above the surface of the Earth, but where
B is released earlier and from greater height than A. As observer B passes A she is moving
relative to A in the radial direction with some velocity. At that instant A and B are both
accelerating at the same rate and we can apply the laws of Special Relativity - both observers
are moving in a four-dimensional space-time with a Minkowski metric, and momentarily B
is moving with uniform velocity relative to A. At that moment, A′s observation of B’s frame
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will show the radial and time axes oriented towards each other as shown in Figure 2, but
nevertheless the axes appear as straight lines

However, at some later time B will be closer to the Earth than A and therefore will be
in a stronger gravitational field. They are both frames in free-fall. However, A’s observation
of B’s Minkowski frame will show that not only are the axes oriented towards each other
but this angle of orientation increases as one moves away from the origin (in the positive
direction) and therefore the axes are curved as shown in Figure 11
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8 Motion in Curved Space-Time

For Newtonian gravity a particle of massm in a gravitational fieldG is subject to a forcemG
which causes the particle to accelerate. In General Relativity there is no force due to gravity,
so that in the absence of any other force (such as that produced by an electromagnetic field)
the particle is treated as a free particle and as such the path of the particle is a “straight line”,
but in a curved space-time. The curvature is encoded by replacing the Minkowski metric
ηµν by a metric tensor gµν whose components are, in general, functions of the space-time
coordinates, xµ.

8.1 Free Particles in a Gravitational Field

A free particle moving in a space with metric gµν sweeps out a world-line, whose coordinates
xµ are functions of some parameter, λ.

The action, S, for such a particle as it moves from initial coordinates xµ(0) = xµ
i to final

coordinates xµ(1) = xµ
f , is given by an integral over the parameter λ

S = m

∫ 1

0

dλ
√

gµν(x)ẋµẋν , (8.1)

where

ẋµ ≡ dxµ

dλ
.

The geodesic path followed by the free particle is the path that minimizes this action,
given by the Lagrange equation

d

dλ

(
gµν ẋ

ν

2
√
gστ ẋσẋτ

)
=

1

2
√
gστ ẋσẋτ

∂

∂xµ
gνρẋ

ν ẋρ (8.2)

Using
dgµν
dλ

=
∂gµν
∂xρ

ẋρ,

and some algebra, we find that the geodesic equation for the coordinate xµ is

d2xµ

d2λ
+ Γµ

νρ

∂xν

dλ

∂xρ

dλ
= 0 (8.3)

where Γmu
νρ are the Christoffel symbols given by (2.2).

Example 1: Polar coordinates in 2-Dimensions

In this space the metric is gρρ, gϕϕ = ρ2, gρϕ = gϕρ = 0. The non-zero Christoffel symbols
are

Γρ
ϕϕ = −ρ, Γϕ

ρϕ = Γϕ
ϕρ = ρ−1. (8.4)
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The geodesic equation for ϕ is

ϕ̈+ 2
ρ̇ϕ̇

ρ
= 0, (8.5)

which has solution

ϕ̇ =
1

ρ2
, (8.6)

(the overall constant can be absorbed into the re-scaling of the parameter λ).

The geodesic equation for ρ is
ρ̈− ρϕ̇2 = 0. (8.7)

Using (8.6) this may be written

ρ̈− 1

ρ3
= 0. (8.8)

which has solution

ρ̇ =

√
c2 − 1

ρ2
(8.9)

Dividing (8.6) by (8.9), we get
dϕ

dρ
=

1

ρ
√

c2ρ2 − 1

This has solution

ρ cos(ϕ− α) = −1

c
.

This is the equation for a straight line with gradient α and an intercept at x = −1/(c cosα)

Example 2: Surface of a 2-Sphere

The metric on the surface of a sphere (of unit radius) is

gθθ = 1, gϕϕ = sin2 θ, gθϕ = gϕθ = 0,

where θ is the polar angle and ϕ is the azimuthal angle. The non-zero Christoffel symbols
are

Γθ
ϕϕ = − sin θ cos θ, Γϕϕθ = Γϕ

θϕ = cot θ (8.10)

The geodesic equation for ϕ is

ϕ̈+ 2 cot θ θ̇ϕ̈ = 0 (8.11)

with solution
ϕ̇ =

a

sin2 θ
(8.12)

The geodesic equation for θ is

θ̈ − sin θ cos θ ϕ̇2 = 0, (8.13)
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Using (8.12) we may write this as

θ̈ − a2
cos θ

sin3 θ
. (8.14)

This has a solution

θ̇ =

√
1− a2

sin2 θ
, (8.15)

Using (8.12 this gives the dependence of ϕ on θ

dϕ

dθ
=

a

sin θ
(
sin2 θ − a2

)
This has solution

cos (θ − θ0)) = λ cotϕ, (8.16)

(λ = a/
√
1− a2). The constants θ0 and λ are obtained by inserting the initial and final

values of θ and ϕ.

This path is clearly not a straight line. If the two points lie on the equator then the
shortest path between them is also along the equator. For the path between any other two
points which are not on the equator we can rotate the globe until the two points lie on the
new equator. The geodesic is therefore lies on the great circle (largest possible circle) around
the sphere (i.e. the “rotated equator” which passes through the two points).

Example 3: One dimensional Static Gravitational Field

Consider a metric10

g00 = 1 +
2

c2
Φ(x), g11 = −

(
1 +

2Φ

c2

)−1

, g22 = g33 = −δij,

where Φ(x) is the gravitational potential.

This is a fictitious metric but it is a good approximation to the metric which corresponds
to a weak static gravitational field (in the reference frame for which the gravitational field
is static).

The non zero components of the Christoffel symbols are

Γi
00 =

(
1 +

2Φ

c2

)
Φ′

c2
, Γ0

10 = −Φ′

c2

(
1 +

2

c2
Φ

)−1
Φ′

c2
, Γ1

11 = −Φ′

c2

(
1 +

2

c2
Φ

)−1

, (8.17)

( Φ′ ≡ ∂xΦ).

The geodesic equation for x is

ẍ+ Φ′
(
(1 + 2Φ/c2)ṫ2 − ẋ2

1 + 2Φ/c2

)
= 0 (8.18)

10This metric does not obey Einstein’s equation of General Relativity, xcept in the case of a constant
gravitational field (Φ = −ax.)
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(· meaning differentiating w.r.t. proper time) The geodesic equation for time (t = x0/c) is

ẗ+
2

c
(∇Φ) · ẋ ṫ

(
1 +

2

c2
Φ

)−1

= 0 (8.19)

For a particle of mass m and energy E, (in the observer’s frame) (8.19) has a solution

ṫ =
E

mc2

(
1 +

2

c2
Φ

)−1

, (8.20)

This expression is consistent with the definition for the energy as measured by an observer
whose four-velocity is vµ

E(v) = mc gµνv
µẋν

In the observer’s rest frame vµ = (c, 0, 0, 0) so that

E = mc2
(
1 +

2Φ

c2

)
ṫ

The expression for the metric can be written as(
1 +

2Φ

c2

)
m2c4 = E2 −m2c2 |ẋ|2

If we write
E = mc2 + T +mΦ,

then to leading order in the kinetic energy T and the potential energy mΦ we find

T =
1

2
m |ẋ|2

which is the result from Newtonian mechanics valid on tthe non-relativistic limit, but ac-
quiring realtivistic correction for large kinetic energy and/or large potential energy.

Inserting (8.20) into the (8.18) and performing some algebraic manipulations, we get

ẍ = −Φ′ (8.21)

This is Newton’s expression for the acceleration of a particle in a potential Φ, but with
the acceleration defined at the second derivative of the position vector w.r.t. proper-time.
Prior to final derivation of Einstein’s equation for gravity, he showed that if the acceleration
is taken to be the second derivation w.r.t. (the observer’s) time, then the relation between
acceleration and the derivative of the potential could not be consistent with the postulate
that the speed of light was universal.
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8.2 Laws of Physics in a Gravitational Field

For the laws of physics to be valid in any reference frame in curved space (i.e. in a grav-
itational field) they have to be expressed in terms of relations between scalars, vectors or
tensors, which transform in a specified way under a change of coordinate system. Such a
change in coordinate system could be a general Lorentz transformation, but could also be a
displacement in space-time to a point for which the metric takes a different value owing to
a change in gravitational field. For this to happen derivatives of vectors or tensors must be
replaced by covariant derivatives.

• Conservation of electric current (3.13) becomes

(∇µj)
µ = ∂µj

µ + Γµ
µνj

ν = 0 (8.22)

• The conservation of the stress-energy tensor (3.20) becomes

(∇µT )
µν = ∂µT

µν + Γµ
µσT

σν + Γν
µσT

µσ = 0 (8.23)

• The electromagnetic field tensor, F µν is constructed from the covariant derivative of
the electromagnetic vector potential, Aµ. However, if we look at the covariant tensor
Fµν the terms involving the Christoffel symbols cancel out.

Fµν = (∇µA)ν − (∇νA)µ
= ∂µAν − Γρ

µνAρ − ∂νA
µ + Γρ

µνAρ

= ∂µAν − ∂νA
µ (8.24)

(the Christoffel symbols are symmetric in the lower the indices).

The contravariant tensor is formed using the inverse metric

F ρσ = gρµgσνFµν

• The first relativistic Maxwell’s equation (5.10) becomes

(∇µF )µν = ∂µF
µν + Γµ

µρF
ρν + Γν

µρF
µρ = µ0j

ν . (8.25)

• The second Maxwell equation in terms of the covariant tensor Fµν (5.14) (a Bianchi
identity) remains unchanged

The Klein-Gordon equation in curved space is amended to

ℏ2gµν∇µ∂νΨ(x) + m2c2Ψ(x) = ℏ2gµν
(
∂µ∂ν + Γµ

µρ∂
ρ
)
Ψ(x) + m2c2Ψ(x) = 0. (8.26)
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8.3 Curvature

There are some spaces for which the geodesic is simply the equation for a straight line but
expressed in terms of a transformed set of coordinates,

xµ → yµ(x), (8.27)

(xµ are the coordinates in Minkowski space.) The metric in the transformed coordinates is

gρσ(y) = ηµν
∂xµ

∂yρ
∂xν

∂yσ
(8.28)

For example the case of cylindrical polar coordinates (example 1 above) the transforma-
tion of coordinates is

y2 = (x1)2 + (x2)2, yµ = xµ, (µ ̸= 2)

Such coordinate transformations do not induce curvature and the spaces described by such
metrics are flat.

However, other metrics which cannot be written in the form of (8.28) have curvature.
Spaces described by such metrics have curvature.

We define the rank-(1,3) Riemann tensor, Rρ
σµν

Rρ
σµν ≡ ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (8.29)

This transforms as a tensor under coordinate transformations. In a flat space all of the
components of the Riemann tensor are zero, but in a curved space some of the components
are non-zero. Under a coordinate transformation the in-homogeneous terms in the transfor-
mation of the Christoffel symbols shown on (2.5) cancel in the construction of the Riemann
tensor so that (8.29) does indeed transform as a tensor, despite the fact that the Christoffel
symbols do not.

The Riemann tensor has the following symmetries

1.
Rρ

σµν = −Rρ
σνµ (8.30)

2.
gτρR

ρ
σµν = −gσρR

ρ
τµν (8.31)

3.
gτρR

ρ
σµν = gµτR

τ
νρσ (8.32)

4. The Bianchi identity
Rρ

σµν +Rρ
νσµ +Rρ

µνσ = 0 (8.33)
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5. The differential Bianchi identity

(∇λR)ρσµν + (∇µR)ρσνλ + (∇νR)ρσλµ = 0 (8.34)

We can always select a coordinate system in space-time such that at a given space-time
point the metric is Minkowskian and the first derivatives of the metric w.r.t. the coordinates
vanishes leading to vanishing Christoffel symbols. On the other hand the components of
the Riemann tensor involve the second derivatives of the metric which do not vanish. The
Riemann tensor is a property of the space under consideration and cannot be gauged away
by a transformation of coordinates.

The metric tensor is symmetric and so in four dimensions has 10 independent components.
The Bianchi identities give four constraints for the metric. They reflect the fact that the
Riemann tensor is invariant under general coordinate transformations. This means that the
number of physically relevant components of the metric (i.e. components that affect the
curvature) is reduced to six.

We can also define a rank-2 covariant (symmetric) Ricci tensor, Rµν by

Rµν ≡ Rρ
µρν (8.35)

It is possible for a space to be “Ricci flat” meaning that all components of the Ricci
tensor vanish but some components of the Riemann tensor are non-zero.

Finally, for a space which is not Ricci flat we have a non-zero curvature scalar, R defined
by

R ≡ gµνRµν (8.36)

Contracting the indices µ and ρ in the differential Bianchi identity (8.34), we find

(∇λR)σν + (∇µR)µσνλ − (∇νR)σλ = 0 (8.37)

where in the last term we have used (8.30).

Using the fact that the covariant derivative of the metric vanishes - we can commute
the metric through the covariant derivative operator, ∇µ, we contract this with the inverse
metric gνσ to yield

∇λR− (∇µR)µλ − (∇σR)σλ ,

where again we have used (8.30) in the middle term. Now since

(∇µR)µλ = (∇σR)σλ

we get the relation

∇σ

(
Rσλ −

1

2
gσλR

)
= 0 (8.38)
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Example 1: Polar coordinates in 2-Dimensions
Inserting the non-zero components of the Christoffel symbols, given in (8.4) into (8.29), and
using

gρρ = 1, gϕϕ =
(
gϕϕ
)−1

= ρ2,

we find

Rρ
ϕρϕ = − d

dρ
ρ+ ρρ−1 = 0

From the symmetry properties (8.30), (8.31), (8.32), all the other components of the Riemann
tensor vanish. This is an expected result since polar coordinates are simply an alternative
method from Cartesian coordinates, of labelling point in flat space. There is no curvature.

Example 2: Surface 2-Dimensional sphere
Inserting the non-zero components of the Christoffel symbols, given in (8.10) into (8.29),
and using

gθθ = 1, gϕϕ =
(
gϕϕ
)−1

= sin2 θ,

we find
Rθ

ϕθϕ = sin2 θ, Rϕ
θθϕ = 1

with all other components obtained from the symmetry relations (8.30) and (8.31). The
Ricci tensor is then found to be

Rθθ = 1, Rϕϕ = sin2 θ, Rθϕ = 0

and the curvature scalar is

R = 1 +
1

sin2 θ
sin2 θ = 2

In this case the curvature is non-zero, which is expected since this coordinate system labels
points on the surface of a sphere.

Example 3: Weak Static Gravitational Field in x direction
Inserting the non-zero components of the Christoffel symbols, given in (8.17) into (8.29),
and working only to first order in the gravitational potential Φ, we find

R0
i0j = − 1

c2
∂i∂jΦ, Ri

0j0 = − 1

c2
∂i∂jΦ.
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9 Curvature Induced by Matter/Energy

In Newtonian gravity, the gravitational potential, Φ is related to the energy density ρ by

∇2Φ = −4πGρ, (9.1)

where G is the gravitational coupling constant, G = 6.67× 10−11m3 kg. s−2.

ρ c2 is the component T00 of the stress-energy tensor, and as we have seen we can obtain
the motion of a particle moving in a weak gravitational field by adding the gravitational
potential (multiplied by a factor 2/c2) to the component g00 of the metric, so that (9.1) can
be rewritten

∇2g00 = 2πGT00, . (9.2)

In order to amend this equation so that it is valid in any frame of reference in a general curved
space, we need to be able to express this as an equation between tensors. T00 is a component
of the stress-energy tensor Tµν and so the equation of general relativity, which tells us what
the metric is for a space in which the (covariant) stress-energy tensor has elements Tµν . In
other words we need to find a rank-(0,2) tensor, Gµν constructed solely out of the metric,
which is proportional to Tµν .

Gµν = κTµν . (9.3)

The constant of proportionality, κ is chosen so that in limit of a weak gravitational field in
the frame in which the energy distribution is static, we recover the Newtonian expression
(9.1).

There are two rank-(0,2) tensors that are constructed from the metric – one is the Ricci
tensor and the other is the metric itself, gµν . The “Einstein tensor”, Gµν must be a linear
sum of these two tensors. The Ricci tensor has (space)-dimension 2 and so we need to
multiply the metric by a scalar of dimension 2 to match the dimensions and the only such
scalar constructed out of the metic is the curvature scalar R. Furthermore, the conservation
of energy-momentum requires that the covariant divergence of the stress energy vanishes.
This therefore implies that the divergence of Gµν must also vanish. From (8.38) this gives

Gµν = Rµν −
1

2
gµνR (9.4)

The constant κ is determined by expanding the metric about the Minkowski metric

gµν = ηµν + hµν

and making the assumption that only h00 is non-zero. Working to first order in h00 we find
the component G00 of the Einstein tensor is given by

G00 =
1

4
∇2g00

Comparing this with (9.2) we find κ = −4, so finally the equation of general relativity is

Rµν −
1

2
gµνR = −8πG

c2
Tµν (9.5)
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9.1 Schwarzschild Metric

Schwarzschild has identified a static spherically symmetric metric, which in spherical polar
coordinates (ct, r, θ, ϕ) is

g00 =
(
1− rS

r

)
, grr = −

(
1− rS

r

)−1

, gθθ = −r2, gϕϕ = −r2 sin2 θ. (gµν = 0, µ ̸= ν)

(9.6)
This metric generates non-zero components for the Riemann tensor, but the Ricci tensor
vanishes so this metric is a solution to the equation of general relativity in free space.

If the source of the metric is a body of mass M centred at the origin r = 0), then the
parameter rS takes the value

rS =
2GM

c2
(9.7)

The metric element grr has a singularity at the “Schwarzschild radius” r = rS. However,
this metric is only valid in free space, i,e, outside the surface of the body of the gravitating
body of radius r0. for most bodies (other than black holes) r0 ≫ rS, so that we never get
close to the Schwarzschild radius. For example for the sun with mas M⊙ = 2× 1030 kg. and
radius r⊙ = 7× 108 m.,

r⊙
rS

≈ 20000.

The effect of general relativity become significant if the gravitational potential Φ is approach-
ing c2.

We can check that in the non-relativistic limit the Schwarzschild metric reproduces New-
ton’s law of motion for the gravitational field of a spherically symmetric body of massM . We
consider only motion in the radial direction, so we set dθ = dϕ = 0. The relevant Christoffel
symbols are:

Γr
00 =

1

2

(
1− rS

r

) rS
r2

, Γ0
r0 =

1

2

(
1− rS

r

)−1 rS
r2

, Γr
rr = −

(
1− rS

r

)−1 rS
r2

The geodesic for time, t = x0/c is

ẗ+
(
1− rS

r

)−1 rS
e2

ṙṫ = 0,

with solution (
1− rS

r

)
ṫ = 1, (9.8)

where on the RHS the arbitrary constant has been set to unity by appropriate scaling of the
parameter λ. The geodesic equation for the radial distance r is

r̈ +
1

2

(
1− rS

r

) rS
r2

c2ṫ2 −
(
1− rS

r

)−1 rS
r2

‘̇r2 = 0 (9.9)

rS is O(1/c2) and making use of (9.8) we find that (9.9) can be written as

d2r

dt2
+

c2rS
2

1

r2
= O

(
1

c2

)
(9.10)
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Inserting (9.7) we see thst in the non-relativistic limit (1/c2 → 0) we reproduce Newton’s
law for a particle moving radially in the gravitational field of a spherically symmetric body
of mass M :

d2r

dt2
= −GM

r2
(9.11)
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a,(v)

Figure 12: Path of light between two mirrors of a light clock in a frame which is accelerating
relative to the observer (red) compared with moving with constant velocity relative to the
observer (green).

10 Gravitational Redshift

The curvature of space-time means that there is a further contribution to time dilation arising
from the presence of a gravitational field. Observers A and B are both inertial frames in
free fall in the Earth’s gravitational field, B being closer to the Earth than A and therefore
in lower potential is accelerating relative to A. At any one instant B will be moving relative
to A with velocity v relative to A and holds a light-clock. Observer A’s observation of the
light path between the mirrors will be a curve (even though it is seen by B to be a straight
line - see Figure 12). Since light travels with the same speed in all frames it will take longer,
according to A, to travel the curved distance between the mirrors of the light clock. This is
in addition to the time dilation due to the velocity of B relative to A.

The Schwarzschild metric (9.6) is the metric which corresponds to a static spherically
gravitational field. If momentarily B has zero velocity relative to A then at that instant we
can set dr, dθ, dϕ to zero in (9.6) and we have the relation between proper time τ (the time
measured by the clock of observer B at her origin) and time t in the frame of observer A

dτ =

√
1− 2GM

c2r
dt

Although for the Earth’s gravitational field this is a tiny effect, it has actually been ob-
served in atomic clocks held at different altitudes. Experiments carried out on a space station
travelling at 7800 metres per second over a period of six months produced an observable time
dilation of 7 milliseconds. The effect has to be accounted for in modern GPS devices.

This time dilation means that a light-source at a distance r from the centre of a gravitating
body, of wavelength emitting light with wavelength λr, has a period

dτ = λr/c
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Since c is the same in all frames, then to an observer at an infinite distance from the
gravitating body the observed wavelength is λ∞, where

λ∞
λr

=

(
1− 2GM

c2r

)−1/2

≡ 1 + z, (10.1)

where the quantity z is known simply as the “redshift”. If r is sufficiently large that we may
approximate the redshift to leading order in G then the energy of the photon, Er emitted at
radius r exceeds the energy of the photon, E∞ observed at an infinite distance by

Er − E∞ ≈ GMEr

c2r
. (10.2)

The RHS of (10.2) is the gravitational potenntial energy of a particle with initial energy Er.

The gravitational red-shift was first observed in 1925 by Walter Adams from observations
of the white dwarf star Sirius B, whose radius is 5.8 × 108 m. Adams measured one of the
spectral lines of hydrogen (the Hα line). It was found to have a wavelength which is larger
than that observed from a terrestrial measurement of the same spectral line by 0.025%. This
means that the redshift z = 2.5× 10−4. Inserting this and the radius of Sirius B into (10.1)
we can calculate the mass of Sirius B to be 2× 1030 kg (about 1M⊙.)

10.1 The Rebka-Pound experiment

In 1959, Robert Pound and Glen Rebka detected this gravitational shift using a Nuclear
Physics technique developed by the Mössbauer. A radioactive isotope which emits γ-rays can
also absorb the γ-rays with exactly the same frequency. This is called “resonance absorption”.
But it only works if the absorber is stationary relative to the source. If source and absorber
move relative to each other then the frequency of the emitted γ-rays, as measured by the
absorber is shifted due to the Doppler shift and the absorption does not take place. This
technique can detect shifts in γ-ray frequencies of one part in 1014. On the other hand,
if the γ-ray frequency is shifted by a tiny amount due to the gravitational red-shift, then
by adjusting the velocity of the absorber until the red-shift is cancelled by the Doppler
effect due to the moving absorber, resonance absorption is recovered, The velocity needed
to recover this resonance absorption can then be used to determine the gravitational shift in
the frequency of the γ-rays.

They placed a source sample of the iron isotope 56Fe on the top of the tower of the
Jefferson Laboratory at Harvard University, 22.6 metres above ground-level, and an absorber
sample at the bottom of the tower, with a scintillation counter below it. The velocity at
which the source must move relative to the absorber to recover resonance absorption, was
0.00074 mm per second. This very small velocity, at which absorption was observed, was
measured by placing the sample at the top of the tower in the cone of a loudspeaker to which
they applied a pure signal with frequency that ranged between 10 and 50 Hertz. Absorption
occurs once every cycle when the velocity of the loudspeaker membrane is exactly equal to
the resonant velocity. The determination of the precise phase of the oscillation at which
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this absorption is observed allowed them to calculate the velocity of the membrane of the
loudspeaker at which absorption occurs. In order to improve the accuracy, the experiment
was conducted both with the upper sample as the source and the lower sample as the absorber
and the other way around.

They obtained a result which was within 10% of the theoretical result. This accuracy
was later improved to 1%.
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11 The Orbit of Mercury

Kepler’s laws of planetary motion were originally derived from astronomical observations but
were later derived by Newton using Newtonian mechanics and Newton’s law of gravitation.

One of these laws states that planets revolve around the sun in fixed elliptic orbits. The
orbit of the Earth around the sun is almost circular – the Earth is 3% close to the sun in
January than in July. But the orbit of Mercury is a much more eccentric ellipse. At its
point of closest approach (called its “perihelion”) it is two-thirds of the distance when it is
furthest away (called its “aphelion’).

Figure 13: Precession of the orbit of Mercury

Although Kepler’s laws predict a fixed elliptic orbit, the orbit of Mercury has been
observed to precess very slowly at a rate of 575′′ of arc every century. This was known
in the nineteenth century and it was assumed that this was caused by the gravitational
pull of other nearby planets in the solar system (such perturbations are not accounted for
in the derivation of Kepler’s laws). Much work was done in calculating the effect of such
gravitational interaction with neighbouring planets, but the result yielded a precession rate
of only 532′′ of arc every century.

To examine the motion of planets around the sun (a static spherically symmetric gravi-
tational field), we start with the Schwarzschild metric (9.6). We can restrict ourselves to the
two-dimensional space-like plane θ = 1

2
π, dθ = 0. The expression for proper-time τ in the

Schwarzschild metric with fixed polar angle (sin θ = 1, dθ = 0) is

dτ 2 =
(
1− rS

r

)
dt2 − 1

c2

((
1− rS

r

)−1

dr2 + r2dϕ2

)
(11.1)

The non-zero Christoffel symbols are then

Γr
00 =

1

2

(
1− rS

r

) rS
r2

(11.2)
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Γr
rr = −1

2

1

(1− rS/r)

rS
r2

(11.3)

Γr
ϕϕ = −

(
1− rS

r

)
r (11.4)

Γ0
r0 =

1

2

1

(1− rS/r)

rS
r2

(11.5)

Γϕ
ϕr =

1

r
(11.6)

Geodesic for t (= x0/c):
d2t

dλ2
+

rS
(1− rS/r) r2

dt

dλ

dr

dλ
= 0 (11.7)

Solution: (
1− rS

r

) dt

dλ
= b (11.8)

For massive particles (
1− rS

r

) dt

dλ
=

E

mc2
, (11.9)

where, in the parametrisation that identifies λ with proper time, E is the energy of the
planet at infinite distance from the sun.

Geodesic for ϕ
d2ϕ

dλ2
+

2

r

dϕ

dλ

dr

dλ
= 0 (11.10)

Solution:

r2
dϕ

dλ
=

L

c
(11.11)

Geodesic for r:

d2r

dλ2
−
(
1− rS

r

)
r

(
dϕ

dλ

)2

− 1

2 (1− rS/r)

rS
r2

(
dr

dλ

)2

+
rS

2r2 (1− rS/r)

E2

m2c4
‘ = 0, (11.12)

where we have used (11.9)

Identifying λ with cτ , the expression for the metric (11.1) gives

1 =
(
1− rS

r

)
c2
(
dt

dλ

)2

− 1

(1− rS/r)

(
dr

dλ

)2

− r2
(
dϕ

dλ

)2

(11.13)

From (11.11) and (11.9) multiplying throughout by (1− rS/r) this becomes(
dr

dλ

)2

=
(E2 −m2c4)

m2c4
+

rS
r

− L2

c2r2
+

L2rS
c2r3

(11.14)
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The last term is the correction due to General Relativity.

Again using (11.11) we can write an expression for the derivative of r w.r.t. azimuthal
angle ϕ as

L2

r4

(
dr

dϕ

)2

=
(E2 −m2c4)

m2c2
+

rSc
2

r
− L2

r2
+

L2rS
r3

(11.15)

Now define

u ≡ 1

r
In terms of u we have

L2 (u′)
2

=
(E2 −m2c4)

m2c2
+ rSc

2u− L2u2 + L2rSu
3, (11.16)

where ′ indicates differentiation w.r.t. ϕ.

Differentiating w.r.t. ϕ and dividing throughout by 2L2u′, we have

u′′ + u =
rSc

2

2L2
+

3

2
rSu

2 (11.17)

In leading order (i.e. neglecting the last term) the equation reads

u′′
0 + u0 = a (11.18)

where a =
rSc

2

2L2
.

This has a solution:
u0(ϕ) = a+ b cosϕ, (11.19)

where b =

√
r2Sc

4

4L4
− 2ϵ

L2m
.

We have set ϕ = 0 to be the angle at which the orbit is at perihelion, introduced the binding
energy, ϵ,

E = mc2 − ϵ,

and neglected terms of order ϵ2. This solution gives Kepler’s laws for planetary motion,
derived using Newtonian mechanics (after identifying rS = 2GM/c2).

From (11.19), the maximum and minimum distances of the planet from the centre of the
sun obey the relations

1

rmax

+
1

rmin

= 2a =
rSc

2

L2
= 2

M⊙
L2

(11.20)

1

rmin

− 1

rmax

= 2b =

√
r2Sc

4

L4
− 8ϵ

L2m
=

√
4M2

⊙
L4

− 8ϵ

L2m
(11.21)

Now return to (11.17)
u′′ + u = a+ 3rSu

2, (11.22)
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To first order in the ratio
r2Sc

2

L2
,

this differential equation has a solution

u(ϕ) =
L2

2rS
− 3

rS
L2

ϵ

mc2
+

9r3S
8L4

+

√
r2S
4L4

− 2ϵ

L2mc2
cos

((
1− 3r2S

2L2

)
ϕ

)
+

(
r2S
L2

ϵ

mc2
− r3S

8L4

)
cos

(
2

(
1− 3r2S

2L2

)
ϕ

)
(11.23)

The trigonometric functions have a period of

T =
2π

(1− 3r2S/2L
2)

This differs from 2π indicating that the perihelion moves through

3πr2S
2L2

=
3π

2

(
1

rmax

+
1

rmin

)
GM⊙
c2

every orbit.

Inserting numerical values

M⊙ = 1.99× 1030 kg.

G = 6.67× 10−11 Jmkg−1

c = 3× 108ms−1

rmin = 4.6× 1010m

rmax = 6.9× 1010m

we get a precession of 5×10−7 radians per orbit. Mercury performs 415 orbits per century so
the precession of the perihelion is 43′′ per century. This accounts exactly for the discrepancy
between the observed rate of precession of the perihelion of mercury and the value calculated
from the gravitational interaction with other planets.
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12 The deflection of light by the sun

The metric corresponding to the gravitational field of the sun is the Schwarzschild metric
discussed in the previous section and the Christoffel symbols ar given by (11.2)-(11.6).

The geodesic equation for the azimuthal angle, ϕ leads to (11.11) which for the case of
light that passes the edge of the sun at a distance r⊙, we my write as

dϕ

dλ
=

r⊙
cr2

(12.1)

The geodesic equation for t is given in (11.7). For a massless particle for which dτ 2 = 0,
we cannot identify the parameter, λ, with proper time, but we can scale it such that the
solution of (11.7) is

dt

dλ
=
(
1− rs

r

)−1

. (12.2)

From the metric with dτ 2 = 0 we have(
1− rs

r

)( dt

dλ

)2

=

(
dr

dλ

)2 (
1− rs

r

)−1

+
r2⊙
r2

(12.3)

Using (12.2) this may be written(
dr

dλ

)2

= 1 +
r2⊙
r2

(
1 +

rs
r

)
(12.4)

and using 12.1) and defining

u ≡=
1

r
we get

u′ 2 + u2 =
1

r2⊙
+ rsu

3 (12.5)

where ′ means derivative w.r.t ϕ.

Write

u(ϕ) =
sinϕ

r⊙
+

rs
r2⊙

δ(ϕ)

To first order in rs, δ obeys the differential equation

cosϕδ′ + sinϕδ =
rs
2r⊙

sin3 ϕ (12.6)

with solution

δ =
rs
r⊙

(
1− sin2 ϕ

2

)
,
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yielding

r⊙u(ϕ) = sinϕ+
rs
r⊙

(
1− sin2 ϕ

2

)
+O

(
rs
r⊙

)2

(12.7)

The initial and final angles,ϕ±, of a light beam deflected by the sun are the values of ϕ for
u = 0 (corresponding to infinite distance). Solving (12.7) for u = 0 we find

sinϕ± = − rs
r⊙

+O
(
rs
r⊙

)2

(12.8)

The angle of deflection, ∆ϕ is given (to first order in rs/r⊙), by

∆ϕ = ϕ+ − ϕ− − π =
2rs
r⊙

=
4GM⊙
r⊙c2

(12.9)

inserting numerical values

M⊙ = 1.99× 1030 kg.

G = 6.67× 10−11 Jmkg−1

c = 3× 108ms−1

r⊙ = 7.0× 108m

(12.10)

we find a deflection of 8.48× 10−6 radians ≡ 1.75′′.

Originally Einstein made an error in this calculation by a factor of 2 predicted a deflection
to be only 0.87′′. The observed deflection measured by Eddington at Principe was 1.6′′±0.3′′,
and the deflection measured by Crommelin at Sobral was 1.98′′ ± 0.12′′ – in good agreement
with the (corrected) theoretical prediction.
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13 The Unruh Effect

In the 1970’s Fulling, Davies and Unruh independently predicted that if an observer, A, in an
inertial frame is surrounded by a vacuum, then an observer B who is undergoing acceleration
relative to A, will experience a bath of blackbody radiation corresponding to a (very small)
temperature which is proportional to the acceleration.

Note that a quantum state, |EA⟩ which is an eigenstate of the Hamiltonian operator Ĥ
in an inertial frame A, is also an energy eigenstate, |EB⟩ in another inertial frame B moving
with constant velocity v relative to A, with EB and EA related by a Lorentz transformation
whose operator L̂(v) acts on the energy eigenstates as

|EB⟩ = L̂(v)|EA⟩.

However, if the frame of observer i B s not an inertial frame, because B is accelerating
relative to A. then the wavefunction in the frame of observer B is not an eigenstate of the
Hamiltonian, i.e. the state L̂(v(t))|EA⟩ is not an eigenstate of the Hamiltonian, when the
paramter v is time dependent. It is in this way that if observer A is in a vacuum then the
same quantum state as seen by B can contain particles (photons) with non-zero energy.

13.1 Accelerated frame Coordinates

The coordinates in the inertial frame A are xµ and in the accelerated frame B are yµ. We
assume the relative motion is along the x1 direction so we have

x2 = y2, x3 = y3

and henceforth confine ourselves to the two dimensions 0 and 1. The two components are
related by

x1 =

(
c2

a
+ y1

)
cosh

(
ay0

c2

)
x0 =

(
c2

a
+ y1

)
sinh

(
ay0

c2

)
. (13.1)

In the frame of observer A, the value of x1(y1 = 0), y0), is the position of the origin of B as
a function of proper-time y0/c. For small y0, where relativistic effects are negligible, we get
the non-relativistic result

x0 ≈ y0

x1 ≈ c2

a
+

a

2c2
(y0)2

For a more general point, the vector (0, y1) in frame B which is the separation of two
events with coordinates (y0, y1) and (y0, 0) in frame A, is transformed using a Lorentz trans-
formation with (instantaneous) relative velocity, v where

tanh
(v
c

)
) =

ay0

c2
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t A

         xA (xB)

tB

x0

Figure 14: The horizontal axis is the x-axis in both the stationary frame A and the accel-
erated frame B. he vertical line is the time axis in frame A and the red (hyperbolic) line
is the time axis in frame B. The dashed line is the world-line of a point in frame B some
distance, x0, from B’s origin.

The (Minkowski) metric, gµν in frame A is

g00 = 1, g11 = −1 (13.2)

whereas the metric g′µν in frame B is11

g′00 =

(
1 +

ay1

c2

)2

, g′11 = −1 (13.3)

The domain of the y1 coordinate is

−c2

a
≤ y1 < ∞.

No signal from y1 < −c2/a will ever reach observer B. this value of y1 therefore acts as a
horizon.

13.2 Wave solutions

In frame A, the (one-dimensional) wave equation is

gµν∇µ∂νϕ(x) = ∂µ∂µϕ(x) = 0, (13.4)

11Note that this metric is only equal to the metric corresponding to a uniform gravitational field for small
values of y, reflecting the fact that the principle of equivalence is only valid locally.
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(all Γµ
νρ vanish in the Minkowski metric) This has normalized plane-wave solutions of fre-

quency ω

ϕ±
ω (x) =

1√
2πc

exp
(
−i

ω

c

(
x0 ∓ x1

))
, (13.5)

with normalisation ∫ ∞

∞

dx1ϕ±∗
ω (x)ϕ±

ω′(x) = δ (ω − ω′) (13.6)

φ

x

frame A

frame B

Figure 15: Plane-wave solution in stationary frame A (red) and in the accelerated frame B
(blue). Note that in the accelerated frame the wavelength increases with increasing distance
for the horizon (this is a manifestation of the equivalent redshift experienced by a photon
moving ina gravitational field).

In the accelerated frame, B, for which the non-zero Christoffel symbols are

Γ1
00 = −Γ0

10 = − a

c2

(
1 +

ay1

c2

)
the wave equation is

g′µν∇µ∂νϕ(y) = ϕ
′′
(y) +

a

c2

(
1 +

ay1

c2

)
ϕ
′
(y)− 1

(1 + ay1/c2)
ϕ
··
(y) = 0, (13.7)

where ′ means ∂i and
· means ∂0.

This has solutions with frequency Ω

ϕ
±
Ω(y) =

1√
2πc

e−iΩy0/c

(
1 +

ay1

c2

)±iΩc/a

(13.8)
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with normalisation ∫ ∞

−c2/a

dy1

(1 + ay1/c2)
ϕ
±∗
Ω (y)ϕ

±
Ω′(y) = δ (Ω− Ω′) (13.9)

(note that the integral over the space-like coordinate goes from the horizon to infinity – the
wavefunction is zero for y1 < −c2/a.)

The remainder of this section requires some knowledge of quantum field theory. The
main result is that the temperature of the blackbody radiation seen by an observer who is
accelerating with an acceleration a, relative to an observer in a vacuum is given by (13.21).

13.3 Expansion of Electromagnetic Field Operator

The explanation of the Unruh effect – the thermal bath of blackbody radiation seen by an
observer who is accelerating relative to an observer in a vacuum – arises from the expansion
of the (free) electromagnetic field in terms of creation and annihilation operators of photons
with a given frequency, ω, with coefficients which are the solutions of the wave equation
with frequency ω. The salient point is that whereas for inertial observer A these solutions
are plane-wave solutions, the coordinates in the frame of observer B lead to a different
wave equation with a different set of solutions. This means that the creation (annihilation)
operators, b†Ω (bΩ) in the coordinate frame of observer B is a linear superposition of both
creation and annihilation operators a†ω and aω in the coordinate system of observer A. This,
in turn, implies that the photon density operator of photons with frequency Ω,

N
(B)
Ω ∝ b†ΩbΩ

will contain terms proportional to aωa
†
ω and will therefore not vanish when acting on a

vacuum state of observer A.

The expansion, in the frame of observer A, of ϵλ ·A(x) where Aµ(x) is the electromagnetic
field operator and ϵµλ is the polarisation vector for a photon with helicity λ.

We restrict ourselves to one space-like dimension, x1, Furthermore, It is convenient to
write this out as a sum of right-moving waves ϵλ ·A+(x) and right-moving waves ϵλ ·A−(x)
. Expanding in terms of creation operators a†(ω, λ) and annihilation operators a(ω, λ), we
have

ϵλ · A+(x) =

∫ ∞

0

dω

2ω
√
2π

(
a(ω, λ)ϕ+

ω (x) + a†(ω, λ)ϕ+∗
ω (x)

)
=

∫ ∞

0

dω

2ω2π
√
c

(
a(ω, λ)e−iω(x0−x1)/c + a†(ω, λ)eiω(x

0−x1)/c
)

(13.10)

and ϵλ · A−(x) obtained by reversing the sign of x1.

In the frame of the accelerated observer we expand in terms of creation operators b†(Ω, λ)
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and annihilation operators b(Ω, λ), we have

ϵ · A+(y) =

∫ ∞

0

dΩ

2Ω
√
2π

(
b(Ω, λ)ϕ

+

Ω(y) + b†(Ω, λ)ϕ
+∗
Ω (y)

)
=

∫ ∞

0

dΩ

2Ω2π
√
c

(
b(Ω, λ)e−iΩy0/c

(
1 +

ay1

c2

)iΩc/a
)

+b†(Ω, λ)eiΩy0/c

(
1 +

ay1

c2

)−iΩc/a
)

(13.11)

13.4 Bogoliobov Transformations

Since ϵλ · A+ is an invariant quantity it must have the same value in both the frames. This
means that we can equate the RHS of (13.10) and (13.11). There is therefore a relation
between the creation and annihilation operators in the two frames

b(Ω, λ)√
2π2Ω

=

∫ ∞

0

dω
(
B(Ω, ω)a(ω, λ) +B(Ω,−ω)a†(ω, λ)

)
(13.12)

with a similar expression for b†(Ω, λ) obtained by taking the Hermitian conjugate of (13.12).
These are known as “Bogoliobov transformations”.

Multiplying both sides of (13.11) by ϕ
+

Ω(y), integrating over y1 from −c2/a to ∞ and
using (13.9) we have

b(Ω, λ)√
2π2Ω

=

∫ ∞

−a/c2
dy1

(
1 +

ay1

c2

)(−iΩc/a−1)

eiΩy0/c ϵλ · A(x(y)) (13.13)

Substituting for ϵλ · A(x) using (13.10) and (13.1) to write xµ in terms of yµ, this becomes

b(Ω, λ)√
2π2Ω

=

∫ ∞

0

dω

2π 2ω
√
c

∫ ∞

−a/c2
dy1

(
1 +

ay1

c2

)(−iΩc/a−1)

eiΩy0/c

× exp
(
iωc/a

[(
1 + ay1/c2

)
e−ay0/c2

])
a(ωλ) + h.c. (13.14)

So that comparing (13.14) with (13.12) we have

B(Ω, ω) =
1

2π 2ω
√
c
−
∫ ∞

−a/c2
dy1

(
1 +

ay1

c2

)(−iΩc/a−1)

eiΩy0/c

× exp
(
iωc/a

[(
1 + ay1/c2

)
e−ay0/c2

])
=

c

2ω a(2π)3/2

( a

ωc

)−iΩc/a

eπcΩ/2aΓ

(
−i

Ωc

a

)
. (13.15)
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The integral is performed by making the change of variable

y1 → u = −i
ωc

a

(
1 +

ay1

c2

)
e−ay0/c2

and using ∫ ∞

0

du

u
u−iΩc/ae−u = Γ

(
−i

Ωc

a

)
Reversing the sign of ω we have

B(Ω,−ω) = − c

2ωa(2π)3/2

( a

ωc

)−iΩc/a

e−πΩc/2aΓ

(
−i

Ωc

a

)
(13.16)

13.5 The Unruh Temperature

Consider the matrix element

⟨0A
∣∣∣∣b†(Ω′, λ) b(Ω, λ)

2π
√
4ΩΩ′

∣∣∣∣ 0A⟩ = 2
√
ΩΩ′

∫ ∞

0

dω

∫ ∞

0

dω′⟨0A
∣∣(B∗(Ω′, ω′)a†(ω′, λ)

+ B∗(Ω′,−ω′)a(ω′, λ))×
(
B(Ω, ω)a(ω, λ) +B(Ω,−ω)a†(ω, λ)

)∣∣ 0A⟩ (13.17)

where |0A ⟩ is the vacuum state in the frame of the inertial observer A, such that

aω |0A ⟩ = 0

Using the commutation relation[
a†(ω, λ), a(ω′λ′)

]
= 2π 2ω δλλ′δ (ω − ω′)

and integrating over ω′,

⟨0A
∣∣∣∣b†(Ω′, λ) b(Ω, λ)

2π
√
4ΩΩ′

∣∣∣∣ 0A⟩ =
4πc2

a2

√
ΩΩ′

∫ ∞

0

dω 2ωB(Ω,−ω)B∗(Ω′,−ω)

=
√
4ΩΩ′ 1

(2π)2

∫ ∞

0

dω

2ω

( a

ωc

)ic(Ω−Ω′)/a

exp

(
−πc(Ω + Ω′)

2a

)
Γ

(
−iΩc

a

)
Γ∗
(
−iΩ′c

a

)
=

cΩ

4πa
δ (Ω− Ω′) exp

(
−πc(Ω + Ω′)

2a

) ∣∣∣∣Γ(−iΩc

a

)∣∣∣∣2
=

1

2π
δ (Ω− Ω′)

1

(exp (2πΩc/a)− 1)
, (13.18)

where in the last step we have used the property of the Euler function

|Γ(iz)|2 =
π

z sinh(z)
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The density, N(Ω)dΩ of photons in observer A’s vacuum state, as seen by accelerated
observer B, with frequency between Ω and Ω + dΩ is given by

N(Ω) =
∑
λ=±

⟨0A
∣∣∣∣b†(Ω, λ) b(Ω, λ)2π 2Ω

∣∣∣∣ 0A⟩ = gA2πδ(0)
1

(exp (2πΩc/a)− 1)
, (13.19)

where gA = 2 is the number of photon polarisation’s. δ(0) is regularised by normalisation in
a box of length L

δ(0) → 2πL

c

so that the energy density, ρ(E)dE of photon states per unit length is

ρ(E) =
gA

(exp (2πEc/ℏa)− 1)
(13.20)

This is a blackbody thermal distribution of temperature TU where

TU =
ℏa

2πkBc
(13.21)
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14 Black Holes

The Schwarzschild metric has a singularity at r = rS, but the mass distribution in most
bodies is sufficiently small that the metric is only valid for values of r which is much larger
than the horizon, rS.

However, there exist bodies which are sufficiently dense that the radius of the horizon,
rS, is outside the body. Such objects are called “black holes”.

Any object that crosses the horizon into the black hole cannot get out again. This
includes photons, so that there is no way to detect any particles which fall into the black
hole.

From the relation between a time interval, dt (in the frame of a distant observer B), and
the proper-time, dτ , of an observer A crossing the horizon

dt =
dτ√

1− rS/r
,

we see that as the particle approaches the horizon the time interval in frame B tends to
infinity. This means that the particle approaching the horizon of the black hole is seen to
slow down and it never actually crosses the horizon a r = rS. At the horizon, any finite
proper time interval ∆τ corresponds to an infinite time interval as measured by an external
observer far away fro the horizon.

Similarly, any particle which is inside the black hole and attempts to travel back cross
the horizon to the outside, would take an infinite amount of time (in frame B) – a particle
inside the horizon of a black hole cannot get out.

Another way to see this, is to consider the invariant square mass, m2, for which we have

m2c2 = gµνp
µpν

Assuming that the motion is only in the radial direction, this means that near the horizon
of a black hole

m2c4 =
(
1− rS

r

)
E2 −

(
1− rS

r

)−1

|p|2 ,

so that at the horizon the space-like momentum |p| vanishes and the particle has zero kinetic
energy whereas the total energy – the mass energy plus the potential energy – becomes
infinite. We conclude that the potential energy of the particle becomes infinite at the horizon
– i.e. an infinite quantity of energy is required to free the particle from the horizon. Put
another way, the escape velocity required for a body to have sufficient energy to escape the
gravitational field of the black hole, becomes equal to the speed of light.

The concepts of “space” and “time” inside a black hole are reversed, in that the sign
of the metric element g00 becomes negative, whereas the sign of the element grr becomes
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positive. As seen from outside a black hole extends over a finite distance (r ≤ rS) but lasts
an infinite amount of time. Inside the horizon, the black hole is perceived to extend over an
infinite distance, but lasts only a finite amount of time ∼ rS/c.

There are other metrics with a horizon at which g00 vanishes, and have a vanishing Ricci
tensor (Ricci- flat) so that they are solutions to the equation of General Relativity in empty
space. One such metric is the Kerr metric. In contrast to the Schwarzschild metric, which is
spherically symmetric so that the horizon is the surface of a sphere, the Kerr metric horizon
is an oblate spheroid with one axis of symmetry. Furthermore, the metric has a non-zero off-
diagonal element g0ϕ and is time-dependent. The asymmetry of the metric together with the
off-diagonal element means that the black-hole is rotating with angular momentum which
increases with the increase of the deviation of the metric from spherical symmetry.

A further possible metric is the Kerr-Newman metric, which extends the Kerr metric in
such a way that the black hole possesses electric charge as well angular momentum.

A black hole is completely specifies by three quantities – mass, angular momentum, and
electric charge. This is known as the “no hair theorem”.

14.1 Temperature of Black Hole (Hawking Temperature)

The Schwarzschild metric, (11.1) in terms of coordinates r and t, approximates a Minkowski
metric for an observer at a large distance from the centre of the black hole so that r band t
are suitable coordinates in the frame of an inertial observer who is almost at rest relative to
the black hole and at a large distance from the black hole.

If we want to describe and inertial observer, A who is in free fall close to the horizon,
r ≈ rS, we should perform a coordinate transformation so that close to the horizon the
metric approximates a Minkowski metric

To do this, we consider coordinates, ρ and τ (called “Kruskal-Szekeres coordinates”)
which are related to r and t by

ρ = 2rS

(
(r − rS)

rS

)1/2

exp

(
r − rS
2rS

)
cosh

(
ct

2rS

)
cτ = 2rS

(
(r − rS)

rS

)1/2

exp

(
r − rS
2rS

)
sinh

(
ct

2rS

)
, (14.1)

for r > rS (outside the horizon of the black hole) and

ρ = 2rS

(
(rs − r)

rS

)1/2

exp

(
r − rS
2rS

)
sinh

(
ct

2rS

)
cτ = 2rS

(
(rS − r)

rS

)1/2

exp

(
r − rS
2rS

)
cosh

(
ct

2rS

)
, (14.2)
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for r < rS (inside the horizon of the black hole). There is no singularity or discontinuity at
the horizon of the black hole and this coordinate system covers the entire space.

The metric in the coordinate system ρ, τ is

ds2 =
rS
r
exp

(
1− r

rS

)(
c2dτ 2 − dρ2

)
(14.3)

so that near the horizon the coordinate system is approximately Minkowskian. The coor-
dinates ρ, τ are appropriate coordinates in the fame of an observer A, who is in free fall
across the horizon of the black hole . Observer B, who is also close to the horizon, but who
maintains a fixed distance from the horizon (i.e. B is comoving with the distant observer)
has to accelerate relative to A in order to counter the gravitational attraction of the black
hole. As we can see from (14.1) this acceleration, a is given by

a =
c2

2rS
. (14.4)

As we have seen for the Unruh effect, this means that if an observer A surrounded by
a vacuum is in free-fall towards the black hole then an observer B whose distance from the
centre of the black hole is fixed will see blackbody radiation with a non-zero temperature –
this is called tho Hawking temperature, TH , of the black hole.

The Hawking temperature is therefore the Unruh temperature with acceleration given
by (14.4).

TH =
ℏc

4πkBrS
=

ℏc3

8πkBGM
, (14.5)

for a black hole of mass M .

Note that this is the temperature as observed by an observer who is very far from the hori-
zon of the black-hole, i.e. it is the temperature corresponding to the spectrum of blackbody
radiation seen by a distant observer. However, this radiation has suffered a gravitational
red-shift when propagating from its source near the horizon to the distant observer. For an
observer at a distance r from the centre of the black-hole the wavelength of all the radiation
(see (10.1)) is longer by a factor of (

1− 2GM

c2r

)−1/2

,

so that the thermal bath of radiation measured by an observer at a distance r from the
centre has temperature

T (r) = TH

(
1− 2GM

c2r

)−1/2

.

For an observer sufficiently far from the black-hole horizon, the Hawking radiation is (almost
entirely) blackbody radiation at temperature TH , whereas for observers closer to the horizon
the temperature is higher– tending to infinity at the horizon.
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For a black hole of mass 1M⊙ the Hawking temperature is around 6× 10−8K. Note that
the mass of a black hole decreases with increasing temperature, meaning that a black hole
has negative heat capacity!.

The radiation from an evaporating black hole is mainly blackbody radiation, but super-
imposed on this is a discrete spectrum which carries the information about th exact quantum
state of the material which made uo the black hole and which was deposited on the surface
of the black hole at the horizon.

14.2 Entropy of Black Holes

The “no hair theorem” implies that the state of a black hole is completely determined by
three quantities and does not possess micro-states. The entropy, S of a system is given by

S = kB lnW,

where W is the number of micro-states. The no hair theorem therefore suggests that a black
hole would have zero entropy.

However, Beckenstein pointed out that if that were the case, then when a body with
entropy SB falls into a black hole, its entropy disappears and the total entropy of the Universe
decreases contrary to the second law of thermodynamics and could be used to construct a
perpetual motion machine.

Any matter or radiation which falls into a black hole increases its mass and hence increases
the radius of its horizon. Since it cannot get out again this means that classically, the area
of a black hole cannot decrease.

This led Beckenstein to speculate that the non-zero entropy of a black hole was a mono-
tonic function of the surface area, Σ, of the horizon. His argument was based in the idea
that when a a bit of information its entropy increases by κB ln 2 (this is Landauer’s princi-
ple). If we consider a particle which fall into a black hole and ask the question “does the
particle exist?” When the particle is outside the black hole is “yes”. This requires one bit of
information to be set. If the particle falls into a black hole then this information is lost - we
cannot say if the particle doesn’t exist or exists but has fallen into a black hole, from which
we can retrieve no information. As a consequence of the uncertainty principle a particle with
mass m can only fall into a black hole its Compton wavelength

λc =
ℏc
m

is smaller than the diameter of the black hole, 2rS. The smallest increase in mass, ∆M , of
a black hole, , when a single bit of information is erased is therefore

∆M =
ℏc
2rS

=
ℏc3

2GM
,
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whereM is the initial mass of the black hole. The corresponding increase in the Schwarzschild
radius is

∆rs =
2G∆M

c2
=

Gℏ
c2rS

and the change in the horizon surface area, Σ = 4πr2S is

∆Σ = 8πrS∆rS =
8πGℏ
c2

= 8πl2P , (14.6)

where lP =
√

Gℏ/xc is the Planck length.

We therefore conclude that the maximum number of bits of information that are erased
by a black-hole (i.e. converted into thermal entropy) of surface area Σ is

nb =
Σ

∆Σ
=

Σ

8πl2P
.

Each of these bits of information is equivalent to an entropy of information κB ln 2, so that
the Beckenstein estimate of the entropy of a black hole is

SBeckenstein = κB ln 2
Σ

8πGℏ
. (14.7)

A more rigorous derivation of the entropy of a black hole was carried out by Hawking
starting with the calculation of the temperature of the blackbody radiation surrounding a
black hole, due to the Unruh effect (14.5).

TH =
ℏc3

8πkBGM
=

ℏc
4πkBrs

(14.8)

We restrict ourselves to non-rotating black holes with zero electric charge.

The mass of the black hole is

M =
rSc

2

2G
,

The energy of the black hole EBH is

EBH = Mc2 =
rSc

4

2G
(14.9)

If the radius of the black hole changes by drS, the energy changes by

dEBH =
dEBH

drS
drS =

c4

2G
drS

The black hole has entropy and the change in entropy due to a change drS of its radius is

dS =
dE

TH

=
c4

2GTH

drS =
2πc3rSkB

Gℏ
drS. (14.10)
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Integrating over the black hole radius from zero to rS, we find that the entropy of the
black hole with surface area Σ is

S = kB
c3

4Gℏ
Σ, (14.11)

in approximate agreement with the estimate of Beckenstein.

14.3 Hawking Radiation

Whereas in classical physics a black hole is permanent, in quantum physics there exists
a mechanism by which a black hole can evaporate. This mechanism is called “Hawking
radiation”. It arises because the horizon of a black hole has a non-zero temperature. In
the coordinate system for which the distance from the centre of the black hole is fixed, the
black hole acts as a cavity of blackbody radiation with temperature equal too the Hawking
temperature. Note that the typical wavelength of the photons in this thermal cavity is of
the order of the radius of the black-hole rS. Photons with significantly longer wavelengths
than this cannot be absorbed by the black hole.

The radiation can be can be interpreted qualitatively in the following way: Consider a
state |M ; 0⟩, consisting of a (non-rotating, uncharged ) black hole of mass M surrounded
by a vacuum, as seen by observer A who is in free-fall near the horizon of a black hole.
As we know from the Unruh effect, this state is not invariant under a transformation of
coordinates to a frame, B, which is acceleration relative to A in such a way as to maintain
a constant distance form the centre of the black hole (a frame which is co-moving with the
frame of an observer as an infinite distance from the black hole). In frame B the state is the
superposition

|M ; 0⟩+
∫

d3k

(2π)32|k|

∫
d3k′

(2π)32|k|
B(k,k′)|(M<;k, λ;k

′,−λ⟩+ · · · ,

where M< is slightly less than the mass M of the black hole so that the total energy of the
photons plus the black hole is M c2. The coefficient B(k,k′) is given approximately by by the
Bogoliobov coefficient, B(Ω,−ω) with Ω = c|k|, ω = c|k′| and acceleration given by (14.4)..
The two photons are in an entangled state in which their polarizations are correlated in
order to conserve the angular momentum of the state. The ellipses refer to states with more
than one pairs of photons. The two-photon state is one of an infinite number of states of a
radiation cavity with temperature equal to the Hawking temperature. Some of the photons
are travelling towards the black hole and will be absorbed by it, whereas other photons a
travelling away from the black hole and are emitted as (Hawking) radiation.

Such a cavity radiates12 at a rate given by Stefan’s law. The rate of radiation, P , from

12In Hawking’s popular science book he presents a qualitative explanation of Hawking radiation in terms
of a virtual pair production in which one of the pair is created inside the black hole horizon and the other
is created outside the horizon and is radiated away. This over-simplified explanation can be somewhat
misleading.
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the horizon surface of the black hole is given by

P = σT 4
BHΣ, (14.12)

where

σ =
π2k4

B

60ℏ3c2
,

is the Stefan-Boltzmann constant, the the surface area of the black hole horizon is

Σ = 4πr2S = 8π
G2M2

c4

so that the black hole loses mass at a rate of

dM

dt
=

P

c2
=

ℏc4

15360πG2M2
(14.13)

with solution

M(t) = M(0)

(
1− t

tL

)1/3

, (14.14)

with

tL =
5120πG2M2

)

ℏc4

For a black hole with mass ∼ 1M⊙ tL is of order 1067 years.

Because the radiation from any hitherto observed black hole is extremely weak, Hawking
radiation has not been observed. However an analogous radiation has been observed by Jeff
Steinhauer. The analogue of the black hole is a Bose-Einstein condensate of Rubidium in
which sound travels very slowly. Steinhauer used lasers to create a region in which the cold
atoms at a supersonic speed for which classically no phonons could escape13. The boundary
between the atoms moving with subsonic speed and those moving with supersonic speed
is the analogue of the horizon of the black hole. By observing density-density correlations
between two points either side of the horizon, he identified entangled pairs of phonons either
side of the horizon. Such an entangled pair arises from pair creation either side of the horizon
as described in Hawking’s qualitative explanation of Hawking radiation.

13In this simulation of a black hole the analogue of electromagnetic radiation is the emission of sound.
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15 The Cosmological Constant

The equation of General Relativity (9.5) is not unique. It is possible to add the the LHS a
“cosmological” term

Λgµν

where Λ is a constant (the “cosmological constant”) so that (9.5) becomes

Rµν −
1

2
gµνR + Λgµν = −8πG

c2
Tµν . (15.1)

Both sides of (15.1) are divergence-free because the covariant derivative of the metric is
always zero.

A metric, which satisfies (15.1) in free space (Tµν = 0), is the metric for “de Sitter space”

dτ 2 =
(
1− Λr2

)
dt2 − 1

c2

((
1− Λr2

)−1
dr2 + r2Ω2

)
(15.2)

The Riemann tensor form this metric is

Rµνρσ =
Λ

3
(gµρgνσ − gµσgνρ)

So that the Einstein tensor is
Gµν = −Λgµν

confirming that (15.2) is a solution to the equation for General Relativity in free space.

The curvature R = 4Λ. If Λ is negative this curvature is negative and the space is called
“anti-de Sitter space.”

The geodesic equation for time is

dt

dτ
=

1

(1− Λr2)
(15.3)

and for radial distance we have

d2r

dτ 2
− Λr

(1− Λr2)

(
dr

dτ

)2

+
(
1− Λr2

)(
Λr

(
dt

dτ

)2

c2 − r

(
dθ

dτ

)2

− r sin2 θ

(
dϕ

dτ

)2
)

(15.4)

If we restrict the motion to the space-like plane sin θ = 1, dθ = 0 and use (15.3)

d2r

dτ 2
− Λr

(1− Λr2)

((
dr

dτ

)2

− c2

)
+
(
1− Λr2

) L2

r3
(15.5)

In the presence of a non-rotating black hole or outside some other spherically symmetric
mass distribution we can combine the de Sitter metric with the Schwarzschild metric to
obtain

dτ 2 =
(
1− rS

r
− Λr2

)
dt2 − 1

c2

((
1− rS

r
− Λr2

)−1

dr2 + r2dΩ2

)
(15.6)
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16 Expanding Universe

At distance scales which are larger than the size of clusters of galaxies (hundreds of Mpc) the
Universe can be approximated as a homogenous isotropic energy distribution with energy
density, T00 = ρ and pressure Tii = P From the equation of General Relativity (15.1) this
means that the Einstein tensor in not zero and so we need a metric with spherical symmetry
whose Ricci tensor does not vanish but which generates an Einstein tensor that satisfies
(9.5).

Furthermore, we know from Hubble’s law that the Universe is expanding - which means
that the spatial components of the metric have a time-dependent scale factor a(t), which
encodes the expansion of the Universe.

Such a metric was constructed by Friedman, LeMâıtre, Robertson and Walker - usually
known as the “Robertson-Walker” metric.

dτ 2 = dt2 − a(t)2

c2

(
dr2

(1− κr2)
+ r2dΩ2

)
(16.1)

The parameter κ encodes the curvature of the Universe. For positive values it describes a
closed Universe with a maximum radius 1/

√
κ, whereas for negative κ the universe is open

and there is no maximum radius. The value κ = 0 describes a Universe which is exactly flat.

The non-zero components of the Ricci tensor from this metric are

R00 =
3

c2
ä

a

Rrr = − 1

c2
(aä+ 2ȧ2 + 2κc2)

(1− κr2)

Rθθ = −r2

c2
(
aä+ 2ȧ2 + 2κc2

)
Rϕϕ = −r2 sin2 θ

c2
(
aä+ 2ȧ2 + 2κc2

)
, (16.2)

where · indicates differentiation w.r.t. time.

The curvature scalar is

R =
6

a2c2
(
aä+ ȧ2 + κc2

)
(16.3)

Constructing the Einstein tensor, Gµν and inserting into (15.1) we find from the equation
for the component G00

− 3

c2a2
(
ȧ2 + κc2

)
+ Λ = −8πG

c2
ρ (16.4)

and from the equation for the diagonal space-like components Gii

1

c2a2
(
2aä+ ȧ2 + κc2

)
− Λ = −8πG

c2
P (16.5)
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Inserting (16.4) in to (16.5), we get

ä

a
= −4πG

3c2
(ρ+ 3P ) +

2

3
Λ.

We note that in the absence of the cosmological constant Λ the acceleration ä is negative
indicating that the rate of expansion of the Universe is slowing down, but for a sufficiently
large Λ it can be positive. The cosmological constant acts as “negative pressure”.

In 1998, from observations of distance supernovae, Perlmutter, Schmidt, and Riess dis-
covered that the Universe was indeed accelerating, thereby providing strong evidence for the
existence of a cosmological constant. This constant term is also known as “dark energy”.

Differentiating (16.4) w.r.t time and using (16.5) we find

ρ̇ = −3H (ρ+ P ) = −3Hρ(1 + w), (16.6)

where

H ≡ ȧ

a
,

is the “Hubble constant” (N.B. it isn’t constant), and we have used the fact that for any
system the pressure, P is always proportional to the energy density ρ so we can write
P = wρ. (16.6) gives a relation between the time dependence of the energy density and the
time dependence of the scale factor

dρ

ρ
= −3(1 + w)

ȧ

a
(16.7)

For a flat Universe (κ = 0) there is a particularly simple solution for the time dependence
of the scale factor.

Adding (16.4) and (16.5) in the κ = 0 case, the cosmological constant cancels and we get

1

a2
(
aä− ȧ2

)
= −8πGρ(1 + w) (16.8)

If we assume that a(t) varies as a power of t, we find that (16.7) and (16.8) are satisfied by

a(t) ∝
(
t2/3
)(1+w)

(16.9)

For a matter-dominated Universe, in which the matter is moving non-relativistically in
the frame of the ‘Hubble flow’, which is the case today, the pressure can be neglected in
comparison with the energy density. In this case we set w = 0 and for a flat Universe the
scale parameter has a time dependence

a(t) ∝ t2/3.
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If the total energy of the Universe remains unchanged as the Universe expands then we have

d

dt

(
ρa3
)

= 0,

which is consistent with (16.6) (with w = 0) and the energy density has a time dependence

ρ ∝ t−2.

In the early Universe (first 47000 years after, the the big bang, the Universe was dom-
inated by (electromagnetic) radiation. For electromagnetic field for which the trace of the
stress-energy tensor vanishes, we have

P =
1

3
ρ,

(
w =

1

3

)

In this case we have

ρ ∝ 1

a4
,

a(t) ∝
√
t.
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17 Gravitational Waves

17.1 Wave Components

In a gravitational field which is not too strong we can write the metric as

gµν = ηµν + hµν ,

where ηµν is the Minkowski space metric, and work only to linear order in hµν

To this order, the Riemann tensor is

Rτ
µνρ =

1

2
ηστ (∂ρ∂σhµν + ∂µ∂νhρσ − ∂µ∂ρhνσ − ∂ν∂σhµρ) , (17.1)

The Ricci tensor is given by

Rµν =
1

2

(
∂ν∂

ρhρµ + ∂µ∂
ρhρν −□hµν − ∂µ∂νh

ρ
ρ

)
, (17.2)

where □ ≡ ∂ρ∂ρ

The curvature scalar is
R = ∂ρ∂σhρσ −□hρ

ρ (17.3)

These tensors are invariant under the transformation

hµν → hµν + (∂µvν + ∂νvµ) , (17.4)

where vµ is any (covariant) vector. This transformation is equivalent to the coordinate
transformation

xµ → xµ + vµ,

which always leaves the Riemann tensor invariant.

This invariance reduces the number of physical components (components which can affect
the curvature) of the symmetric tensor hµν from 10 to 6 components.

Define the reduced tensor

hµν ≡ hµν −
1

2
ηµνh

ρ
ρ (17.5)

The Einstein tensor can be written in terms of this reduced tensor

Gµν = −1

2
□hµν +

1

2

(
∂µ∂

ρhρν + ∂ν∂
ρhρµ − ηµν∂

ρ∂σhρσ

)
(17.6)

The invariance under the (gauge) transformation (17.4) means that we can choose con-
venient gauge condition which eliminates four components. A very convenient gauge is the
equivalent of the Lorentz gauge in electromagnetism, namely

∂ρhρµ = 0 (17.7)
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In this gauge the Einstein tensor simplifies enormously to

Gµν = −1

2
□hµν

and the (linearized) equation of General Relativity is

□hµν =
16πG

c2
Tµν (17.8)

This is the inhomogeneous wave equation for fluctuations of the metric. In analogy with
electromagnetic waves, whose source is a localised time-dependent charge and current density
distribution, a time-dependent energy density and momentum density acts as a source of
gravitational waves, which propagate through space-time at the speed of light.

The gauge condition (17.7) does not totally eliminate the ambiguity of the metric. There
remains an invariance under the coordinate transformation

xµ → xµ + χµ,

which leaves ∂ρhρµ unchanged provided χµ obeys the wave equation

□χµ = 0.

This provides for more constraints, further reducing the number of independent components
of hµν . It is convenient to choose the “traceless transverse gauge”. In this gauge the trace
of hµν vanishes, i.e.

h
ρ

ρ = 0,

and in the rest frame of the observer the components h0i are zero. This last condition can
be expressed in a covariant form by

uρhρµ = 0,

where uµ is the four-velocity of the observer,

In the rest frame of the observer u = (1, 0, 0, 0). these constraints become

∂ρhρµ = 0 becomes
d

dt
h0µ −∇ihiµ = 0

uρhρµ becomes h0µ = 0

h
ρ

ρ = 0 becomes h00 = hxx + hyy + hzz (17.9)

For a wave moving in the z-direction, the first two of these constraints leaad to hzµ = 0.
so that the only non-zero components of hµν which satisfy these constraints are

hxx = −hyy = h+, hxy = hyx = h×

The two independent components – the “plus” polarisation, h+ and the “cross” polarisation,
h× – represent the two independent polarisations of the gravitational wave. For the plus
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Figure 16: Stretching and contraction of space transverse to the direction of motion of the
gravitational wave for plus polarisation (upper) and cross polarisation (lower)

popularisation space is stretched in the x-direction and contracted in the y-direction of vice
versa. If we perform a rotation by 90◦ we get the same pattern but phase shifted. But if
we perform a rotation by 45◦ we obtain the cross polarisation in which the stretching and
compression is along the diagonal direction. These two polarisation are shown diagrammat-
ically in Figure 16). This differs from electromagnetic waves in which the two independent
popularisation are at right-angles. The amplitudes of the oscillations h+ or h× are known
as the “strain” of the gravitational wave and are showed diagrammatically in Figure 16). .
This is a dimensional quantity equal to the maximum stretching of the metric in any one
direction.

Unlike electromagnetic waves, the gravitational wave equation (17.8) is an approximation
which is valid if the amplitude of the wave is small. The full theory gives rise to a wave
equation which contains (an infinite number of) terms that are quadratic or higher power.
in hµν . It is because of this that a consistent quantum theory of gravity has proved so
recalcitrant - although modern string theory does include gravity

Fortunately, because of the very small size of the prefactor G/c2 on the RHS of (17.8)
this linear approximation is nearly always sufficient.
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17.2 LIGO

The weakness of gravitational waves (smallness of the stress amplitude) meant that a century
elapsed between the prediction of gravitational waves from the theory of General Relativity
and their discovery by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in
2015.

The source of the detected gravitational wave was the merging of two back holes, each
of mass around 30M⊙, at a distance of 400 MPc. This produced waves with a spectrum
of many different frequencies. The frequencies observed by LIGO were between 35 Hz and
250 HZ (corresponding to wavelengths between 1000 and and 7000 kilometres. The strain
(amplitude) of the fluctuations was only 1021 .

Figure 17: The LIGO interferometer, with 4 km long arms, using 1024 nm laser light.

This tiny strain was detected using a scaled up version of the Michelson interferometer,
shown schematically in Figure 17. It uses a laser beam and observes a shift in the interference
pattern between laser light which travels along the two arms. The gravitational wave from
the merger of the two black holes stretches one of the arms, thereby altering the distance
between two test masses. Even with arms of length 4 km the change in separation of the
test masses is 10−18 m. - one thousandth of the diameter of a proton. The effective length
of the arms is enhanced by means of a Fabry-Perot cavity which causes the laser beam to
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bounce to and fro along the arms 300 times, thereby increasing the effective length to 1200
km. The cavity will only transmit light if the distance between two mirrors at the ends of
the cavity is precisely an integer number of half-wavelengths of the laser light. The power
of the laser is enhanced from 40W to 750W by placing recycling mirrors between the laser
source and the beam-splitter. This enhancement of the laser power is required in order to
be able to detect the very small changes in effective length of the arms.

Figure 18: The observed signal of gravitational waves from the two LIGO observatories. The
upper graphs show the observed signal and the middle graphs show the signal after the noise
has been removed.

The experiment was set up at two sites – Hanford, Washington and Livingstone, Louisiana
which are about 3000 km apart. Both laboratories observed the same signal, as can be seen
in Figure 18 which displays distinct oscillations of the strain as a function of time with
frequencies between ∼ 40 Hz. and 100 Hz.
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