
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

A mini-thesis submitted for transfer from MPhil to PhD

Supervisor: Prof. David C. De Roure and Dr. Nicholas M. Gibbins
Examiner: Prof. Paul H. Lewis

How Semantic Web Technologies Might

Improve Natural Language Querying

Systems

by David R. Newman

May 25, 2007

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:drn05r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

A mini-thesis submitted for transfer from MPhil to PhD

by David R. Newman

Natural Language (NL) querying has an extensive history, the earliest systems were
developed back in the 1960s. This reports reviews a number of these system developed
between then and the present to gain understanding of how they work and what are their
strengths and weaknesses. Relatively, Semantic Web (SW) technologies are a much more
recent invention. These technologies provide mechanisms for storing and representing
data in an innovative way, which may be of benefit to NL querying systems.

This report looks at the CombeChem project as an example of how SW technologies
can be used and because it is a domain suitable for a NL querying system. CombeChem
is however a complex domain, therefore an analogous domain around music albums has
been developed. Using these two domains to exemplify, this report defines a conceptual
framework for a NL querying system that uses SW technologies. It then describes
the parts of this framework that have already been implemented, using screenshots to
illustrate where applicable.

The report concludes by discussing the benefits of using SW technologies that have
already been found. Such as the ability to more logically structure the data the NL
querying system requires and to pull in data from disparate sources. It considers how
SW technologies and NL querying share similar goals, i.e. both use machine-readable
knowledge to produce a human readable output. However, a NL querying system goes
further by mirroring this by taking a NL/human-understandable input and representing
it in a machine-readable format. Finally this report sets out the work that is still to be
done, using a rough timeline to illustrate the key milestones of this work.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:drn05r@ecs.soton.ac.uk

Contents

1 Introduction 1

2 Background Research 3
2.1 Natural Language Querying . 4

2.1.1 NL Querying Pros and Cons . 4
2.1.2 Natural Language Parsers and NLP Systems 6

2.1.2.1 Rule-based and Principle-based Grammars 6
2.1.2.2 Unification-based Grammars 7
2.1.2.3 Head-driven Phrase Structure Grammars 8
2.1.2.4 Semantic Grammars . 8
2.1.2.5 NLP Implementations . 9
2.1.2.6 NLP Systems . 9

2.1.3 Thesauruses . 11
2.1.3.1 Wordnet: A Lexical Database 12
2.1.3.2 OpenThesaurus . 12

2.1.4 Entity Recognition . 13
2.1.4.1 ANNIE . 13

2.1.5 Command Recognition . 14
2.2 Semantic Web Technologies . 15

2.2.1 RDF and RDF Schema . 16
2.2.2 OWL . 16
2.2.3 Data, Information and Knowledge 17

2.2.3.1 How RDF turns Data into Information 18
2.2.3.2 How RDF turns Information into Knowledge 18

2.2.4 RDF Triplestores . 19
2.2.4.1 Querying a Triplestore 19

2.2.5 Wordnet on the Semantic Web . 20
2.2.5.1 The KnOWLer Project 20
2.2.5.2 W3C Wordnet Working Draft 20

2.3 Implementations Using SW Technologies 22
2.3.1 The CombeChem Project . 22

2.3.1.1 The SmartTea Project . 24
2.3.1.2 The myTea Project . 24
2.3.1.3 The CombeChem Triplestore 26

2.3.2 GINSENG: Guided Input Natural language Search ENGine 27
2.4 Summary . 28

ii

CONTENTS iii

3 A Conceptual Framework for a Semantic Web-based NL Querying Sys-
tem 30
3.1 Domains for the NL Querying System . 30

3.1.1 CombeChem Domain . 30
3.1.2 MusicBrainz Domain . 31

3.1.2.1 Designing the MusicBrainz Ontology 32
3.2 Data Flow for a NL Querying System . 32
3.3 Entity Recognition Engine . 35

3.3.1 For MusicBrainz Domain . 36
3.3.2 For CombeChem Domain . 36

3.4 NL Parser(s) . 38
3.5 Parse Tree Reconciliator . 39
3.6 Machine-Readable Query Generator . 40

3.6.1 Design of Domain Concept Mapping 40
3.6.2 Design of User Accounts . 43

3.6.2.1 Unique Identities and Security 43
3.6.2.2 Maintaining Consistency 44
3.6.2.3 Classification of Purpose 44
3.6.2.4 Identification of the Possessor 44
3.6.2.5 Quantification of Importance 45

3.6.3 Command Mappings . 45
3.7 Database Query Generator . 46
3.8 Database Interface . 47
3.9 Choosing a Triplestore Application . 47
3.10 Response Generator . 48
3.11 Summary of Conceptual Framework . 50

4 Implementation 51
4.1 Parser Interface . 51
4.2 Importing Data . 52
4.3 A System for Creating Domain Mappings 53

4.3.1 Unique Identities and Security . 53
4.3.2 User Account Consistency . 54
4.3.3 Classification of Account Purpose 54
4.3.4 Identification of the Possessor . 55
4.3.5 Quantification of Importance . 55
4.3.6 Thesaurus Discovery . 56
4.3.7 Managing Lexical Concepts . 56

4.4 Summary . 58

5 Conclusions 60
5.1 Future Work . 62

5.1.1 Future Work Plan . 62
5.1.1.1 May - July 2007 . 62
5.1.1.2 August - December 2007 63
5.1.1.3 January - June 2008 . 63
5.1.1.4 July 2008 - Completion 63

CONTENTS iv

A 64
A.1 Minipar Output from a Question . 64
A.2 Key for Ontology Diagramming . 65
A.3 Diagram for Wordnet Ontology . 66

B 67
B.1 Screenshot of Parser Interface . 67
B.2 Screenshots of Musical Data Submission System 68
B.3 Screenshots of Thesaurus Management System 70

Bibliography 72

List of Figures

2.1 Parse Tree for a Semantic Grammar (Based on (Androutsopoulos 95) ex-
ample) . 8

2.2 Typical Syntactic Grammar Parse Tree 10
2.3 Data, Information, Knowledge and Wisdom 17

3.1 Domain Map based on mmo1.1 Ontology 33
3.2 The Flow from NL Query to Human-Readable Answer 34
3.3 Architecture for Defining a NL Querying System Domain 35
3.4 Thesaurus Ontology . 41

4.1 Album Submission Form . 53
4.2 User Account Management for Thesaurus Management System 55
4.3 Lexical Concept Management for Thesaurus Management System 57

A.1 Key for Ontology Diagramming . 65
A.2 Visualization Diagram of the Wordnet 1.7.1 Ontology 66

B.1 Parser Interface for MINIPAR and Stanford Parsers 67
B.2 Musical Actor Submission Form . 68
B.3 Album Type Submission Form . 68
B.4 Album Status Submission Form . 69
B.5 Musical Action Submission Form . 69
B.6 FOAF Profile Visualizer . 70
B.7 Login Form for Thesaurus Management System 71
B.8 Manage Thesauruses for for Thesaurus Management System 71

v

Glossary

3Store A triplestore application developed at the University of Southampton

ANNIE A Nearly-New Information Extraction system

BPEL Businness Process Execution Language. A orcestration language that is part of
Open Grid System Architecture.

Chat-80 A NLIDB that uses a database of Prolog statements.

CombeChem A project which had one of it main goals to generate an electronic lab
book.

DAML DARPA Agent Markup Language. Was amalgamated with OIL to produce
OWL.

DLG Directed Labelled Graph

GATE General Architecture for Text Engineering.

GINSENG Guided Input Natural language Search ENGine. An NL querying system
that uses SW technologies.

GUI Graphical User Interface

IP Intellectual Property.

IRLS Intermediate Representation Language System. A system architecture that could
be used to design a NL querying system

Janus A NLP system that uses Montague grammar framework.

Jena A triplestore application that allows inferencing through the use of models.

KnOWLer One of the first projects to produce an ontology for Wordnet (v1.7.1).

Kowari A triplestore application.

vi

Glossary vii

Lexicon A list of words with additional word-specific information.

Lifer The natural language processing part of the NLIDB Ladder.

Link grammar parser A rule-based parser developed at Carnegie-Mellon University.

Lunar One of the earliest NLIDBs for querying samples of moon rock.

MCF Meta Content Framework. Part of the inspration for RDF.

Minipar A principal-based NLP developed by Dekang Lin. A reduced form of Princi-
par.

MusicBrainz A domain for making up musical album content.

MyExperiment A project to allow scientists to share research. Like MySpace shares
photos/documents.

myTea A project that analogises the work done by bioinformaticians.

NL Natural Language

NLIDB Natural Language Interface to a DataBase

NLP Natural Language Parser

OIL Ontology Interchange Language. Was amalgamated with DAML to produce OWL.

OWL-S Web Ontology Language for Services. Language to semantically markup web
services.

PC-PATR A unification-based grammar NLP.

Planes A NLIDB to find out information about the flights and maintenance records of
aircraft.

Principar A principal-based NLP developed by Dekang Lin.

RDF Resource Description Framework. XML with explicitly defined namespaces. One
of the main building block of the semantic web.

RDFS Resource Description Framework Schema.

RDQL Resource Description Query Language. A triplestore query language.

Redland A triplestore application.

RQL Resource Query Language. A triplestore query language.

Sesame A triplestore application.

Glossary viii

SPARQL SPARQL Protocol and RDF Query Langauge. A common SW technologies
querying language.

SQL Structured Query Language

Stanford parser A rule-based NLP developed at Stanford University.

SW Semantic Web

TNT parser A Head-driven Phrase Structure grammar NLP.

Triplestore SW technologies equivalent of a relational databases data structure.

TURTLE Terse RDF Triple Language

W3C World Wide Web Consortium. An organisation that defines standards for the
web.

XML eXtensible Markup Language. Similar to HTML but for marking up real world
objects and not just hypertext.

Chapter 1

Introduction

This report considers how Semantic Web (SW) technologies could be used in the design of
a Natural Language (NL) querysing system. Can these technologies provide solutions to
some of the inherent problems with NL querying systems? Can they make NL querying
systems more powerful than they have been in the past?

Chapter 2 considers the pros and cons of NL querying systems as an interface. Through
evaluating a number of previous systems, it determines the components required for
a NL querying system and how they must be put together. Later in the chapter SW
technologies are analysed to determine what features they provide and how they may
be used a part of an NL querying system. The chapter concludes by considering a
domain, the CombeChem project1, that would benefit from a NL querying system and
GINSENG, an early implementation of an NL querying system using SW technologies.

Chapter 3 takes what has been learnt from the previous chapter to propose a conceptual
framework for a NL querying system that uses SW technologies, but firstly it considers
the domains for which it will be tested, i.e. CombeChem and MusicBrainz2. It then
provides a diagram, (see Figure 3.2), to illustrate the various components required and
how the data should flow through the system from NL query input to human-readable
answer output. It then discusses in detail how to go about building these components
before summarising the inspiration behind the determined framework.

Chapter 4 explains how a number of the components in the previous chapter have been
implemented. Providing screenshots where applicable to illustrate how the components
that have been built to conform to the requirements defined in the conceptual framework.

Chapter 5 draws conclusions about what is required to make an effective NL querying
system. It considers how SW technologies can be used to achieve this goal. The con-
clusion also considers the CombeChem project as a domain and how the research in

1http://www.combechem.org
2http://www.musicbrainz.org

1

Chapter 1 Introduction 2

this report might fit in to develop a system that can be used by the same users as the
CombeChem and even myExperiment3 projects. This chapter concludes by discussing
how work will continue to develop and test the proposed NL querying system.

3http://www.myexperiment.org

Chapter 2

Background Research

Any attempt to design a new NL querying system, must consider the history of NL
querying and the implementations and techniques that have already been created. This
will help determine the benefits of a NL querying system and the inherent problems
that have prevented their uptake from being greater. One of the main components of a
NL querying system is its NL Parser (NLP) system. Evaluating the different flavours of
these and how they fit into a system, is one of the most important considerations in the
design of a NL querying system. Some natural language statements are more difficult to
evaluate than others, therefore a NL querying system also needs a toolkit of techniques
to assist its NLP system in understanding such statements.

In comparison to NL querying, SW technologies are in their infancy1. These technologies
provide resources for representing, storing and querying data in a new way, that is quite
different from existing relational databases, that use Structured Query Language (SQL).

Through reviewing a project implemented using SW technologies, i.e. the CombeChem
project, it is possible to gain a better understanding of how these technologies work. It is
not uncommon for these types of project to focus on one particular domain, in this case
chemistry. This is a similarity that it shares with some of the more effective NL querying
systems that have tended to focus on a single domain. This gives a early hint that the
way SW technologies organises its data may benefit a focussed NL querying system.
There have already been some early attempts to use SW technologies in building NL
querying systems. These must be considered to evaluate their contribution, determine
their shortfalls and consider how to integrate the SW technologies most effectively into
a NL querying system.

1The lunar sciences natural language information system’s final report (Woods 72) was published
in 1972, whereas one of Berners-Lee’s first presentation about the semantic web was not until 2002
(Berners-Lee 02).

3

Chapter 2 Background Research 4

2.1 Natural Language Querying

The principles of NL querying are not new. The concept of Natural Language Interfaces
for Databases (NLIDBs) has been around since the late 1960s. Lunar, a NL system for
querying a database of moon rocks was one of the first NLIDBs (Woods 72). A great
number of NLIDBs that have been developed over the last 40 years have used SQL as
the machine-readable format to query their database. Some NLIDBs use more novel
approaches (Androutsopoulos 95).

Chat-80 uses a database2 of Prolog statements to store logical relationships(Warren 82).
These Prolog statements represent facts, e.g. country(France) implies France is a country
and capital(France,Paris) implies Paris is the capital of France. These statements also
represent rules such as exists(X,bird(X) & migrates(X)) implies that some birds migrate.
The ability to store relationships with this logical format is important in increasing
the potential for representing human concepts in a machine-readable way, which is an
essential element required for any NL querying system to be successful.

2.1.1 NL Querying Pros and Cons

The first advantage of NL querying and the reason for its conception is to provide the
user with an interface where they do not have to follow strict grammatical and often
non-intuitive rules, that languages such as SQL require. Instead they allow a query
to be expressed much more flexibly, in a language the user understands. A non-NL
solution to this problem might be a form-based querying system and although it makes
the generation of machine-readable queries trivial, it is liable to limit the number of
queries that can be performed, making the data in the database of a lot less useful than
it could potentially be. There are also some questions that form-based systems and
Graphical User Interfaces (GUIs) struggle with, such as negation, quantification and
those with temporal relations (Cohen 92).

Form-based systems may reduce the domain coverage but they may also facilitate quicker
more accurate database querying. Depending on the domain, a form-based system may
be more appropriate especially if query forms can be automatically generated based on
the structure of the database.

NL querying also has other potential weaknesses, one of the most problematic of these
is the opacity of domain coverage (Androutsopoulos 95). The output returned by a NL
querying system may state that there is no answer, however this may mean one of several
things:

2This is not a relational database rather a list of rules and facts that are read into the Prolog
interpreter when Chat-80 is loaded.

Chapter 2 Background Research 5

1. The query submitted has either grammatical or spelling defects, so its meaning
could not be understood.

2. The grammar and spelling of the query is correct but the NLP’s database does
not have a record of either the words or grammatical structure used.

3. The query’s semantic meaning is understood but it still cannot be transcribed into
a MR query.

4. No appropriate data has been recorded in the database for the query to find3.

The latter two reasons occur because of lack of domain coverage whereas the first two
are either due to bad user input or a poor NLP. If the user does not know why their
query failed they are likely to try and re-phrase the query in the hope of getting it
working. If after several attempts the user still does not get an answer they are liable to
become frustrated and disillusioned with the system (Shneiderman 80). An NL querying
system must therefore try to reduce this opacity by returning useful error messages, so
that the user knows whether they are at error, the query is impossible or if there is
just no data pertaining to that query. Lifer is capable of performing spelling corrections
and provides specific error messages when queries fail (Hendrix 78). Lifer also uses a
technique described as ellipsis that keeps a record of at least the previous question so
it can try and work out what the current question is, when insufficient detail has been
provided. E.g.

1. Who recorded the album Nevermind

2. London Calling

Through ellipsis the system will interpret the second question to be “Who recorded the
album London Calling”.

Anaphora is also a significant problem with natural language. Anaphora is basically
where pronouns both personal and impersonal are used to refer to people or things that
have been mentioned previously, e.g. John has a dog. It was given to him by his dad.
There are three pronouns in this example, it, him and his because most people would
probably assume that John is male, him and his can be interpreted as referring to John.
As no reference is made to the gender of the dog, in general it would be assumed that it
refers to the dog. ANNIE (Cunningham 06) uses a resolution algorithm to try to solve
this problem, (see section 2.1.4.1).

The ability to perform NL querying may give the impression to the user that the system
is intelligent with common sense and human reasoning abilities (Androutsopoulos 95).

3The open world assumption must be accepted in this case. I.e. Appropriate data may exist but it
is not stored in the database.

Chapter 2 Background Research 6

This may give way to exaggerated disappointment with the system when it does not live
up to these expectations.

Natural language may be in many cases the easiest way to express a question/query; how-
ever such systems are very error prone due the ambiguity of natural language (Cohen 92).
Other forms of querying system do not suffer from this type of ambiguity. NLIDBs in
the past have struggled to overcome this and the other problems described here but
as NLPs and knowledge technologies continue to evolve it may be possible to minimise
some of these disadvantages.

2.1.2 Natural Language Parsers and NLP Systems

There are a good number of NLPs to be found on the web. Many are designed by
specialist university research groups such as the Stanford NLP group4 and the Sheffield
NLP group5. NLPs should not be confused with pattern-matching systems as these
do not parse the natural language they just search the natural language for patterns.
This is quite a shallow technique and although it can sometimes perform impressively, it
can often make quite spectacular errors (Androutsopoulos 95)(Johnson 85). One of the
main attributes of an NLP is the type of grammar it uses. There are two main types
of grammar, syntactic and semantic. Syntactic grammars parse the natural language to
classify each word as a part of speech, such as noun, verb, adjective, etc. They then
usually build trees to describe how the words in a sentence are interlinked. E.g. A verb
is linked to one noun that is its subject and one that is its object. Syntactic grammars
can be roughly broken down into four sub-categories:

1. Rule-based

2. Principle-based

3. Unification-based

4. Head-driven phrase structure

It is difficult to neatly break down syntactic grammars into sub-categories as a number
of grammars are considered to be specialisations of other grammars, as will become clear
in sections 2.1.2.1 to 2.1.2.3.

2.1.2.1 Rule-based and Principle-based Grammars

The main difference between rule-based and principle-based grammars is that rules spec-
ify how to precisely generate sentences (Spenceley 92) whereas principles use constraints,

4http://www-nlp.stanford.edu/
5http://nlp.shef.ac.uk/

Chapter 2 Background Research 7

which provide well-formedness conditions that the sentences of the language should sat-
isfy but do not specify how to generate the sentences of the language. Both rule-based
and principle-based grammars have the ability to generate parse trees proving a sentence
is valid. principle-based grammars have the advantage of also being able to generate
proof for why a sentence is not valid.

2.1.2.2 Unification-based Grammars

Unification-based grammars take feature structures and unify them, if all corresponding
register values in the two feature structures are the same. If a register value in one
feature structure does not have a corresponding register value it is just copied to the
unified feature structure, making a more specific structure (Allen 87). E.g. Consider
the two feature structures:

(S VERB (VERB ROOT LOVE))

(S VERB (VERB FORM en)
NUM {3s})

The first states that it must be made up of a verb with the root love. The second again
states that it can be made up of a verb, this verb must be in the past participle form,
(as represented by en) and this verb must be used in the third person singular. As these
two feature structures intersect but the register values do not contradict, they can be
unified as follows:

(S VERB (VERB ROOT LOVE))
FORM en)

NUM {3s})

This unified feature structure is more specific as it must now be made up of the past
participle of the verb root love, (i.e. loved) and it must be used in the third person
singular, e.g. she has been loved.

The main advantage of using a unification-based grammar is that it can maintain partial
information about structures and return the same results independent of the order in
which grammatical rules are applied (Allen 87). This feature is not guaranteed with
a rule-based grammar. Unification-based grammars are basically rule-based grammars
with greater formalism, therefore comparison with principle-based grammars is very
similar to comparing rule-based grammars with principle-based grammars.

Chapter 2 Background Research 8

2.1.2.3 Head-driven Phrase Structure Grammars

Head-driven phrase structure grammars are based on generalised phrase structure gram-
mars but provide a much simpler context free grammar, at the expense of a much more
complex lexicon. This is achieved by using greater subcategorization on the heads of
phrases. What makes head-driven phrase structure grammars interesting is they basi-
cally use frame-based representation for knowledge (Vogel 90), which is similar to what
SW technologies do, (see chapter 2.2).

2.1.2.4 Semantic Grammars

Semantic grammars are different to syntactic grammars as they do not try to classify each
word in a natural language sentence as a part of speech but rather to specific concepts.
Often these specific concepts are made of more than one word. These concepts are then
combined to build larger concepts, until it gets back to a specific sentence template
that has been predefined. E.g. Take the question “Who recorded Thriller?”, this may
generate the tree in Figure 2.1. The fact that the parse tree works back to a predefined

Figure 2.1: Parse Tree for a Semantic Grammar (Based on (Androutsopoulos 95)
example)

question is the major flaw in semantic grammars, because as soon as the knowledge base
is changed the grammar becomes useless. In well-defined domains with a reasonably
small set of possible sentence/question templates semantic grammars work well, e.g.
Planes (Waltz 78), which is just for querying about flight and maintenance records of
aircrafts or Ladder. (Hendrix 78), which returns information about ships, such as their
position, specification and even their complement.

To make semantic grammars useful generically would require being able to swap between
knowledge bases/domains quickly and easily. The main problem with this is that the
semantic grammar needs to be generated. This is very painstaking to do by hand but
it is inevitable that at least some of this will have to be done manually. Tools need to

Chapter 2 Background Research 9

be developed that can limit the amount of manual input required and automate those
tasks that can be automated.

2.1.2.5 NLP Implementations

The Stanford parser6 (Klein 03) and Link grammar parser7 (Sleator 03) are good ex-
amples of NLPs with rule-based grammars. Principle-based grammar NLPs are slightly
less common, Principar (Lin 94) and Minipar8 (Lin 98), which is a smaller version of
Principar are quite well known. PC-PATR 9 (McConnel 95) is one of the most well
known unification-based grammar NLP. The TNT parser (Torisawa 00), is an example
of a NLP that uses an head-driven phrase structure grammar. NLPs for semantic gram-
mars are usually defined specifically for the system itself, as in the case of Planes and
Ladder discussed in 2.1.2.4.

One of the problems that all these NLP implementations have had is how to handle
finding more than one potential sentence structure. This is an inherent flaw in natural
language because of its ambiguity, (see section 2.1.1). The simplest way that an NLP
could deal with this is by returning all possible structures but generally a user will want
an NLP package that at least returns the most probable structure, if not a weighted list
of all possible structures. Various statistical and stochastic methods have been applied
in NLPs to try to solve this, some NLP packages even use evolving machine-learning
techniques to better tackle this problem.

2.1.2.6 NLP Systems

There is no necessity to use one only NLP in a NL querying system, it is not uncommon
to use two or more NLPs to make an NLP system. Using two syntactic parsers that
use different types of grammar may be useful, especially if they generate different parse
trees. E.g. the Stanford parser (Klein 03) produces a very typical syntax-based parse
tree, (see Figure 2.2), whereas Minipar (Lin 98) can produce an output that tries to
describe how the words in a sentence are interlinked rather than trying to build them
up into larger and larger structures until they are the complete sentence, (see Appendix
A.1). This should give a greater richness to the representation making it possible for the
NL querying system to generate a more accurate machine-readable / database language
query. The extra richness given by using two NLPs is only useful if the two results can
be reconciled, with simple sentences it should be possible to design a tool to do this with
reasonable ease, as both NLPs will probably have found the same or similar structure.
However, when a sentence is more complex this may not be the case. Therefore a

6http://ai.stanford.edu/˜rion/parsing/stanford viz.html
7http://www.link.cs.cmu.edu/link/index.html
8http://www.cs.ualberta.ca/˜lindek/downloads.htm
9http://www.sil.org/pcpatr/manual/pcpatr.html

Chapter 2 Background Research 10

Figure 2.2: Typical Syntactic Grammar Parse Tree

reconciling tool would also need to be designed to evaluate whether two NLP outputs
are reconcilable and if not decide which of the two outputs to use.

Using both a syntactic and semantic grammar parser in series should also improve the
richness of the interpretation of the natural language. Several systems have been devel-
oped that have this hybrid nature. Janus (Hinrichs 88) is a good example of a system
that uses several parsers/translators in series to produce an output that can be used to
produce a query to a database.

Janus follows the Montague grammar (Dowty 81) framework and first uses a syntactic
grammar NLP to produce an output that can then be translated to an English-oriented
Formal Language (EFL). In turn this EFL, which is still ambiguous, can be made un-
ambiguous using a domain model to disambiguate lexical meanings. Janus also uses a
discourse model to perform ellipsis to overcome ambiguity as well. The output from
this step produces a World-Model Language (WML) output. This output could then be
mapped directly to a database language query.

A NLP system need not perform its translations as clean and tidily as Janus does; the
intermediate outputs do not necessarily need to be so formal that they can be exported
for use elsewhere. It may be necessary to extract certain components from a sentence
and re-incorporate them later, as a parser/translator may not be able to handle them.
E.g. The name of an musical album may well be a phrase or even a complete sentence.
If this phrase interjects an NL query, it may make the sentence impossible to parse as
it can no longer be mapped to a tree structure. Determining that there is a name of an
album in a query and subsituting it for a token would avoid this problem, (see section

Chapter 2 Background Research 11

2.1.4). By having a symbiotic relationship between the NLP system and the rest of the
NL querying system rather than such a distinct separation, it may be possible to achieve
more.

2.1.3 Thesauruses

In common day to day use a thesaurus’ purpose is to find synonyms of words either to
gain further understanding of the original word or to find an alternative word for use
in a piece of written work. One of the crucial components of a NL querying system
architecture, as cited in (Newman 06), is a tool that can standardise the terminology
used in an NL query, so that it is possible to generate a machine-readable query. At first
these two tasks may appear quite different to each other but a similar data structure
could be used to solve them both.

A thesaurus that may be used when writing a piece work will contain many hundreds if
not thousands of entries. An entry may be set out as follows:

Ball (Noun. A round object): sphere, globe, orb, spheroid

I.e. The word itself, followed by a definition to put the word in context and then the
words that are synonymous. If these entries were stored within a database, they would
each have unique identifiers. There would also be less entries in this database, as where
two entries are the same, except for the word itself being transposed with one of its
synonyms, they could be stored as one entry. The unique identifier for the entry instead
of the word itself could be used as the index and each entry would no longer need to
have a word and its synonyms, rather a group of synonymous words. Assuming words
can be searched for efficiently, this electronic thesaurus provides the same if not better
functionality than a hard copy of a thesaurus. It also allows the thesaurus to translate
from a natural language to a machine-readable representation.

As already discussed in section 2.1.2.6, Janus converts the parse tree it gets from its
parser into EFL. This process is required to provide standard terminology so that the
EFL-to-WML translator can use the domain model to produce an unambiguous repre-
sentation. A thesaurus like the one described previously could be used to perform the
same task as the parsetree-to-EFL translator.

By giving an NL query to an electronic thesaurus, each individual word could be looked
up and replaced with the unique identifier of the entry that contains that word. This is
a extremely simplistic view, as many of the words in the NL query are likely to be in
more than one thesaurus entry. A number of these entries could be discounted before the
thesaurus performs the search, as the NLP should have identified which part of speech
each word is. However it is unlikely that this would always eliminate all but one entry.

Chapter 2 Background Research 12

Take the example given previously, ball, this is indeed a round object but it is also a
description of a formal party. Both these meanings refer to ball as a noun, so which one
is correct? This is not an easy question to resolve.

2.1.3.1 Wordnet: A Lexical Database

WordnetTM 10, is an online lexical database (Fellbaum 98). One of the functions of a
lexical database is to work like a thesaurus. If you query it with one word, it will give
you one or more sets of words that it believes to be synonymous. These sets are derived
from the lexical concepts that contain the word queried. A lexical concept is basically
an idea, which can be expressed using one or more different words, very much like the
thesaurus entry described in section 2.1.3. In Wordnet, a lexical concept is the hub
of the lexical database. Each lexical concept can have one of five types: noun, verb,
adjective, adjective satellite and adverb. This lexical concept can then have one or more
words and commonly one or more definitions.

One of the major features of Wordnet is the linking of lexical concepts together. This
is achieved using a number of different relationships, including antonym, hyponym,
hypernym, meronym and holonym to mention just a few. Being able to link lexical
concepts together like this is particular useful, as it dramatically increases the amount
of information that can be stored with minimal extra effort. Hyponyms and hypernyms
can generate hierarchical trees and so can meronyms and holonyms. These trees have
the potential to be used to help determine how synonymous two words are, based on
how far the tree needs to be traversed to get from one word to the other, although this
may not be too reliable.

2.1.3.2 OpenThesaurus

OpenThesaurus (Naber 04) is similar to Wordnet except that is designed for German and
not English. It also only concerns itself with synonymy and not antonymy, meronymy,
etc. However, one of the most significant features that makes it different from Wordnet is
that users can contribute. Users can create, discover and edit synonym sets. The history
of the synonym sets is recorded so that administrators of the system can rollback any
modifications that a user makes that are incorrect. The number of errors made by
the users was minimal and the paper found that the general accuracy of the database
of synsets imported was also very high, although a few error-correcting sweeps were
needed. This suggests that it is possible, at least in part to build a thesaurus using
user contributions. The report did however find that although there were over 400 users
subscribed, very few of them actually contributed. This is even more significant as the
only reason to subscribe is to contribute, as lookups can be done without subscription.

10http://wordnet.princeton.edu/

Chapter 2 Background Research 13

2.1.4 Entity Recognition

Just mapping words to machine-readable representations, is not sufficient to be able to
generate machine-readable queries. In many NL queries there are likely to be references
to entities. Entities are basically proper nouns but they can often be quite complex, such
as the name of a musical album or a chemical compound. Separating entities from the
rest of the query is very important, if all or part of the entity is left in the query it may
well effect what the query is asking. For example, take the musical album “Standing on
the shoulder of giants” by Oasis. This could lead to the query, “Who recorded standing
on the shoulder of giants?” This query could be asking who recorded their album whilst
standing on the shoulder of giants, which is probably not what the user intended.

Creating a machine-readable representation for every entity may take an inconceivably
long time. E.g. defining all possible chemical compounds. Some entities can often be
quite long, particularly in the case of musical albums and there is the potential for them
to be ill-formed. Take the Oasis album again, it could easily be ill-formed as “Standing
on the shoulders of giants.” This is an error but it is very minor and it would therefore
be preferable for the system to tolerate it rather than return no result.

2.1.4.1 ANNIE

ANNIE is a tool developed by the University of Shefield NLP group11 as part of the
General Architecture for Text Engineering (GATE) project12 (Cunningham 06). It has
three main stages. The first stage tokenizes the phrase. There are several different types
of token:

• word

• number

• symbol

• punctuation

• space

A word token has one of the four orthographies: all upper case, all lower case, initial
uppercase and mixed, this information is stored as an additional field within the token.
A symbol token can be one of two types, currency or other. Punctuation tokens can be
one of three types, start, end or other. A space token is a contiguous set of either space
or control characters. Like word tokens, the type of symbol, punctuation and space
tokens are stored in an additional field.

11http://www.nlp.shef.ac.uk
12http://www.gate.ac.uk

Chapter 2 Background Research 14

Once everything has been tokenized a search is done over the gazetteer13, this will
hopefully find matches for words or sequences of words. The manual for ANNIE
(Cunningham 06) gives the example of the phrase 800,000 US Dollars. The lookup
finds the sequence US Dollars in the list of currency units.

The final stage is to invoke the appropriate grammatical rule. For the US Dollars
example the money rule is invoked. This first uses a macro to detect whether US Dollars
is proceeded by a word token that represents an amount e.g. million or the letter m
representing a million. If not it drops out of that macro and uses a macro that looks
for any sequence of number tokens separated by either commas or dots, this extends
the entity to include 800,000 and completes the entity recognition. The entity is also
annotated with the type of entity it has been determined as being and what rule was
used to determine that.

There are many domains where entity recognition is essential. The grammatical rules
that ANNIE uses would make it possible to solve the problem set in section 2.1.4 about
how to recognise an almost endless list of chemical compounds. It might even be possible
to adapt the grammatical rules to allow tolerance of slight illformedness in long and
complex entities.

ANNIE also has a resolution algorithm to handle anaphora. Every pronoun, both per-
sonal and impersonal will have been tokenized as a pronoun. The algorithm first dis-
misses all pronouns that it finds to be superfluous. The context is then determined. The
context indicates the number of sentences before the current sentence should be search
for candidates for the pronoun resolution. From this list of candidates those that are
incompatible are removed, e.g. if the pronoun is she candidates with gender specified
as male are eliminated. From the remaining candidates one is then selected using the
criteria specific to the pronoun, which varies depending on whether it is personal or
impersonal.

2.1.5 Command Recognition

Using Janus as an example again, there is an assumption that the WFL representation
can be mapped to a database language query. Even if the representation is without am-
biguity and it is clear, in a machine-readable form, exactly what information is required
from the database this mapping is not necessary possible. The reason for this is that
the database query language may not be able to express what the WFL representation
wants. One of the ways it may not be expressive enough is because database stores spe-
cific information but the query requires some processing on this data to get the answer
it wants. E.g. In a musical domain the two following question may be asked:

13A gazetteer is simply a several lists of terms that are common to a particular domain, e.g. a list of
company names, species of birds, make/models of cars, etc.

Chapter 2 Background Research 15

1. “How many tracks are there on the album Standing on the Shoulder of Giants?”

2. “Is Thriller by Michael Jackson longer than Purple Rain by Prince?”

SQL has many data processing functions such as count, sum, max, etc. (MyS 07) and
would be able to answer the first of these questions using its count function. SPARQL
Protocol and RDF Query Language (SPARQL, see section 2.2.4.1) does not have a count
function (Prud’hommeaux 06) so would not be able to answer this question without
some post-processing. The second question would be more difficult for even SQL to give
an answer that does not require post-processing. The only way to achieve this would
be through a nested query.14 The only straightforward query that could be used is
something like:

SELECT album.name sum(track.length) as albumlength

FROM album INNER JOIN track ON album.id = track.id

WHERE (album.name = ’Thriller’ AND album.artist = ’Michael Jackson’)

OR (album.name = ’Purple Rain’ AND album.artist = ’Prince’)

GROUP BY album.id

ORDER BY albumlength DESC

LIMIT 1

This would still require the system to analyse album.name and output yes if is Thriller
or no if it is Purple Rain. The structure of this SQL query is quite complex and
building it up from the NL query given would be extremely difficult, unless there was
a direct mapping from that format of question (i.e. is Album A longer than Album
B?) to this SQL query. SPARQL could solve this question more easily using its ask
command, assuming both albums has their lengths expressed explicitly. Using just a
couple of simple examples it is clear that mapping to a database query language is at best
difficult and at worst impossible. Therefore, at least a degree of command recognition
and extraction is required to be able to generate the expected result for a user.

2.2 Semantic Web Technologies

One of the first attempts to capture machine-usable descriptions on the web was by
using Meta Content Framework (MCF) (Guha 97). MCF used Directed Labelled Graphs
(DLGs) comprising of sets of labels, nodes and arcs, where an arc is a triple that connects
up two nodes using a label. These graphs can then be represented using eXtensible

14A nested query could take something like the SQL statement shown but without the order or limit
clauses. By appending to the output a yes on the Thriller record and no on the Purple Rain record.
This table could then be queried on this field reusing the order by album.length and limit to one clauses.

Chapter 2 Background Research 16

Markup Language15 (XML) (Bray 04). In combination with Minsky (Minksy 74) and
others frame-based representation systems, MCF inspired the development of Resource
Description Framework16 (RDF) (Manola 04) (Lassila 98).

The new generation of the web aims increase the amount of machine-readable data it
retains. This is unlikely to be achieved without a standard approach for representing
knowledge, RDF, many believe could be this standard. The World Wide Web Consor-
tium (W3C) made RDF a recommendation in 1999, (Lassila 99), this was subsequently
revised in 2004.

2.2.1 RDF and RDF Schema

Like MCF, RDF uses triples to capture its data and the relations between its data. It
can also use XML to represent its data in text format17. According to Berners-Lee, RDF
is the third layer of his semantic web “layer cake” (Berners-Lee 02). There are many
envisioned levels above this to produce a web that stores machine-readable data that
can be trusted and can be used to produce more information than the sum of its part,
i.e. through inference and other logic-based techniques. The first couple of these layers
deal with the structure of the RDF data. The first of these is RDF Schema.

RDF Schema18 (RDFS)(Brickley 04) allows RDF data to be grouped into a class/prop-
erty structure, in some ways like an object-oriented programming language, such as Java.
Structuring RDF data into classes with properties and instances of those classes, pro-
vides the ability to generate additional data above that specified in XML representation
of the RDF. The additional data that RDFS can provide is limited. RDFS only provides
the properties subClassOf and subPropertyOf to allow hierarchical relationships to be
defined. RDFS cannot define functional, inverse or any set theory (e.g. intersections,
unions, etc.) relationships. There have been a couple projects to develop a language that
could represent these relationships, the DARPA Agent Markup Language19 (DAML) in
the US and Ontology Interchange Language20 (OIL) in Europe, these two projects even-
tually merge to form the Web Ontology Language (OWL) (Horrocks 02).

2.2.2 OWL

The complexity of relationships that need to be represented in a domain’s ontology varies
depending on the domain. It is important that even the most complex logical relation-
ships can be represented but it is as important that if only simple logical relationships

15http://www.w3.org/TR/REC-xml/
16http://www.w3.org/TR/rdf-primer/
17RDF can also be represented in N3, NTriple and TURTLE
18http://www.w3.org/TR/rdf-schema/
19http://www.daml.org/
20http://www.ontoknowledge.org/oil/

Chapter 2 Background Research 17

are required, only these are used. For this reason there are three main species of OWL21,
that can represent increasingly more complex logical relationships. They are OWL Lite,
OWL DL and OWL Full.

OWL Lite is equivalent to the SHIF(D) description logic. OWL DL is equivalent to the
SHOIN(D) description logic. (Horrocks 03). OWL Full provides more flexibility than
OWL DL but it is neither sound nor complete. There is no reasoning algorithm that
is guaranteed to be decidable across all the data that can be expressed in OWL Full.
OWL Full should only be used if it is impossible to represent a domain with OWL DL.
Surveys have been carried out that have found many ontologies that are defined as OWL
Full should really be OWL DL or even OWL Lite (Bechhofer 04).

As OWL stores logical assertions it is possible to reason over these to provide additional
information through inference. In general this can be achieved in one of two ways, at
the time triples are imported or at the time of querying the triplestore. Both techniques
have their advantages, however, more often than not, greater processor time to perform
inference at the point of query is at a higher premium than extra storage space.

2.2.3 Data, Information and Knowledge

As already stated one of the main purposes of knowledge technologies is to take human
concepts and convert them into machine-readable knowledge. By doing this the machine
does not just store data that a human has to interpret to infer knowledge but through
using inference and other logical processes can produce knowledge itself. This is far from
trivial, especially with a large complex database. One of the greatest problems is that
there are several stages that data must go through to become knowledge. Figure 2.3

Figure 2.3: Data, Information, Knowledge and Wisdom

by (Bellinger 04) shows how both relations and patterns must be understood before
21Since the original specification of these three species a subset of OWL Lite, called OWL

Tiny has also been defined by European SW Advanced Development (SWAD-Europe) group (see
http://www.w3.org/2001/sw/Europe/reports/dev workshop report 4/)

Chapter 2 Background Research 18

data can be transformed into knowledge. What is meant when someone says, “The
computer understands. . . ” is subjective. In this report any reference to a computer’s
understanding is considered to mean that the data has been sufficiently structured to
always or almost always return the correct result.

2.2.3.1 How RDF turns Data into Information

RDF uses the principle of a triple which is analogous to the construction of a sentence,
each triple must have a subject, an object and a predicate linking the first with the second
(Hughes 04). By using such a structure, data is converted to information because the
machine understands the relationships as they are explicitly defined.

Humans do not necessarily need relationships to be explicitly defined, take the digital
lab book replacement from the CombeChem project for example, (see Chapter 2.3.
(schraefel 04b)). A chemist using their paper-based lab book may record two related
results next to each other, it may be clear to them and their colleagues that by their
proximity, these results are related but a machine would not be able to make such an
inference. It is conceivable that a system could be designed that reads in lab book pages
and can determine that results are related. There would however be serious questions on
how reliable such a system could be, as only small errors could render a whole database
useless.

2.2.3.2 How RDF turns Information into Knowledge

Getting machines to understand relationships is only the first step towards producing
knowledge and not just data, the next step is unfortunately much more difficult. As
shown by Figure 2.3, it is necessary to understand patterns to convert information into
knowledge. Patterns are more difficult to explicitly define than relationships. Triples do
provide some help in determining these patterns, as long as the correct design ethos is
used. Triple predicates such as RDFS’s subClassOf enforce a hierarchy on a triplestore
(Manola 04). It is almost inevitable that an ontology designer will enforce some sort of
hierarchy, as without this structure the data within the triplestore would become almost
impossible to manage.

A RDF triplestore on its own cannot express patterns explicitly like it does relations.
It stores relations (i.e triples as physical records within a database table or similar data
structure but there is no physical storage of patterns. In general, a pattern can be
considered as a set of relations that can be grouped together using one or more logical
expressions. Using logical expressions allows reasoning to be performed, which generates
inferenced relations. Inferenced relations are a crucial part of RDF as they give extra
meaning to data without making consistency preservation more complex.

Chapter 2 Background Research 19

RDF requires OWL22 to be able to define logical expressions to generate groups that
share implicit relations. OWL provides properties such as unionOf, complementOf and
inverseFunctionalPropertyOf (see section 2.2.2). By using RDF and the properties pro-
vided by the OWL ontology it is possible to start tackling the problem of converting
information into knowledge by designing ontologies that define patterns for a particular
domain.

2.2.4 RDF Triplestores

A relational database has its data and its structure, i.e. the tables and the relationships
between them, separate. A database that stores RDF, i.e. an RDF triplestore, is con-
sidered to store its data and structure together, as the structure itself is stored as data.
However, care must be taken with how structural and instantiation data intermingle.
Often instantiation data is more contentious, e.g. there may be disagreement with ex-
actly what toppings make up a four seasons pizza. Including too much instantiation data
within and ontology can often make it less flexible, it is also more unlikely that people
will use your ontology if they disagree with you instantiations. A potential solution to
this is to provide an ontology for defining a domain’s structure and then an ontology
extension to define useful instantiation data.

RDF triplestores provide a more flexible way to manage data than relational databases
because they make storing relationships as generic as it is possible to achieve, i.e. a
flat list of one-to-one relationships. This can be highly beneficial as whenever some new
triples are generated they can just be added directly to this list. This is not always
the case in relational databases as the data may not be compatible with the tables’
enforced structure. It can be said that in itself RDF captures information not just data
(Hughes 04). It is important to understand how an RDF triplestore works to know why
the previous statement can be asserted.

2.2.4.1 Querying a Triplestore

The whole purpose of having a triplestore is to be able to query it. SPARQL (Prud’hommeaux 06)
is designed specifically for querying RDF Triplestores. SPARQL uses a syntax similar to
SQL, which is intuitive considering a number of RDF triplestores use an almost flat-file
SQL database to store their triples. SPARQL syntax also resembles a TURTLE/N3
syntax. In its simplest form a SPARQL query will allow the user to search for certain
patterns of RDF triples, where one or more elements of the triples are unspecified. The
following example is a query to find a group of human siblings:

22This could also be achieved with DAML+OIL but OWL is the most current W3C recognised stan-
dard.

Chapter 2 Background Research 20

PREFIX rdf: <http://www.w3.org/2000/02/22-rdf-syntax-ns#>

PREFIX exp: <http://www.example.com/ontology#>

SELECT ?sibling WHERE {

?sibling exp:hasParent <http://www.example.com/people/Bob_Smith> .

?sibling exp:hasParent <http://www.example.com/people/Jane_Smith>

}

SPARQL is not the only language that has been designed to query RDF triplestores,
Resource Description Query Language (RDQL) (Seaborne 04) and Resource Query Lan-
guage (RQL) (Karvounarakis 02) are also commonly used query languages.

The best way of understanding how a triplestore can be used is to look at an exam-
ple system. The CombeChem project’s digital lab book is backed by a triplestore
(schraefel 04b) and this is a good example of how a triplestore can be used and why
it can be better than using a relational database system, (see section 2.3.1.3).

2.2.5 Wordnet on the Semantic Web

2.2.5.1 The KnOWLer Project

Wordnet was originally created as a lexical database stored in a relational database
model, i.e. an SQL database, (see section 2.1.3.1). There have been several attempts to
implement it using SW technologies, i.e. RDF, OWL and triplestores. The University of
Neuchtel’s KnOWLer project23 has defined an ontology for Wordnet 1.7.1. Figure A.2 is
a diagram representing this ontology. A key for this diagram can be found in Appendix
A.2.

The ontology produced by the KnOWLer project does provide most of the functionality
defined for Wordnet 1.7.1, as discussed in section 2.1.3.1 but it does not give a solution
to the problem posed in section 2.1.3. The KnOWLer project was one of the earlier
projects to try to produce a Wordnet ontology, since then quite a lot of work has been
done in this area. In fact, in July 2006, the W3C produced a working draft for a Wordnet
ontology(van Assem 06).

2.2.5.2 W3C Wordnet Working Draft

There are a number of significant differences between the W3C working draft of a RD-
F/OWL representation of Wordnet and the KnOWLer project’s Wordnet ontology. One
of the most significant is the use of synonym sets (synsets). KnOWLer’s ontology does

23http://www2.unine.ch/imi/page11291 en.html

Chapter 2 Background Research 21

make reference to them, as a lexical concept is a Wordnet synset but they are not defined
explicitly. This difference is not just semantic, the way that synsets can be used in the
working draft is slightly more sophisticated than in KnOWLer. There is not just synsets
but also word senses. These reify the relationship between the synsets and the word ob-
jects. A synset may contain many word senses but a word sense must only be part of one
synset, also many word senses may refer to the same word object. The main purpose
of this is to keep the sense of words separate from their forms. I.e. words may have the
same spelling but different meanings and vice-versa using word senses normalises this
many-to-many relationship.

Reification using word senses makes it possible to markup a sentence much more richly.
E.g. The sentence “He went to the ball”, could mean one of two things. Usually
a human would be able understand what was meant by the sentence by listening to
sentences that preceded and followed it. A computer may initially do this to determine
the word sense but as this can be complex, it would be preferable to only have to do
this once. Using word senses, this identical sentence could be stored using to slightly
different lists of word senses. If word senses did not exist, to markup the sentence with
the same richness, each word would have to represented by a word object and synset
pair. Therefore word senses are useful if the sentence meaning is being marked up to
be preserved but less so if it being processed and then disposed of, which would be the
case when generating machine-readable queries in a NL querying system.

A second difference is the use of three classifiedBy properties (classifiedByTopic, classi-
fiedByUsage and classifiedByRegion). Although these only subtly change the schema,
they have the potential to make a lot of difference to how the ontology can be used.
In the KnOWLer ontology the only way to determine whether two words are from the
same topic is to traverse the hyponym or meronym trees. As this is not their intended
purpose, there is a good chance the results will be inaccurate and incomplete. One of
the main benefits classification properties could give in a NL querying system is im-
proved entity recognition, (see section 2.1.4). E.g. If it known that filter is classified as
a process in chemistry, determining any entities within this query can be quicker and
more accurate because the rules used to find entities can be targeted towards finding
chemical compounds rather than the names of pop bands.

A problem with using classification properties is that the relationships are often subjec-
tive. ClassifyByRegion may be objective but classifyByTopic and classifyByUsage are
potentially more controversial. This problem could be significant because of the number
of relationships between synsets. One erroneous classification could lead to a lot of inac-
curate inferences. Keeping poor classifications to a minimum is essential but eliminating
them completely is a very difficult task. A further complication is that there are not just
poor classifications, there are also improbable classifications. Therefore an NL querying
system would not benefit from making hard inferences rather making probabilistic ones,
as sometimes the less likely meaning of a query is the correct one.

Chapter 2 Background Research 22

Another difference is the use of tag counts, these record the number of times a particular
word sense is found in the corpus. This property has the potential to be quite useful
assuming the corpus used is sufficiently large and is not an unusual selection. If the NL
querying system is of a generic design but is then customisable for a particular domain,
the tag count values could be set by using a corpus skewed towards type of text used
in that domain. This may well improve the probability of determining the right word
sense first time, however producing a suitable corpus that has all its words marked up
with the correct word senses may be very time consuming. The last significant difference
from the KnOWLer ontology is the use of the frame property for verb word senses. This
property is designed to show what the makeup of the sentence must be for a particular
verb word sense to be used. E.g. teach has three frames:

1. Somebody —-s

2. Somebody —-s somebody something

3. Somebody —-s something to somebody

The —-s is replaced with the verb in question, i.e. teach(es) and the somebodies and
somethings can be replaced with the appropriate nouns. The frame property has the
range rdfs:literal, this is not ideal because some additional knowledge is required to know
how to decode the text string stored as an rdfs:literal into something useful. Unless this
is done, the property is rather useless for anything other than display purposes, as it
cannot check that the sentence uses the verb in a valid way.

2.3 Implementations Using SW Technologies

There is wide array of projects that have produced implementations using SW technolo-
gies. There are several that are interesting and worth focusing on. The CombeChem
project is interesting because it focuses on one domain, chemistry experimentation, that
could benefit from having a NL querying system. CombeChem has had a number of
spin-off projects, SmartTea and myTea, that have focused more on the knowledge cap-
ture through analogy. The use of analogy is also important for NL querying systems,
as it is unlikely that an effective system could be developed for a complex domain, such
as chemistry experimentation, without a more straightforward analogous domain being
used to gain a greater understanding of how the system is working. Another project of
interest is GINSENG because it uses SW technologies to create a quasi-NL interface.

2.3.1 The CombeChem Project

The CombeChem project has been a partnership between the School of Chemistry and
the School of Electronics and Computer Science at the University of Southampton,

Chapter 2 Background Research 23

as part of the eScience research stream. It has involved people with a wide range
of expertise. In particular the CombeChem project has concentrated on producing a
digital replacement for the chemistry lab book (schraefel 04b). Paper-based lab books
have several inherent flaws to them, which have become more apparent and significant
in the 21st Century.

• Difficult to share information, particularly in a widely distributed community.

• Difficult to back up information recorded.

• Limited guarantee of being able to prove Intellectual Property (IP) rights.

• Limited structure of data, leading to the potentially crucial information not being
recorded.

All of the above issues have the potential to be resolved by the implementation of a digital
lab book replacement backed by a database capable of storing all the data captured by
the device.

• A database gives immediate access to the data for any permitted chemist.

• Data is stored on a server and therefore can easily be backed up regularly.

• When data is recorded it can be timestamped giving increased strength to intel-
lectual property rights. Other chemists being able to view the data immediately
through querying the datastore adds further strength IP rights.

• Structured forms are provided for experiment planning and execution that will
remind the user to submit data they may have previously forgotten24.

A paper-based lab book has its drawbacks as well as its benefits (schraefel 04b), such
as:

• Ease of access, i.e. flipping back and forth through pages.

• Simplicity of data entry, i.e. no complex computer applications to learn.

• Ability to draw freeform sketches.

• Portability.

• Resilience to damage, e.g. chemical spills, dropping on the floor, etc.

• Security of storage.
24These structured forms are sufficiently flexible to not frustrate the user with rigidity of the data

input.

Chapter 2 Background Research 24

• Minimal effort required to capture data.

For the digital lab book replacement to be a success it needed to maintain as many of
these benefits as possible. Simplicity of data entry and minimising the effort required
to capture data are two of the most important features of the paper-based lab book and
much effort was given to maintaining these features.

2.3.1.1 The SmartTea Project

One of the biggest problem with designing a database, whether it be a relational database
or an RDF triplestore is understanding the specific domain that it is to be used for. This
is why the SmartTea project was developed.

SmartTea25 uses a technique developed by the designers of the digital lab book re-
placement to try and elicit information about how a chemist plans and carries out an
experiment (schraefel 04a). The main problem with creating a digital lab book replace-
ment for a chemist is actually understanding what they put in it. This is particularly
difficult if the chemist is carrying out a complex chemistry experiment that the designer
has no understanding of.

SmartTea uses the analogy that making a cup of tea is like conducting a chemistry
experiment, this benefits the designer because he/she understands the planning, process
and expected outcome and then can observe how and what the chemist records to their
lab book through the course of the experiment. The SmartTea analogy was inspired by
(Dix 03), this advocates deconstructing a process to a point where its exact purposes
can be understood, (i.e. from a complex chemistry experiment down to making a cup
of tea), before reconstructing the process in a different medium, i.e. from paper-based
to digital lab book.

Even by using this deconstructing technique it is still unlikely that all the information
about the domain will have been elicited. Therefore if a triplestore with an ontology is
used, there is greater flexibility to alter the domain’s structural representation later, as
it would be much less likely, than with a relational database, that data already stored
would be affected.

2.3.1.2 The myTea Project

The myTea project26, is similar to SmartTea to the extent that it uses an analogy to
a common simple activity to represent the more complex task a researcher is trying to

25http://www.smarttea.org
26http://www.mytea.org.uk

Chapter 2 Background Research 25

tackle. myTea was designed to help bioinformaticians better integrate their work elec-
tronically, to save time and make it easier to share their results with others (Gibson 05).
The analogy of assembling a jigsaw puzzle is used to represent the work of bioinformati-
cians.

The work that bioinformaticians do is quite different to that done by chemists in the
SmartTea project. All the work is done in silico, so they do not need an electronic
lab book for the same reasons as the chemists do. At the moment there are a lot of
applications that the bioinformaticians use, the problem is they are badly integrated,
this causes several problems. Firstly, it slows the progress that the bioinformaticians can
make because they need to copy and paste, download and upload information between
applications. Secondly because of this piecemeal transfer of data it is very difficult for the
user to keep track of their data, e.g. whether they a have changed a copy of the file they
downloaded and therefore need to download it again to get a clean copy. The reason
that this problem is caused is because despite there being plenty of web applications
available, these are not integrated within the desktop where the bioinformaticians do
their work. myTea attempts to try to solve these problems.

The equivalent to the electronic lab book in the SmartTea project, is a virtual lab
book that allows the user to interact with web-based applications seamlessly. It also
allows the analysis that the user performs on this virtual lab book to be stored and
processed within Web-accessible/sharable SW technologies such as triplestores and on-
tologies (Gibson 05). The system is also designed to generate reports from this analysis
which can be annotated by the owner and then shared with other users of the owner’s
choice. Annotation is an important component of the project to allow the user to specify
how reliable the data is, terms like finished, unsatisfactory, useful and needs attention
help keep track of the work. As well as the user annotations, provenance data is au-
tomatically captured. By building this framework it should help tackle the problems
cited in the previous paragraph. The framework should also be extensible to the world
of cheminformatics.

For this report, the two most relevant features of this project is its use of SW technologies
and like SmartTea, the use of an analogy so that the systems designers have some
common ground with the domain experts. Implementing a NL querying system with
such a complex domain, such as the CombeChem domain, would be extremely difficult.
Therefore, the use of an analogy where both side share cpmmon ground should make an
initial implementation easier.

Chapter 2 Background Research 26

2.3.1.3 The CombeChem Triplestore

The CombeChem triplestore is the database described in section 2.3.1. The CombeChem
triplestore uses JenaRDF27 implementation to store its data. The CombeChem triple-
store currently uses an specifically designed RDFS schema but there are plans to use an
OWL ontology in the future (Hughes 04).

The current schema defines processes as well as substances, using RDFS’s subClassOf
property to define the hierarchy of each. e.g. FiltrationWithBuchnerFunnel is a sub-
ClassOf Filtration (Hughes 04). By using the triplestore and CombeChem schema it is
possible to define an experiment plan, which can then be instantiated when the exper-
iment is carried out to make sure the plan is followed correctly. When an experiment
plan is instantiated it also provides the ability to annotate and make observations that
are then directly associated to that experiment instantiation. It is possible to have more
than one instantiation of the same experiment plan that allows either the same chemist
or a different chemist to repeat the experiment to check the original results.

The design of an experiment plan uses a process-product pairing. This scheme requires
each experiment plan to start with a process, where one or more of the experiment
ingredients go through this process, to produce a product. This product is then used in
the next process, possibly with one or more other experiment ingredients. This spine is
continued until the final experiment product is produced (Hughes 04). At the moment
this is an over simplified process with just one central spine. It is likely that one process
may produce more than one product that needs continued processing or that multiple
initial experiment ingredients will need to be processed before they can be combined.
This would generate a graph with more than one spine. This was not designed for in the
original schema, as the experiments that the system would be used for were very unlikely
to be of this nature. Learning lessons from OWL-S (Martin 04) and the Business Process
Execution Language, WS-BPEL) (Alves 06) may make it possible to design an ontology
that is capable of generating graphs like previously described (Hughes 04).

The CombeChem triplestore has a ModelServer with it own API (Hughes 04). This
provides two useful bits of functionality:

1. Querying, in this case using RDQL.

2. Changing the experiment model.

These two pieces of functionality allow software to be designed for the digital lab book
to allow a chemist to design and modify an experiment plan, instantiate an experiment
and make observations, annotations and recordings on this experiment instantiation.

27http://jena.sourceforge.net/

Chapter 2 Background Research 27

Through the use of an ontology to structure the triplestore data, it is possible to make
inferences about the data recorded. As only an RDFS schema was designed this inference
is a somewhat limited. Inference mainly comes from the subClassOf property but this
still gives a lot of free data. A typical experiment’s number of triples increases ten-fold
when Jena’s RDFS inferencing model is used (Hughes 04). If an OWL ontology had
been used instead, the increase in the number of triples would have been even more
significant. This is because the complex logical relationships that OWL can represent,
make it possible to use a considerably more sophisticated inferencing model on the RDF
data to produce a much greater number of inferenced triples.

2.3.2 GINSENG: Guided Input Natural language Search ENGine

GINSENG (Bernstein 06) is one of the first systems that attempts to provide a NL/quasi-
NL search engine that uses SW technologies. It guides the user when they enter words for
their query to try and ensure it gets an NL query that uses known words and structure.
This helps overcome one of NL querying’s greatest problems, i.e. domain opacity, (see
section section 2.1.1).

By having a guided input means the NLP system and techniques required to produce
a machine-readable query can be much simpler. GINSENG just has three main parts
to its architecture, a multi-level grammar, which contains about 120 static domain-
independent rules and a dynamic grammar rule for every entity contained within the
loaded ontologies, that is basically the popup options provided in the guided input
interface. The second part is the incremental parser, as well as specifying all the parsable
sentences it also provides the information required to generate the machine-readable
(SPARQL) queries. The third part is Jena’s SPARQL interpreter that executes the
query and returns the result.

Although GINSENG performed well in preliminary user testing there were a few lim-
itations/issues with the system. First, any queries that could not be transcribed into
SPARQL could not be handled, such as “How many cities named Austin are there in
the USA?” Second, the grammar of GINSENG is limited, meaning that perfectly ac-
ceptable NL query may not be understood, although trial users did not find this too
big a problem. Because the grammatical rules are static if any common structures are
missing they have to be added manually. A further problem is that a user must use
certain terms, if they try and use a synonym the query will most likely fail. The paper
states that there are plans to use Wordnet to facilitate using synonyms. Last, The user
may find popup guidance annoying, as can often be the case with popups. It may also be
frustrating if they keep typing in a query and the popup keeps telling them there is no
way of completing the query within a valid grammatical structure. It may also increase
ambiguity, as the user strives to construct their query so it is valid, they have try to
express it slightly more simply than they would if they had more freedom. This may

Chapter 2 Background Research 28

take away some of the context of the query making it less likely to return the correct
result.

2.4 Summary

There have been many attempts to build NL querying systems. Some have been more
successful than others. In general, the more successful have been those that have focused
on only being able to query one domain at a time, e.g. Lunar (Woods 72), Planes
(Waltz 78) and Ladder (Hendrix 78). Focusing on more than one domain seems to
cause major problems with ambiguity. To avoid ambiguity, a NL querying system would
need to be designed generically, so that it can be used for more than one domain but
not at the same time.

Even when an NL querying system focuses on only one domain there are still many issues
with natural language that must be handled to ensure the query is interpreted correctly,
the correct database queries are made and the appropriate information is returned to
the user. Various implementations have developed tools and techniques to overcome
these issues. Wordnet can be used to determine synonyms and has the potential to
be adapted to perform lexical to domain mappings. ANNIE can be used to recognise
entities and can provide help against anaphora, through its pronoun resolution. Ellipsis,
used in Lifer(Hendrix 78) as well as other implementations can help when sentences are
ambiguous because of a lack of information being provided. Tools for command recog-
nition and other areas where transcription from natural language to machine-readable
queries is difficult need to be considered when building an effective NL querying sys-
tem. In particular the problem of domain opacity, that was a strong focus in GINSENG
(Bernstein 06), needs to be tackled to ensure that the system is user-friendly.

Wordnet has been implemented so that it can be used on the semantic web, (see section
2.2.5). In some ways this is an intuitive step for two reasons. First, Wordnet is intended
to be a resource that is available globally, that is why there is a web interface28 and can
be downloaded to be used locally. Making it available as an ontology and RDF data
file is just the next logical step. The Wordnet ontology design from KnOWLer, (see
section 2.2.5.1), uses RDFS’s subClassOf property along with OWL’s inverse, transitive,
symmetric properties. These are much more succinct and intuitive ways of representing
certain relationships, for example setting hyponymOf as the inverse of hypernymOf, as
well as making both of these properties transitive.

GINSENG (see section 2.3.2), has also demonstrated how SW technologies can fit nicely
into a NL querying system. In particular how OWL ontologies can be uploaded into
the Jena ontology model that can be then used to generate the dynamic grammar rules.

28http://wordnet.princeton.edu/perl/webwn

Chapter 2 Background Research 29

The fact that a whole domain can be wrapped up into a single file that can be globally
accessible and easily loaded into a system to assist that system in solving a problem.

The CombeChem provide a useful example of a domain that has been represented using
SW technologies. It provides insight into a system that would benefit from a NL querying
system. CombeChem and its associated projects, SmartTea and myTea, consider the
problem of understanding an expert domain, this must also be considered in the design
of a NL querying system. Evaluating such a system within a complex domain would be
hard, as it would difficult determine whether errors where due to flaws in the system or
a lack of understanding of the domain.

As determined in section 2.1.1, there are a number of disadvantages with using a NL
querying system over other form-based or GUI systems. This chapter has reviewed a
number of different tools and techniques to solve these problems. A number of these
are already implemented using SW technologies. Those that do not already use these
technologies may benefit from their use to help represent the data that they use, e.g.
ANNIE’s gazetteers and grammatical rules or the rules for recognising and extracting
commands.

Chapter 3

A Conceptual Framework for a

Semantic Web-based NL

Querying System

The NL querying systems and SW technologies discussed in Chapter 2 have provided
some insight, making it now possible to design a conceptual framework for an NL query-
ing system, that takes advantage of SW technologies. This chapter describes how to
design such a system. It first considers the domains it may be used for. It then describes
the components required and how they should be constructed together, as illustrated in
Figure 3.2.

3.1 Domains for the NL Querying System

For widespread adoption of a NL querying system it needs to be generic. To achieve
this, all domain dependent knowledge needs be uploadable to the system, which will in
turn determine the behaviour of a number of the system components. To best explain
how each of these components will work it is necessary to define a couple test domains
so that examples can be given in context.

3.1.1 CombeChem Domain

As previously discussed in section 2.3.1, CombeChem is a project that was intended
to provide users with an electronic lab book backed by a triplestore to store all the
information submitted. As this project already has semantic web aspects it is well-
suited to be a test domain for the NL querying system. There already exists an RDFS
schema that helps structure the data that has been collected from the electronic lab

30

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System31

book. CombeChem would not be the most suitable test domain to use first. It is rather
complex and it has a lot of content that is difficult for those that are not domain experts
to understand. A more straightforward domain is needed that can be understood by
both the NL querying system domain designer and by its users.

3.1.2 MusicBrainz Domain

Section 2.3.1.2 stated how both SmartTea and myTea used analogies to help the system
designers and domain experts develop a system that would meet the latters needs. A
similar analogy is needed to provide a simpler domain to test the NL querying system.

MusicBrainz1 is a website designed to allow users to submit information about musical
albums. It stored in a large database and can be queried via an online form. The
database can be downloaded and imported into a PostgreSQL2 relational database.
MusicBrainz also provides an ontology of sorts for its database structure3. This is not
particularly well-formed but it does give a good outline of how to define an ontology for
such a domain. MusicBrainz provides a good analogy for the CombeChem domain (see
section 3.1.1) as it shares similar features:

1. Both domains have complex entities. CombeChem has chemical compounds, Mu-
sicBrainz has the names of albums, tracks and bands.

2. Both have actors, actions and things that can be acted upon. CombeChem has
the concept of a user defining a chain of process-product pairs (see 2.3.1.3) and
MusicBrainz has artists that can perform actions, such as sing, play guitar on
tracks and albums.

3. Both have an almost limitless number of actions that can be performed, which are
organised in a hierarchical structure. For CombeChem there is:

filter → filterwithfunnel → filterwithbuchnerfunnel

for MusicBrainz there is:

playinstrument → playguitar → playbassguitar

4. CombeChem has the concept of creating a plan and then instantiating the plan
each time the experiment is carried out. MusicBrainz has albums, for each al-
bum there could be different releases of that album, e.g. US/UK release, special
editions, etc. Therefore instantiations of that album need to be made.

1http://musicbrainz.org
2http://www.postgresql.org/
3http://www.ldodds.com/projects/musicbrainz/schema/index.rdf

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System32

3.1.2.1 Designing the MusicBrainz Ontology

The MusicBrainz ontology not being particularly well-formed, as shown by parsing it
through the University of Manchester’s OWL validator4, where it validates as OWL Full
but with many additional messages. A further problem with this ontology is that it does
not sufficiently express the domain, apparently an extended ontology does exist but it
has not been possible to find it. Therefore it was decided to design a new ontology based
on the original MusicBrainz ontology, that would be more expressive but also validate
to OWL DL.

MyMusicOntology v1.1 (mmo1.1) 5, is this reworked version of the MusicBrainz ontol-
ogy, it has increased domain coverage and does validate to OWL DL using the University
of Manchester’s OWL validator. Figure 3.1 shows the domain coverage of mmo1.1. In
designing the mmo1.1 ontology the emphasis has been on ensuring that it only repre-
sents the domain’s structure and not any instantiation data. This is a requirement of
Figure 3.3, that defines how domain data should be defined so that it can be swapped
in and out to allow the NL querying system to be used for different domains.

There are three classes Type, Status and MusicalActionType, that may have any number
of instantiations. It is unlikely that Type and Status would ever need more than ten
instantiations each and in the original MusicBrainz ontology these instantiations were
defined within it. However new instantiations may become applicable in the future and
the only way to represent these would be by re-defining the ontology each time.

MusicalActionType has an almost infinite number of instantiations for every action it
is possible to perform on an album, e.g. playing any instrument, mixing, writing lyrics,
composing etc. By ensuring the instantiations of these classes can be defined by the user
and are not hard-coded by the designer provides more flexibility within the domain. A
disadvantage of this is the reliance on users to define instantiations sensibly and to
annotate and label these instantiations appropriately. As data input is not the major
concern of the implementation, this problem can be somewhat overlooked for the time
being.

3.2 Data Flow for a NL Querying System

There are many steps between the input of a NL query and the output of a human-
readable answer. Careful consideration is needed at each step to ensure seamless data
flow through the system. Figure 3.2 is partially adapted from the Intermediate Repre-
sentation Language System (IRLS) proposed in (Androutsopoulos 95). It also observes
how Janus generates a machine-readable query, that represents the NL query but is not a

4http://phoebus.cs.man.ac.uk:9999/OWL/Validator
5http://www.ecs.soton.ac.uk/˜drn05r/musicbrainz/mmo1.1

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System33

Figure 3.1: Domain Map based on mmo1.1 Ontology

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System34

database query and how this is useful for the purpose of incorporating a database inter-
face into the NL querying system. The backbone of the NL querying system is made up

Figure 3.2: The Flow from NL Query to Human-Readable Answer

of data stored in a triplestore. The way that this data is organised is important so that
the system can be generic and allow domain data to be swapped in an out depending on
the domain that it is being used for. Figure 3.3 shows how this data must be arranged
to allow data from a new domain to be imported.

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System35

Figure 3.3: Architecture for Defining a NL Querying System Domain

3.3 Entity Recognition Engine

The framework for the NL querying system will take the initial NL query input for the
user and input it into an entity recognition engine much like ANNIE, (see section 2.1.4.1),
if not an adapted version of it. ANNIE requires two domain dependent components,
gazetteers and grammar rules.

To save time gazetteers could be generated from the instantiation data in the database.
If the gazetteers are generated in this way it would be useful to preserve the link be-
tween the gazetteer and the database. This would make it possible to store a richer
representation of the extracted entities. It may not always be possible to determine
exactly what entity from the database an extracted entity is, but it should be possible
to generate a limited list of candidates. Recognised entities may not just be the entity
itself but also some associated value, e.g. 800,000 US Dollars. Therefore the extracted
entity also needs the ability to be able to store that as a separate part of the entity that
also needs to be extracted.

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System36

3.3.1 For MusicBrainz Domain

In the Musicbrainz domain there are three main entities that need to be recognised:

1. Actors: These may be musicians but could be producers, engineers, composers,
etc. An actor could represent an organisation or a group not just an individual.

2. Recordings: This can be broken down into two further categories, album names
and track names.

3. Actions: This will generally be a musical action such as singing or playing an
instrument but this can also includes non-musical actions like being the recording
label or production engineer.

Three/four gazetteer lists would be required to do this. The generation of these lists
should straightforward as when new albums are submitted, triples are created that store
the album and track names. When new actors and actions are submitted similar triples
are created for these as well. This data could be used to directly generate the gazetteer
lists. This does not solve the whole problem. E.g. If a user is performing a search to
see who recorded a particular album, if this album title is quite long it is quite likely
they may not get the title absolutely correct. Frank Zappa’s “Ship Arriving Too Late
to Save a Drowning Witch.” There are many ways that a user could type in this title
incorrectly or because it is so long they may not even give the full title. In any case
with a title so long, one mistake in the title should not prevent the album being found.
This is why the grammar rules that ANNIE uses are required, so that is a perfect match
cannot be found, if a very good match is found at least it can be considered.

It should be possible to design reasonably generic rules for detecting entities that are
ill-formed. I.e. If you cannot find a perfect match look for entities that are a very
close match to the entity in the query. Even though these rules could be made generic,
this does not make the task straightforward. This is because measuring what is a close
match and what is not depends on a number of factors. How many words are there in
the entity? How common are the words in the entity? How disordered are the words
in the user generated entity? etc. This could be taken even further, e.g. how misspelt
are the individual words are in the entity. This is not something that ANNIE is capable
of doing and until the other measures are implemented it is difficult to determine how
useful this measure would be.

3.3.2 For CombeChem Domain

The first gazetteer that would be required for the CombeChem project is for words that
make up chemical compound/element names. Another gazetteer that may be required

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System37

is for measurements, most of these would probably be SI units but there may be others
that are chemistry specific. In chemistry there is a large number of acronyms taken from
different sources (Brown 96), these would also need to be encapsulated in one or more
gazetteers.

Some quite complex grammatical rules will also be required for the CombeChem domain.
INChIS 6 are a complex sequence of numbers, letters and symbols, e.g. C6H6 1-2-7 2-
3-8 3-4-9 4-5-10 5-6-11 7-12, represents benzene, a relatively simple organic compound.
This should be definable in ANNIE assuming it will allow any legitimate context-free
grammar rule to be defined.

Chemical compounds present another potential problem, take 1,1,1-trichloroethane as
an example. Unless ANNIE had trichloroethane as a word in one of its gazetteers,
it would not be able to find it. This is because trichloroethane is a type of ethane
with three bonds to chlorine rather than hydrogen atoms. Storing trichloroethane,
trichloroethene and dichloroethane, etc. would be excessive and it would also be very
difficult to be comprehensive. To expect the user to break up all these words with
hyphens, so trichloroethane becomes tri-chloro-eth-ane, making it possible for ANNIE
to tokenize it, is optimistic and goes against the NL querying system ethos. To solve
this problem ANNIE would have to be modified in the tokenizing phase. The tokenizer
would need to tokenize certain sequences of letters, this should not make it significantly
slower because the NL queries are relatively short. A greater problem would be deciding
when and when not to tokenize.

A gazetteer or similar would be needed to store the letter sequences. Every word would
need to be checked to determine whether it was an entity. An algorithm would start at
the beginning each word. If it found a sequence of letters it would remove them and
using the remainder of the word search for another sequence of letters. This would be
repeated until either a sequence of letters could not be found in the remaining string
or the remaining string had no letters. If the latter occurred this would indicate that
it was an entity or at least part of an entity. This algorithm may not be absolutely
reliable as it may choose the wrong sequence of letters, if one sequence was the head
of another sequence, e.g. ol as in eth-an-ol and oleic. To avoid this letter sequences
could be tagged, stating whether they can appear at the beginning, middle, end or a
combination of locations in a word. It may also be useful to link shorter letter sequences
with longer ones so that if an entity is not found the algorithm can work back to try to
find the longer sequence instead.

One problem with using the algorithm is that it may classify certain words as chemical
compounds even if they are not. E.g. take the query “Who tried experiment X with
trichloroethane?”. If both ‘tri’ and ‘ed’ may be defined letter sequences, then ‘tried’
could be considered as an entity. To avoid this, all words that have been determined

6IUPAC-NIST Chemical Identifiers (http://www.iupac.org/inchi/)

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System38

as potential entities must be checked against a dictionary. If a word has definitions for
it but none of these definitions are nouns, then this word should be discounted as an
entity. This may still not find all the words that are chemical compound entities or
discard all those that are not. However when dealing with natural language, certainty
is never guranteed. Once the NL querying system is implemented this algorithm may
need to be modified, if it misses to many entities or finds to many false positives.

As well as the algorithm finding entities that are verbs, adverbs or adjectives, it may also
find entities that are not real chemical compounds, this is not necessarily a bad thing.
E.g. 1,1,1-trichloroethene looks like a perfectly acceptable chemical compound, but it is
actually chemically impossible. There is no way of avoiding these false positives without
making the grammar rules very specific. In some ways, detecting such words as chemical
compounds is a good thing, as there may be data stored on such entities stating that
they are chemically impossible. Also allowing them to be parsed as an entity but then
not finding any data on them, will mean that the error message returned can inform
the user that they have probably misformed the chemical compound and not that the
system has not understood the query.

As previously stated individual words may not be whole chemical compound entities.
Therefore a grammatical rule is needed to build these chemical compound entities. Only
a simple rule should be needed, which groups all adjacent chemical compound entity
words into one entity.

3.4 NL Parser(s)

Section 2.1.2.6 explains how by using more than one NLP it is possible to obtain a
much richer output than could be achieved with one NLP. It also makes it clear that
for it to be worthwhile these two NLPs must go about generating their parse trees in
different ways and ideally produce different types of output so that a greater richness
is produced. Section 2.1.2.6 showed how the Stanford parser and Minipar use different
types of grammars, rule-based and principal-based respectively and produce different
types of output, concrete syntax parse tree versus dependency parse tree/triples.

Using two NLPs means the system requires an additional component to reconcile the
parse trees. This component is discussed in section 3.5. Building an NL querying system
is not straightforward, using an incremental implementation should simplify some of the
complexity. The use of multiple NLPs is one aspect that makes the system more complex,
therefore the first implementation increment of the system may be better served with the
use of only one NLP. Both the Stanford parser and Minipar have been used successfully in
the past (Klein 03) (Lin 98). Minipar however produces an output synonymous to that
of a SPARQL query, i.e. a set of triples that can be linked together in a tree structure.
Although it is unlikely that these triples could be able to be transposed directly into

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System39

a SPARQL, it gives the potential to represent data in a consistent fashion, which may
be helpful in the future. It may be useful in the next implementation increment of the
system to use the Stanford parser, as this may assist in the design of the parse tree
reconciliator because it will provide data on which NL queries each NLP handles best.

3.5 Parse Tree Reconciliator

Implementing the parse tree reconciliator in the first increment of the implementation
is probably infeasible. Data is first needed to determine how to best reconcile different
parse trees; using earlier implementations of the system where only use one or other NLP
is used is a way of collecting some of this data. There are several different approaches
that could be used to reconcile a parse tree.

1. Use both parse trees separately to produce two outputs.

2. Determine which parse trees is more appropriate and use that one.

3. Merge the two parse trees.

The first approach is the most straightforward, all the reconciliator need do is invoke the
rest of the system twice. It does however create the potential for a problem at a later
stage. If both parse trees generate successful SPARQL queries that return results, which
result should be returned to the user. If both have found the same result then there is no
problem and the response can be even more assured. If the responses are different, what
should the user be shown. It is unlikely that one result could be discounted for being
infeasible, because measuring feasibility would not be possible across such a wide range
of potential responses. Using this approach, the best strategy is probably to return both
results, as this gives the user an impression of the confidence of the response.

Approach two requires more effort by the reconciliator. How should it go about deter-
mining which parse tree is more appropriate. Data collected from earlier increments of
the implementation where the NLPs have been used separately will be needed. The best
way to use this data to is to try to determine whether there is a correlation between cer-
tain traits the parse trees have and whether ultimately they produce a correct response.
If this is possible these traits could be scored and the higher scoring parse tree should
then be chosen.

Approach three is again more complicated. This approach could only be implemented
in one of the later increments. It would be sensible to first implement approach two
and assess its performance, as this third approach may be excessive. Merging the two
parse tree could be achieved with a technique similar to that used in unification-based
grammar NLPs (see section 2.1.2.2). Components of the two parse trees that are the

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System40

same would be kept, those that do not contradict would also be copied to this reconciled
parse tree and those that do would have to be resolved. As the format of the two
parse trees from the Stanford parser and Minipar are quite different, this task may be
difficult. In particular resolving contradictions will be problematic. However, proposing
a more complete solution is infeasible until data from earlier implementations has been
collected.

3.6 Machine-Readable Query Generator

The NL query is now a richly-represented and reconciled parse tree, but it is still only
a machine-readable representation of an NL query and not a machine-readable query.
To do this the words in the parse tree need to be converted into machine-readable
entities. This can be achieved through a process of standardisation. Section 2.1.3
discussed how electronic thesauruses, use a machine-readable entity to represent a group
of words that are synonymous. This is not quite powerful enough to generate sufficiently
accurate machine-readable queries. This is why it is necessary to modify KnOWLer’s
Wordnet ontology to include features to make this possible. These additional features
are illustrated in Figure 3.4.

3.6.1 Design of Domain Concept Mapping

To make an electronic thesaurus useful in a NL querying system context it needs to
be able to map machine-readable entities representing lexical concepts (i.e. synonym
groups) to real-world concepts that have been conceptualised using a domain ontology.
This feature is not provided by Wordnet. Being able to do this is necessary to convert
an NL query into a machine-readable query, as these domain concepts are the machine-
readable representation used in the database.

Creating a mapping between a lexical concept and a domain concept is similar to the
mappings between lexical concepts and word objects in KnOWLer’s Wordnet ontology,
except these mappings need to be slightly more sophisticated. They must be more
sophisticated because only one mapping can be used by the system at a time, so the
most probable mapping must be determined. The mapping between lexical concepts
and word objects is binary, it is either there or it is not, mappings between lexical
and domain concepts needs to be quantifiable. This quantification would probably have
to be intially done by the creator of the mapping, based on how often they believe
the mapping is will be correct. User quantification is unlikely to always be perfectly
accurate, therefore a technique is needed for adjusting the correctness probability as the
system is used. Ideally, this technique should not require excessive user input, as this
could quickly become tiresome.

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System41

Figure 3.4: Thesaurus Ontology

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System42

Imagine that a user submits a question to the NL querying system. The system deter-
mines what the most probable lexical to domain concept mappings for each word or set
of words are and generates a machine-readable query. After completing the remaining
processes in the system, a response is given to the user. The user could then react to
this response in a number of ways.

1. They could get the answer and start a new query / close the interface.

2. They could find that it is the answer they required and inform the system of this.

3. They could find that it is not the answer they required and ask the system to
re-execute the query using the next most probable mappings.

These three different reactions can be used to help adjust the correctness probability
of a mapping. The first reaction is neutral because starting a new query or closing the
interface, does not prove whether the answer was what the user required. The second
reaction is positive and the final reaction is negative. These three reactions can be
used within a reinforcement learning algorithm to adjust the correctness probability.
This reinforcement learning algorithm requires three parameters that can be stored as
properties of the lexical to domain concept mapping. These three parameters are:

1. Been used

2. Been useful

3. Been unuseful

Each time a query is executed that uses a particular domain concept mapping, the been
used property is incremented, depending on the reaction of the user the been useful,
been unuseful or neither properties are incremented7. These three parameters are then
combined in equation 3.1 to generate a correctness probability for the domain concept
relation:

Correctness =
BeenUseful −BeenUsed−BeenUnuseful

BeenUsed× 2
(3.1)

Equation 3.1 will always produce a result between zero and one, zero being when every
time the domain concept mapping has been unuseful and one when everytime it has been
useful. This algorithm is not necessarily ideal, as the concept that the three reactions
described previously are neutral, positive or negative, is a little oversimplistic. When a
user finds the answer they are looking for there is no way of compelling them to inform
the system, this would mean some positive reactions would be lost and considered as
neutral. Negative results are less likely to be lost in quite such high numbers, as there is a
motivation to inform the system so it can re-execute the query using different mappings

7Reaction 1: no increment. Reaction 2: been useful incremented. Reaction 3: been unuseful incre-
mented.

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System43

to hopefully find the correct result. It may therefore become necessary to adjust the
weighting of been useful parameter to correct for this.

There must be accounting for these lexical to domain concept mappings to keep track
on who is adding and modifying them. It may only take one malicious/inexperienced
user to irrevocably damage the system.

3.6.2 Design of User Accounts

Having user accounts will make it possible to keep track of objects within a thesaurus,
as they will be assigned ownership to particular users, this however requires an addi-
tional class to be added to the original KnOWLer Wordnet ontology, a thesaurus user
class. This class needs to be able to represent a user account. There are a number of
requirements for a user account.

• A unique identity

• Security

• Maintaining consistency

• Classification of purpose

• Identification of the possessor

• Quantification of importance

All these requirements must be defined within the ontology so they can be exploited by
any system that uses it. Figure 3.4 diagrams how these requirements have been designed
into the ontology.

3.6.2.1 Unique Identities and Security

A unique identity within an ontology may seem implicit, as when a new user account
object is created it is given it own URI. This although sufficient is not particularly user-
friendly. A user would probably expect to be given or choose a username. Although the
username could be extracted from the URI this places the limitation of never being able
to change the username. It also makes the system less secure as it would be possible to
guess a particular user’s URI and then potentially use it to add malevolent entries to
their thesaurus. A username property is therefore defined that has the user account class
as its domain. Security is given to the user account by creating a password property in
the same way.

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System44

3.6.2.2 Maintaining Consistency

Preventing two users from using the same account at the same time is what is meant by
maintaining consistency. To ensure this, when a user account is logged in a session ID
must be associated with that account to avoid a second login. For this reason a property
entitled hasSessionID has been defined.

3.6.2.3 Classification of Purpose

As one of the purposes of thesaurus ontology is to map lexical concepts to domain
concepts, a property needs to be associated with each user account to tell it where to
find its domain concepts. This is not a straightforward as just having a property that
points at the domain ontology. This is because as well as there being domain concepts
within the ontology, there may also be instantiated domain concepts, see 3.1.2.1. To
accomplish this a new class called Domain needs be defined, which has two properties, a
pointer to the domain ontology and a pointer to the location of the directory that holds
all instantiated data. Having a property that points at a ontology object means that the
thesaurus ontology cannot be OWL DL. This can be tolerated as this property will not
need to be reasoned over as it is only required as a unique URL of the domain ontology.

The property defining the domain of the thesaurus user account is only part of the
classification of purpose, the other part is the keywords property. This property allows
the user account to be classified more finely, so that it is tailored for a particular sub-
domain, e.g. in chemistry the keyword organic may be ascribed to one user account and
inorganic to another. There is no limit to the number of keywords that can be defined.
Classification of purpose is essential as one of the features of the thesaurus ontology is the
facility to borrow thesaurus objects created by other user accounts. Keywords provide
a searchable method of discovery to help find user accounts that have the appropriate
thesaurus objects to be borrowed. Keywords are a basic and generic searchable discovery
method. As systems for certain domains are developed it should become more apparent
what are other useful properties to search for user accounts on. How to introduce these
other classification properties to the ontology may be a problem, as they will probably
be both numerous and evolving. Hard-coding them into the ontology would be wrong
as it would require regular amendments to the ontology. Therefore, a solution could be
to introduce a generic classification property which could be instantiated to define the
name and the range of each new property.

3.6.2.4 Identification of the Possessor

Identification of the possessor of the user account would be necessary so that a user
could borrow thesaurus terms from colleagues who work in the same area. This could

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System45

work both ways, after discovering a useful thesaurus a user would then be able to find
out who that user is, as they may be a useful contact. Just a username is not sufficient to
identify a user, especially as some user accounts may have multiple users. The thesaurus
ontology allows Friend-Of-A-Friend (FOAF) profiles to be associated to a user account.
This property also prevents the ontology from being OWL DL but as the purpose of
this property is only to define the FOAF profile URL this will not need to be reasoned
over using a DL reasoner.

3.6.2.5 Quantification of Importance

If a user account borrows many thesauruses, there may be words that maps to several
different domain concepts. As the NL querying system only wants to avoid confusion
by only returning one result at a time, choosing which thesaurus to use first is an issue.
Therefore two properties are defined in the ontology to allow importance to be ascribed.
The property used depends on whether the thesaurus is borrowed compulsorily or vol-
untarily. If a thesaurus is compulsorily borrowed then the importance property value
defined at its creation is used by the borrowing user account. If a user decides voluntar-
ily to borrow a thesaurus they may choose the importance. Currently these authority
properties must have positive integer values. This will probably need to be improved or
abstracted so that these values have some meaning, e.g. 5 = most authoritative, 1 =
least authoritative.

3.6.3 Command Mappings

As described in section 2.1.5, commands need to be recognised because it is unlikely that
any database query language will be able to cope with all types of commands they may be
required to perform. In particular, as triplestore query languages are relatively new, few
of these commands have been implemented. This is why there needs to be mappings
from lexical concepts to commands, so that these commands can be determined and
handled. These can then be used with domain mappings to build an machine-readable
representation of the query. The following machine-readable query would represent the
NL query, “Is Bohemian Rhapsody by Queen longer than Rhapsody in Blue by George
Gershwin?” something like:

ASK(

track(Bohemian Rhapsody).length WHERE artist(Queen)

GREATER_THAN

track(Rhapsody in Blue).length WHERE artist(George Gerswin)

)

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System46

ASK and GREATER THAN are commands that need to be extracted, WHERE is just
a joining command that does not need to be extracted. Track and artist are structural
domain concepts that have been determined from mapping the entities to instantiated
domain concepts, i.e. specific tracks and artists. length is a domain concept property
that has been determined from the term longer than in the original NL query.

Although the gazetteers will be generated from instantiation data in the database, the
recognised entities may not necessarily map to one entity in the database. Take the
example above, if the query had just had “Rhapsody in Blue by Gershwin”, Gershwin
would have been determined as an entity but this entity may refer to at least two different
entities in the database, i.e George Gershwin and Ira Gershwin. At this point, a decision
needs to be made on how to proceed. Choosing one of the two is not an option as there
is no criteria to choose on, like there is for domain concept mappings because these are
non-quantifiable mappings. It would be possible to capture data over time using the
reinforcement learning algorithm, but this would not help initially. A better option is
to perform two queries one with each entity candidate. The majority of the time, only
one query will be successful and that one will be used. If both queries return results,
it may be possible to merge the results if they are the same or just return both results.
This is discussed in greater detail in section 3.10.

3.7 Database Query Generator

The output produced by the machine-readable query generator is an intermediate rep-
resentation, which cannot be processed directly by a database query engine. This is
because it is necessary to have a full machine-readable representation of the query but
not all of the query is processable by the database query engine, i.e. it can not perform
certain data processing functions. This is why the database query generator is required.
This component is designed to extract and substitute parts of the machine-readable
query that can be converted into database queries. These are then given to the database
query engine to execute.

Using the example given in section 3.6.3, track(Bohemian Rhapsody).length WHERE
artist(Queen) and track(Rhapsody in Blue).length WHERE artist(George Gerswin) can
be converted into SPARQL queries, somewhat like:

SELECT ?tracklength WHERE {

?trackinstance exp:trackInstanceOf

<http://www.example.com/track/Bohemian_Rhapsody> .

?trackinstance exp:hasArtist <http://www.example.com/artist/Queen> .

?trackinstance exp:hasTrackLength ?tracklength

}

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System47

SELECT ?tracklength WHERE {

?trackinstance exp:trackInstanceOf

<http://www.example.com/track/Rhapsody_in_Blue> .

?trackinstance exp:hasArtist

<http://www.example.com/artist/George_Gerswin> .

?trackinstance exp:hasTrackLength ?tracklength

}

It is possible to see how parts of the machine-readable query map into the SPARQL
queries. Assuming that the finalised machine-readable representation language is sound
and complete it should be possible to scale this for more complex queries.

3.8 Database Interface

The database interface and the database itself are be pre-built components. The amount
of time spent of developing these components is extensive, so developing bespoke com-
ponents for the NL querying system would not be sensible. The purpose of the database
query generator is so that the system can be seamlessly integrated with a pre-built
database with its own interface. Choosing the correct database and the query interface
is an important decision and one that must be made early in the design, as it may place
restrictions on other components in the system. As the system is to be designed to
demonstrate how SW technologies might improve NL querying systems this database
will be a triplestore.

3.9 Choosing a Triplestore Application

There are many triplestore applications available for download, such as Jena8 (Carroll 04),
Sesame9 (Broekstra 02), Kowari10 (Wood 05), Redland11 (Beckett 01) and 3Store12 (Harris 03).
Several factors must be considered to determine which system is the best to use:

• How easy is it to find and communicate with the developers / other users of the
system?

• Does the system provide interfaces with a familiar query language?
8http://jena.sourceforge.net/
9http://www.openrdf.org/

10http://www.kowari.org/
11http://librdf.org/
12http://sourceforge.net/projects/threestore/

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System48

• What is the triplestore implemented on top of, i.e. is it based on top of a relational
database such as MySQL or Oracle or does it have some other lower-level structure?
A familiar method is preferable so that the working of the triplestore can be
understood. This may help determine why some queries may not work and aid
design of faster queries.

• How fast is the system, both in importing and querying?

Jena uses a familiar SPARQL query interface, which we are familiar with. Jena can also
be configured to store RDF data in a familiar MySQL database. However we do not
know any of the developers and very few users. In comparison to 3Store the general
speeds of Jena seems to be quite a bit slower (Lee 04).

Like Jena we do not know the developers of Sesame and we do not know many users.
Sesame did not originally have a SPARQL query engine, it has it’s own Sesame RDF
Query Language (SeRQL) but a plug-in13 has been built for it. Sesame can use MySQL
as a repository (Broekstra 02). Using MySQL as a repository, reading in roughly the
equivalent number of triples as for Jena in (Lee 04), Sesame appears to be almost three
times as fast (≈ 300 seconds compared to 844.247 seconds) (tri 05).

The developers of 3Store considered using both Jena and Sesame before deciding to
build their own triplestore (Harris 03). In particular they found that Jena was not
good at importing large amounts of RDF data and Sesame was quite slow at querying.
Considering these factors, 3Store is a very strong contender because we know some of
the developers, as well as a number of users; It supports the familiar query language
SPARQL; It is based on top of a familiar MySQL database. 3Store was purposefully
designed to store large amounts of RDF data so it should scale well.

3Store does not support inferencing especially well and therefore desoite using it initially
it may not be wholly suitable for the task at hand. Jena does provide more support for
inferencing and may well be a better candidate. This is discussed further in Chapter 5.

3.10 Response Generator

The response generator receives two separate inputs. One is results returned from the
database queries, the other is the extracted commands. The extracted commands are
basically the machine-readable query with result ID tags substituting the parts of the
query that could be converted into database queries. These two inputs are then used
with the data processing functions to generate a response for the user. Using the example
given in section 3.6.3. The two inputs would look like this:

13http://sparql.sourceforge.net/design-spec/design.html

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System49

• Extracted Commands: ASK(#Result1 GREATER THAN #Result2)

• Database Query Results:

<sparql>

<head>

<variable name="tracklength"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="tracklength">

<literal>355000</literal>

</binding>

</result>

</results>

</sparql>

<sparql>

<head>

<variable name="tracklength"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="tracklength">

<literal>1028000</literal>

</binding>

</result>

</results>

</sparql>

The values between the literal tags in the two database queries are then inserted in
the extracted commands in the machine-readable query. First the GREATER THAN
command is executed, this returns false. Then the ASK command is run, this simply
converts false into an answer that would be understood by a user, e.g. No. This response
is then returned to the user.

Just returning a single word response to the user is sufficient to answer the user’s query
but it may not be enough to satisfy them that the answer is definitely correct. To
increase the user’s confidence in the answer, returning some of the processing steps
would be useful. The machine-readable query would be a useful step to display. This is
because it shows the domain concept mappings the system has chosen, which will help
the user in determing whether their intended NL query has been answered. This will

Chapter 3 A Conceptual Framework for a Semantic Web-based NL Querying System50

also assist them if and when they give feedback for use by the domain concept mapping
reinforcement learning algorithm.

Displaying the machine-readable query would also be useful if more than one is gen-
erated. In section 3.6.3, it was discussed that an NL query may not provide enough
information about an entity to determine for certain which entity it was referring to,
so a list of entities may be used to generate a number of queries. Displaying all these
queries to a user would be beneficial, as it would make the user aware that they did not
define the entity conclusively enough, as well as showing them how they could do so in
the future. At this point, how these multiple queries were resolved would also need to
be displayed, to make the user aware what final response they receive is in reference to.

Along with the response given to the user a set of options will be given to the user. One
requesting that the query be re-executed using the next most probable set of domain
concept mappings. The second allowing the user to confirm that the response is correct
and a third allowing the user to start a new query. As stated in section 3.6.1, these three
reactions, have a negative, positive and neutral effect respectively on the reinforcement
learning algorithm.

3.11 Summary of Conceptual Framework

The conceptual framework uses many of the ideas and techniques discussed in the back-
ground research in Chapter 2. The ideas adopted vary from using or adapting pre-built
components, such as the NLPs, Stanford parser and Minipar, the entity recognition
engine ANNIE and Wordnet and OpenThesaurus for domain concept mapping. To ap-
proaches on how to construct the system as a whole, such as the architecture suggested
for an Intermediate Representation Language System (IRLS) in (Androutsopoulos 95)
and the incremental representation demonstrated in Janus (Hinrichs 88).

The conceptual framework is designed to demonstrate how SW technologies can be used
throughout a NL querying system, in an integrated manner, that makes it possible
to interpret more sophisticated queries and then represent them in a richer way. SW
technologies also allow the data for a domain to be stored in a logical manner, making
it more straightforward to transform an NL query into query(s) that can be executed
on a triplestore. SW technologies can also be used to help build up data for the system,
as demonstrated in 3.6.2.

From this conceptual framework it is now possible to envisage how this NL querying sys-
tem can be implemented. Early stages of this implementation are discussed in Chapter
4.

Chapter 4

Implementation

Having a conceptual framework now makes it possible to start building the components
of the NL querying system. As stated several times in Chapter 3, the implementation
of the system needs to be performed in an incremental manner. This begins by first
building the components that are least dependent on the rest of the system. A number
of these have already been implemented and are discussed in this chapter.

After these base components are built it becomes possible to build the components
that rely on these, e.g. the parse tree reconcilator cannot be built until there is a
component that provides NLP(s) output. Once all the individual components have
been built, the incremental implementation can focus on making certain components
more sophisticated, e.g. the parse tree reconcilator, as described in section 3.5, has
increasingly sophisticated ways of reconciling the parse trees it receives.

Producing a intricate plan of these incremental implementations would be difficult and
probably not unproductive. What is important is to consider is what other components a
component will need to use once it is implemented. If these are not already implemented
they should be completed first. A further problem with a intricate plan is that it reduces
adaptability if a certain component behaves unexpectedly. Therefore keeping a flexible
plan will allow the implementation to evolve over time.

4.1 Parser Interface

Minipar and the Stanford parser are the two NLPs that have been chosen to for use in
the NL querying system, (see section 3.4). During the system development it will be
useful to see the parse trees that each NLP returns for various NL queries. Therefore a
parser interface has been built that returns the outputs of both Minipar and the Stanford
parser. This parser interface is a web page that simply displays the text-form of each
parse tree, as can be seen in Figure B.1.

51

Chapter 4 Implementation 52

The parser interface is slightly more sophisticated than it may first appear. The Stanford
parser uses the English factored lexicon, that is quite large (≈ 250MB of memory) and
takes 15-20 seconds to load on a 3GHz hyper-threaded Pentium 4. To avoid having to
load the lexicon each time a query is executed, a client-server relationship has been set
up. This dramatically decreases the processing time by allowing the server side to keep
the lexicon in memory and the client to connect each time it has a NL query to parse.

4.2 Importing Data

Importing data is liable to be a time-consuming task. It is important to be aware of
the data needs to be imported to ensure an appropriate method is used. The first
implementation of the NL querying system will be for the MusicBrainz domain. The
ontology for this domain, as described in section 3.1.2.1, has been heavily adapted from
the original ontology provided by the MusicBrainz website. This means that porting
data provided by the MusicBrainz database is not feasible. Another option is to screen-
scrape data from music websites, this however gives very little guarantee of reliable or
complete data. The screen-scraping tool may struggle to retrieve all the data because
the format varies so widely. If the tool could retrieve the data perfectly, there is a high
probability that data will be unreliable, as is often the case with web data.

The best solution for importing data is to use manual form-based data entry. It may be
more time-consuming but the data will be more trustworthy as it has not been created
by a third party. By having the original data, it does not matter if it is not absolutely
correct because the answers given by the system can be checked against this original
data. If these two tally then the system can be said to have passed the test for that
particular NL query.

As form-based entry can be quite slow, it is essential that thought is given to designing
the forms to facilitate fast and accurate input. The form displayed in Figure 4.1 is laid
out in a logical way so that a user must first enter the main details about the album, i.e.
its name, creator, year of release, etc. They can then enter more specific details that are
of variable length, such as the tracks and the actions performed upon the album. The
form tries to use drop down boxes wherever possible, using SPARQL queries to generate
the options that need to be displayed. This prevents the user from mistyping an entry,
it should also reduce the time taken to submit an entry. The form provides links to
submit data for other entities in domain, such as musical actors, album types, album
statuses and musical actions. The entry forms for these can be found in the Appendix,
from Figure B.2 to Figure B.5.

Chapter 4 Implementation 53

Figure 4.1: Album Submission Form

4.3 A System for Creating Domain Mappings

The ontology defined in section 3.6 is only the specification of the system for creating
domain concept mappings, this specification needs to be implemented to make the sys-
tem. The first aspect of the system that needs to be implemented is the user accounts.
In section 3.6.2, a list of six properties that these user accounts require was discussed
and it was explained how these were to be conceptualised within the ontology. These
properties now exist but they need to be implemented within the system.

4.3.1 Unique Identities and Security

The system implements unique identities and security by providing a login for the system.
A screenshot of the login screen is provided in Figure B.7 in the Appendix. Once a user
submits their account details they are checked against the entries in the triplestore to see
if they match. The string entered into the password field is masked and when submitted
is MD5 hashed and compared to the MD5 hash of the password for that user to maintain

Chapter 4 Implementation 54

security. The system does not currently use secure HTTP so the password is sent in
plaintext but this can be implemented later if necessary. Once the user is logged in any
additions or modifications they make to thesaurus objects will cause those objects to be
tagged as being owned by them, although not necessarily solely by them.

4.3.2 User Account Consistency

The session ID property is provided in the ontology to prevent two users logging in to
the same account at once. Once a login is successful, an approximately unique session
ID is created for the session and stored in the triplestore. It is also stored as the value of
a cookie, identified as an encrypted version of their user ID. Everytime the user performs
an operation the system checks to see whether the session ID the user was given at login,
which is passed in the header of the web page, matches that stored in the cookie. If
so the cookie’s time to live is reset to an hour. If however there is no match or the
cookie has timed out the user will be automatically logged out, before any operation
is performed. Having the session ID stored in the triplestore allows recover of a user’s
username, user ID and domain. This reduces the the number of variables being passed
in the header, improving both tidiness and security.

If a user tries to login while another session is still active or has not been logged out of
properly, a warning is displayed to the user. If there is no cookie associated with the
session, then the warning informs the user that either the session is running on another
computer or it has become non-active, otherwise the user is warned that the session
is still active. The user can then either choose to terminate the session or not. Both
options will return the user to the login page but the former will also expire any active
cookie and delete the session ID from the triplestore, preventing the user getting the
same warning message if they try to log in again. In this case it is necessary to login
twice to maintain security. This is to prevent a malicious user from creating a page that
links to this warning message page with the appropriate values passed in the GET and
POST headers because then they could simply click on a button to gain access to the
whole system.

Using cookies prevents an unauthorised user using a session that has been not logged
out of properly as it times out after one hour and the user cannot perform URL injection
to gain access. The way this has been implemented prevents any possibility of two users
being logged in at the same whilst avoiding deadlock if a session is not logged out of
properly.

4.3.3 Classification of Account Purpose

As already described in section 3.6.2.3, a thesaurus user account can be classified for
purpose using keywords and in the future possibly other more specific classification

Chapter 4 Implementation 55

mechanisms. The user profile editor provided by the system, (see Figure 4.2), allows
these keywords can be managed.

Figure 4.2: User Account Management for Thesaurus Management System

4.3.4 Identification of the Possessor

This user profile editor also allows the user to add or remove FOAF profiles for the
purpose of identifying the possessor(s) of the account. The user profile editor can also
be used to view other user’s profiles. Whilst viewing a user profile the user can click
on the user’s FOAF profile link. This loads a page that displays a formatted version of
their FOAF profile, as illustrated in Figure B.6 in the Appendix. This formatted FOAF
profiles gives details of friends a user has and projects that they have or are working
on, which may assist the user in determing whether it would be useful to borrow their
thesaurus or not.

4.3.5 Quantification of Importance

The profile editor also gives useful information such as the thesauruses they have bor-
rowed and whether they are compulsorily or voluntarily borrowed. It displays the au-
thority level of the thesaurus, which is their quantification of importance.

The profile editor provides a link, that can also be found via the main menu, to a form
allowing the user to manage their borrowed thesauruses. A screenshot of this form can

Chapter 4 Implementation 56

be found in the Appendix as Figure B.8. This form allows the users to add and remove
voluntarily borrowed thesauruses. When a user adds a voluntary thesaurus they must
also specify its authority level, this quantifies its importance to this particular user.
Compulsory thesauruses have a fixed authority level that is specified for that thesaurus’
account when it is created. At present there is no facility to create accounts except by
manually creating the RDF/XML and importing it into the triplestore.

4.3.6 Thesaurus Discovery

To help users find thesauruses, the manage thesauruses form, (see Figure B.8), provides a
search engine based on keywords. From these search results the user can view the profile
for the account and even the FOAF profiles associated with that account to determine
whether they wish to borrow that account’s thesaurus.

4.3.7 Managing Lexical Concepts

User accounts and thesaurus discovery is only part of the system. One of the most
important features is the facility to manage lexical concepts. Figure 4.3 is a screenshot
of the form provided to manage lexical concepts. At the top of the form there is the name
of the lexical concept, this is also, when put with URL folder1 for lexical concepts, the
URI for this particular lexical concept. Next, the type of the lexical concept is defined.
Following this there are the four main components of the lexical concept, its words,
glossary entries (glosses), lexical concept relations and domain concept relations. For
each of these four components the borrowed relationships are displayed followed by the
user’s relationships. The user can edit or create their own relationships for any of the four
different components. This is straightforward for the first three components, although
defining lexical concept relationships is presently not especially user-friendly. Currently
the user can select from a list of lexical concept names, which is not particularly useful
as the name does not state what the lexical concept represents. This could be achieved
by allowing the user to search for a word in-form, then a list of lexical concepts that
contain that word could be given to the user to choose from. To make it easier to select
the correct lexical concept from this reduced list, a subset of words associated to it could
also be provided.

Adding or editing domain concept relations is slightly more sophisticated. When defining
the domain concept to link to, the user must also define the three parameters, used,
useful and unuseful, which make up the reinforcement learning formula in equation 3.1.
It may be possible to simplify this for the user but to do this in a way that still captures
both the probabilities and the certainty, i.e. both the ratio and size of the values, may
be difficult.

1http://sanjay.ecs.soton.ac.uk/ drn05r/musicbrainz/lexcon/

Chapter 4 Implementation 57

Figure 4.3: Lexical Concept Management for Thesaurus Management System

Chapter 4 Implementation 58

4.4 Summary

So far the implementation has concentrated on three main areas:

• NLP interface

• Data acquisition

• Lexical to domain concept mapping (through thesauruses)

The purpose of implementing the first of these components early has been to gain an
understanding of how an NLP represents an NL query as this underlies the whole NL
querying system. Being able to play around using the interface described in section 4.1
should provide insight for how to build the parse tree reconcilator, the machine-readable
query generator and even the entity recognition engine.

The last two components also needed to be implemented early as they are required to
capture data that is necessary to built and test most the components in the system. As
a large amount of data needs to be collected to gain enough domain coverage to make it
possible to user test the system, having the facility to import data early in development
should make importing this data less painful.

One of the next components that can be built is the entity recognition engine. Firstly
the gazetteers need to be compiled. This should be helped by already having some data
acquired from the form-based submission system discussed in section 4.2. The grammar
rules may be more difficult to construct, as they will probably have to be designed ad
hoc dependent on the domain.

Two further components that could be constructed next are the command mappings
and the data processing functions. Neither of these rely to heavily on other compo-
nents, although the former relies on an increased understanding of the likely NL queries.
However it will not be possible to complete these in one increment of the implementa-
tion. As work progresses further command mappings or data processing functions will
probably be required. In this first increment it should be possible to formalise how these
command mappings and data processing functions will be represented and then used by
the system.

Providing an intricate plan of implementation would be difficult and probably counter-
productive. Discussing exactly how and when each and every component for the system
will be built would be foolhardy. Section 5.1 provides a rough timeline for when com-
ponents for the NL querying system will be built, it is quite vague as a more specific
timeline would be unlikely to be accurate.

Once the implementation has completed a sufficient number of increments it should be
possible to user test it, that will help to start drawing some conclusions to the main

Chapter 4 Implementation 59

research question. How these user tests will be designed is yet to be determined. Simply
giving a test user a number of questions to find answers to would be no real test for a
NL querying system at all.

Chapter 5

Conclusions

In the background research carried out in Chapter 2 a large number of existing NL query-
ing systems / NLIDBs have been investigated. What is apparent about those that have
been successful is that they concentrate on only one domain, e.g. Lunar (Woods 72),
Planes (Waltz 78), etc. Even Ask (Thompson 83) that was designed generically, cannot
be used for more than one domain concurrently. The main reason for this is due to
the ambiguity that can arise in terms when they are applied to more than one domain.
Therefore like NLIDBs that have gone before, the NL querying system proposed con-
centrates on one domain but to make it widely applicable the framework should allow
swapping between domains with ease. This task is made easier through the use of SW
technologies, as they facilitate wrapping up a domain into a nice bundle, i.e. an ontology.
This has been exemplified by the GINSENG project (Bernstein 06).

Chat-80 is a system that uses a database of Prolog statements to perform inference to
resolve NL queries; a triplestore can be used in a similar way. As previously described
in Chapter 2, OWL is a language that can define logical relationships. It can be used to
generate logical statements much like the Prolog statements used in Chat-80. By being
able to create logical statements it should be possible to exploit the data to answers
more complex NL queries than would be possible otherwise.

Currently the NL querying system uses 3Store as its chosen triplestore, this has little
support for inferencing logical statements. It may be possible to find a tool that can be
incorporated into the system that can provide this inference. A better solution may be
to use a different triplestore application. GINSENG used Jena and its RDFS inferencing
model. Jena also has an OWL DL inferencing model that can provide more sophisticated
inferencing. This could be used over the MusicBrainz and CombeChem ontologies to
allow the NL querying system to use inference as one of its tools to help find the correct
answers to the more sophisticated NL queries submitted. At this stage a final decision
on which triplestore application should be used needs to be made. Although we have less

60

Chapter 5 Conclusions 61

knowledge of Jena, it does provide features that are essential in producing a powerful
NL querying system, making it the better option.

One of the other main advantages of using SW technologies is their support for amalga-
mating data from distributed sources. Currently the conceptual framework for the NL
querying system takes advantage of this in a number of ways. Domain ontologies can
be pulled in from different sources. FOAF profiles can be linked to from a user profile
in the thesaurus management system. The system probably does not take advantage
of this feature of SW knowledge technologies as much as it could. As the system is
implemented more scenarios where this feature is beneficial may become apparent.

It was observed in section 2.3.1, that the CombeChem domain with its digital lab book,
would benefit from having a NL querying system. This could be used for retrieving
information whilst planning and conducting experiments and also for reviewing past
experiments. A NL querying system provides advantages over a GUI; when it comes to
finding specific values from a data book, a single typed query might well be quicker than
a number of clicks to find the required table that still may need to be studied to find
the particular piece of data required. Despite the benefits that SW technologies provide,
developing a generic NL querying system for this domain would be difficult because of its
complexity and the degree of expert knowledge. Therefore, taking inspiration from the
analogies used in the SmartTea and myTea project, (see sections 2.3.1.1 and 2.3.1.2),
a simpler analogous domain has been determined, i.e. the MusicBrainz domain, (see
section 3.1.2).

The CombeChem project ended in 2005. Since then, a related project has been started,
entitled myExperiment1 (De Roure 07). This project intends to assist scientists from
varying different fields: bioinformatics, chemistry, social statistics and astronomy. The
main goal of the project is to provide a Virtual Research Environment (VRE) to allow
scientists to share and discuss their experiments, which is similar to one of CombeChem’s
goals. Part of the inspiration for myExperiment comes from the popular social network-
ing site MySpace2. Scientists would like to be able to swap workflows and publications
much like current users of MySpace share documents, photos and videos. Currently the
project is in its early stages and bioinformatics is the main focus. As the project de-
velops, more work related to chemistry and the CombeChem project will be completed
making it possible to determine how a NL querying system for CombeChem could fit
in.

One application of the NL querying system could be to provide a remote interface to
the digital lab book when performing long timescale experiments. For example, a user
may want to check the current temperature within the lab, whilst they sort out some
paperwork in their office. A simple NL query could elicit this information without

1http://myexperiment.org/
2http://www.myspace.com

Chapter 5 Conclusions 62

the user having to return to the lab. A NL querying system is far superior when the
interfacing device is small, such as in a cellphone, because it does not require a large
display or a high resolution for it to be used. A NL querying system using a standard
messaging system such as Short Message Service (SMS) or even an instant messenger
client over General Packet Radio Service (GPRS) would provide a useful way for chemists
to keep track of their experiments in almost any location.

The main purpose underlying the Semantic Web paradigm, is to change the current
web from one that stores human-readable knowledge as machine-readable data to one
that can produce a greater amount human-readable knowledge by storing machine-
readable knowledge, (see section 2.2.3). By design, a NL querying system that uses SW
technologies meets these criteria but it also goes one step further by providing a natural
language interface to find this knowledge.

5.1 Future Work

As already stated, producing a precise plan of when and in which order components of the
system should be built is infeasible, as it is difficult to be certain of the dependencies each
component until just before they are built. The command mappings and data processing
functions are two components that have been cited as being suitable to develop next,
as they only depend on components that have already been built. Once these are
completed, a review process will be required to determine the components that no longer
have dependencies on other incomplete components, these can then also be implemented.
This review process will need to be repeated until all the components in the system are
completed to an extent where data can flow through the whole NL querying system.
At this point, designing and conducting user tests for the MusicBrainz domain would
be useful. These tests would help determine how to modify the system as part of the
incremental implementation process to produce a more effective NL querying system.
With these modifications it may then be possible to conduct user tests for the system
using the CombeChem domain.

5.1.1 Future Work Plan

A future work plan is necessary to structure the time between now and the completion of
the PhD thesis. The plan should ensure that various stages of the the required research
are completed promptly to allow enough time to write the thesis report.

5.1.1.1 May - July 2007

1. Install and get use to using Jena.

Chapter 5 Conclusions 63

2. Import MusicBrainz data for complete components. (See section 4.2).

3. Write initial data processing functions library. (See section 3.10).

4. Determine how to represent natural language to machine-readable command map-
pings. (See section 3.6.3).

5. Compile an initial list of command mappings. (See section 3.6.3).

5.1.1.2 August - December 2007

1. Use ANNIE to build the entity recognition engine. (See section 3.3).

2. Build machine-readable query generator. (See section 3.6).

3. Build database query generator. (See section 3.7).

4. Build response generator. (See section 3.10).

5. Conduct self-testing.

6. Re-implement system using Stanford Parser.

7. Conduct further self-testing.

8. Implement basic parse tree reconcilator. (See section 3.5).

9. Conduct more self-testing.

5.1.1.3 January - June 2008

1. Compile and conduct first user tests.

2. Evaluate first tests.

3. Tweak components of the system as part of the incremental implementation, based
on the results of the user tests.

4. If time permits, import data for CombeChem domain.

5. Compile and conduct second user tests, possibly on both domains.

5.1.1.4 July 2008 - Completion

1. Evaluate second user tests.

2. Write up thesis.

Appendix A

A.1 Minipar Output from a Question

Minipar can be set to produce two distinctly different outputs, a dependency parse tree
and a set of dependency triples. This two outputs displayed below ate for the question

Dependency Parse Tree -

(

E0 (() fin C *)

1 (Who ~ N E0 whn (gov fin))

2 (recorded record V E0 i (gov fin))

E2 (() who N 2 subj (gov record) (antecedent 1))

3 (the ~ Det 5 det (gov thriller))

4 (album ~ N 5 nn (gov thriller))

5 (Thriller ~ N 2 obj (gov record))

6 (? ~ U * punc)

)

Dependency Triples -

fin C:whn:N who

fin C:i:V record

record V:subj:N who

record V:obj:N thriller

thriller N:det:Det the

thriller N:nn:N album

64

Appendix A 65

A.2 Key for Ontology Diagramming

Figure A.1: Key for Ontology Diagramming

Appendix A 66

A.3 Diagram for Wordnet Ontology

This is a visualization diagram of the Wordnet Ontology created by the KnOWLer
project at the University of Neuchâtel, based on Wordnet 1.7.1. It uses entities described
in the key in Appendix A.2.

Figure A.2: Visualization Diagram of the Wordnet 1.7.1 Ontology

Appendix B

B.1 Screenshot of Parser Interface

Figure B.1: Parser Interface for MINIPAR and Stanford Parsers

67

Appendix B 68

B.2 Screenshots of Musical Data Submission System

Figure B.2: Musical Actor Submission Form

Figure B.3: Album Type Submission Form

Appendix B 69

Figure B.4: Album Status Submission Form

Figure B.5: Musical Action Submission Form

Appendix B 70

B.3 Screenshots of Thesaurus Management System

Figure B.6: FOAF Profile Visualizer

Appendix B 71

Figure B.7: Login Form for Thesaurus Management System

Figure B.8: Manage Thesauruses for for Thesaurus Management System

Bibliography

[Allen 87] J. Allen. Natural lanaguage understanding. Apt, A. and Weisel,
J., 1987.

[Alves 06] A. Alves, A. Arkin, S. Askay, B. Bloch, F. Curbera, Y. Goland,
N. Kartha, C. K. Liu, V. Knig D. amd Mehta, S. Thatte,
D. van der Rijn, P. Yendluri & A Yiu. Web Services Business
Process Execution Language Version 2.0. http://www.oasis-
open.org/committees/download.php/18714/wsbpel-specification-
draft-May17.htm, May 2006. OASIS Committee Draft.

[Androutsopoulos 95] I. Androutsopoulos, G. D. Ritchie & P. Thanisch. Natural Lan-
guage Interfaces to Databases–an introduction. Journal of Lan-
guage Engineering, vol. 1, no. 1, pages 29–81, 1995.

[Bechhofer 04] S. Bechhofer & R. Volz. Patching Syntax in OWL Ontologies. In
Proceedings of ISWC2004, 2004.

[Beckett 01] D. Beckett. The Design and Implementation of the Redland RDF
Application Frameworke. In WWW10, 2001.

[Bellinger 04] G. Bellinger, D. Castro & A. Mills. Data, Informa-
tion, Knowledge, and Wisdom. web: http://www.systems-
thinking.org/dikw/dikw.htm, 2004.

[Berners-Lee 02] T. Berners-Lee. The Semantic Web. W3C Presentation, April
2002.

[Bernstein 06] A. Bernstein, E. Kaufmann, C. Kaiser & C. Kiefer. Ginseng:
A Guided Input Natural Language Search Engine for Querying
Ontologies. In Proceedings of the 2006 Jena User Conference,
May 2006.

[Bray 04] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler &
F. Yergeau. Extensible Markup Language (XML) 1.0. W3C, third
edition edition, February 2004. W3C Recommendation.

72

BIBLIOGRAPHY 73

[Brickley 04] D. Brickley & R. V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. http://www.w3.org/TR/rdf-schema/,
February 2004. W3C Recommendation.

[Broekstra 02] J. Broekstra & .and van Harmelen F. Kampman A. Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema. In ISWC2002, 2002.

[Brown 96] R. D. Brown, J. E. Boggs, R. Hilderbrandt, K. Lim, I. M. Mills,
E. Nikitin & M. H. Palmer. Acronyms Used in Theoretical Chem-
istry. Pure Appl. Chem., vol. 68, no. 2, pages 387–456, 1996.

[Carroll 04] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne &
K. Wilkinson. Jena: Implementing the Semantic Web Recom-
mendations. In WWW2004, 2004.

[Cohen 92] P. R. Cohen. The Role of Natural Language in a Multimodal
Interface. In Proceedings of the 5th annual ACM symposium on
User interface software and technology, pages 143–149, New York,
NY, USA, 1992. ACM Press.

[Cunningham 06] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu,
M. Dimitrov, M. Dowman, N. Aswani & I. Roberts. Developing
Language Processing Components with GATE Version 4 (a User
Guide). University of Sheffield, October 2006.

[De Roure 07] D. De Roure & C. Goble. myExperiment 2̆013 A Web 2.0 Virtual
Research Environment. In Submitted to International Workshop
on Virtual Research Environments and Collaborative Work En-
vironments, Edinburgh, UK, 2007.

[Dix 03] A. Dix. Funology: From usability to enjoyment, chapitre 13:
Deconstructing Experience - pulling crackers apart, pages 165–
178. Kluwer Academic Publishers, Dordrecht, 2003.

[Dowty 81] D. R. Dowty, R. E. Wall & S. Peters. Introduction to montague
semantics. Kluwer Academic Publishers, 1981.

[Fellbaum 98] C. Fellbaum, G. A. Miller, R. Al-Halimi, R. C. Berwick, J. F. M.
Burg, M . Chodorow, J. Grabowski, S. Harabagiu, M. A. Hearst,
G. Hirst, D. A. Jones, R. Kazman, K. T. Kohl, S. Landes, C. Lea-
cock, K. J. Miller, D. Moldovan, N. Nomura, U. Priss, P. Resnik,
D. St-Onge, R. Tengi, R. P. van de Riet & E. Voorhees. Wordnet:
An electronic lexical database. MIT Press, 1998.

BIBLIOGRAPHY 74

[Gibson 05] A. Gibson, R. Stevens, R. Cooke, S. Brostoff & m. c. schraefel.
myTea: Connecting the Web to Digital Science on the Desktop.
Rapport technique, ECS, University of Southampton, October
2005.

[Guha 97] R. V. Guha & T. Bray. Meta Content Framework Using XML.
W3CNote, June 1997.

[Harris 03] S. Harris & N. Gibbins. 3store: Efficient Bulk RDF Storage. In
1st International Workshop on Practical and Scalable Semantic
Systems, pages 1–15, Sanibel Island, Florida, 2003.

[Hendrix 78] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz & J. Slocum. De-
veloping a Natural Language Interface to Complex Data. ACM
Transactions on Database Systems, vol. 3, no. 2, pages 105–147,
June 1978.

[Hinrichs 88] E. W. Hinrichs. Tense, Quantifiers, and Contexts. Computational
Linguistics,, vol. 14, no. 2, June 1988.

[Horrocks 02] I. Horrocks & P. F. Patel-Schneider. Reviewing the De-
sign of DAML+OIL: An Ontology Language for the Semantic
Web. http://www.cs.man.ac.uk/ horrocks/Publications/down-
load/2002/AAAI02IHorrocks.pdf, 2002.

[Horrocks 03] I. Horrocks & P. F. Patel-Schneider. Reducing OWL Entailment to
Description Logic Satisfiability. In Proc. of the 2nd International
Semantic Web Conference (ISWC), 2003.

[Hughes 04] G. Hughes, H. Mills, D. De Roure, J. G. Frey, L. Moreau, m. c.
schraefel, G. Smith & E. Zaluska. The Semantic Smart Labo-
ratory: A system for supporting the chemical eScientist. Org.
Biomol. Chem., vol. 2, pages 1–10, 2004. DOI: 10.1039/b410075a.

[Johnson 85] T. Johnson. Natural language computing: The commercial appli-
cations. Ovum Ltd., 1985.

[Karvounarakis 02] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis
& M Scholl. RQL: A Declarative Query Language for RDF. In
WWW2002, May 2002.

[Klein 03] D. Klein & C. D. Manning. Accurate Unlexicalized Parsing. In
41st Meeting of the Association for Computational Linguistics,
pages 423–430, 2003.

[Lassila 98] O. Lassila. Web Metadata: A Matter of Semantics. IEEE Internet
Computing, vol. 2, no. 4, pages 30–37, July/August 1998.

BIBLIOGRAPHY 75

[Lassila 99] O. Lassila & R. R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. Rapport technique, W3C,
February 1999. W3C Recommendation.

[Lee 04] R. Lee. Scalability Report on Triple Store Applications.
http://simile.mit.edu/reports/stores/stores.pdf, July 2004. Sim-
ile Project.

[Lin 94] D. Lin. PRINCIPAR-An Efficient, Broad-coverage, Principle-
based Parser. In COLING-94, pages 42–48, Kyoto, Japan, 1994.

[Lin 98] D. Lin. Dependency-based Evaluation of MINIPAR. In Workshop
on the Evaluation of Parsing Systems, May 1998.

[Manola 04] F. Manola, E. Miller & B. McBride. RDF Primer.
http://www.w3.org/TR/rdf-primer/, February 2004. W3C Rec-
ommendation.

[Martin 04] D. Martin, A. Ankolekar, M. Burstein, G. Denker, D. Elenius,
J. Hobbs, L Kagal, O. Lassila, A. McDermott, D. McGuin-
ness, S. McIlraith, M. Paolucci, B. Parsia, T. Payne, T. Sabou,
C. Schlenoff, E. Sirin, M. Solanki, N. Srinivasan, K. Sycara
& R. Washington. OWL-S: Semantic Markup for Web
Services. http://www.daml.org/services/owl-s/1.1/overview/,
November 2004. DAML Technical Overview.

[McConnel 95] S. McConnel. PC-PATR Reference Manual. Sil International,
7500 W. Camp Wisdom Road Dallas TX 75236-5629, USA, Oc-
tober 1995.

[Minksy 74] M. Minksy. A Framework for Representing Knowledge. Rapport
technique, Massachusetts Institute of Technology, Cambridge,
MA, USA 1974.

[MyS 07] MySQL AB. MySQL 5.1 Reference Manual, 4959 edition, Febru-
ary 2007.

[Naber 04] D. Naber. OpenThesaurus: Build-
ing a Thesaurus with a Web Communitye.
http://www.openthesaurus.de/download/openthesaurus.pdf,
June 2004.

[Newman 06] D. Newman. How semantic web knowledge technologies might
improve natural language querying systems. 9 Month Mphil/PhD
Progress Report, July 2006.

BIBLIOGRAPHY 76

[Prud’hommeaux 06] E. Prud’hommeaux & A Seaborne. SPARQL Query Language
for RDF. http://www.w3.org/TR/rdf-sparql-query/, April 2006.
W3C Candidate Recommendation.

[schraefel 04a] m. c. schraefel, G. Hughes, H. Mills, G. Smith & J. Frey. Making
Tea: Iterative Design through Analogy. In Proceedings of Design-
ing Interactive Systems. In 2004 conference on Designing inter-
active systems: processes, practices, methods, and techniques,
pages 49–58, Cambridge Mass, USA, 2004. ACM Press.

[schraefel 04b] m. c. schraefel, G. Hughes, H. Mills, G. Smith, T. Payne & J. Frey.
Breaking the Book: Translating the Chemistry Lab Book into a
Pervasive Computing Lab Environment. In Conference on Hu-
man Factors in Computing Systems (CHI), pages 25–32, Vienna,
Austria, 2004. ACM Press.

[Seaborne 04] A Seaborne. RDQL - A Query Language for RDF.
http://www.w3.org/Submission/RDQL/, January 2004. W3C
Member Submission.

[Shneiderman 80] B. Shneiderman. Natural vs. precise language for human operation
of computers. In ACL Proceedings, 18th Annual Meeting, pages
139–141, 1980.

[Sleator 03] D. D. Sleator & D. Temperley. Parsing English with a link gram-
mar. In Third International Workshop on Parsing Technologies,
2003.

[Spenceley 92] S. E. Spenceley. The theory of principal-based engineering. IEE
Colloquium on Principle Based Engineering, no. 1, pages 1–3,
1992.

[Thompson 83] B. H. Thompson & F. B. Thompson. Introducing ASK A Simple
Knowledgeable System. In Proceedings of the 1st Conference on
Applied Natural Language Processing, pages 17–24, Santa Mon-
ica, California, 1983. California Institute of Technology.

[Torisawa 00] K. Torisawa, K. Nishida, Y. Miyao & J. Tsujii. An HPSG parser
with CFG filtering. Natural Language Engineering, vol. 6, no. 1,
pages 63–80, 2000.

[tri 05] Tripletest Report. http://tripletest.sourceforge.net/2005-06-
08/index.html, June 2005.

[van Assem 06] M. van Assem, A. Gangemi & G. Schreiber. Developing Language
Processing Components with GATE Version 4 (a User Guide).
Working draft, W3C, June 2006.

BIBLIOGRAPHY 77

[Vogel 90] C. M. Vogel. Inheritance reasoning and head-driven phrase struc-
ture grammard. Master’s thesis, Computing Science at Simon
Fraser University, December 1990.

[Waltz 78] D. L. Waltz. An English Language System for a Large Relational
Database. Communications of teh ACM, vol. 21, no. 7, pages
526–539, July 1978.

[Warren 82] D. H. D. Warren & F. C. N. Pereira. An Efficient Easily Adapt-
able System for Interpreting Natural Language Queries. American
Journal of Computational Linguistics, vol. 8, no. 3-4, pages 110–
122, 1982.

[Wood 05] D. Wood, P. Gearon & T. Adams. Kowari: A Platform for Se-
mantic Web Storage and Analysist. In WWW2005, 2005.

[Woods 72] W. A. Woods, R. M. Kaplan & B. N. Webber. The lunar sciences
natural language information system: Final report. Bolt Beranek
and Newman Inc., Cambridge, Massachusetts, 1972.

	1 Introduction
	2 Background Research
	2.1 Natural Language Querying
	2.1.1 NL Querying Pros and Cons
	2.1.2 Natural Language Parsers and NLP Systems
	2.1.2.1 Rule-based and Principle-based Grammars
	2.1.2.2 Unification-based Grammars
	2.1.2.3 Head-driven Phrase Structure Grammars
	2.1.2.4 Semantic Grammars
	2.1.2.5 NLP Implementations
	2.1.2.6 NLP Systems

	2.1.3 Thesauruses
	2.1.3.1 Wordnet: A Lexical Database
	2.1.3.2 OpenThesaurus

	2.1.4 Entity Recognition
	2.1.4.1 ANNIE

	2.1.5 Command Recognition

	2.2 Semantic Web Technologies
	2.2.1 RDF and RDF Schema
	2.2.2 OWL
	2.2.3 Data, Information and Knowledge
	2.2.3.1 How RDF turns Data into Information
	2.2.3.2 How RDF turns Information into Knowledge

	2.2.4 RDF Triplestores
	2.2.4.1 Querying a Triplestore

	2.2.5 Wordnet on the Semantic Web
	2.2.5.1 The KnOWLer Project
	2.2.5.2 W3C Wordnet Working Draft

	2.3 Implementations Using SW Technologies
	2.3.1 The CombeChem Project
	2.3.1.1 The SmartTea Project
	2.3.1.2 The myTea Project
	2.3.1.3 The CombeChem Triplestore

	2.3.2 GINSENG: Guided Input Natural language Search ENGine

	2.4 Summary

	3 A Conceptual Framework for a Semantic Web-based NL Querying System
	3.1 Domains for the NL Querying System
	3.1.1 CombeChem Domain
	3.1.2 MusicBrainz Domain
	3.1.2.1 Designing the MusicBrainz Ontology

	3.2 Data Flow for a NL Querying System
	3.3 Entity Recognition Engine
	3.3.1 For MusicBrainz Domain
	3.3.2 For CombeChem Domain

	3.4 NL Parser(s)
	3.5 Parse Tree Reconciliator
	3.6 Machine-Readable Query Generator
	3.6.1 Design of Domain Concept Mapping
	3.6.2 Design of User Accounts
	3.6.2.1 Unique Identities and Security
	3.6.2.2 Maintaining Consistency
	3.6.2.3 Classification of Purpose
	3.6.2.4 Identification of the Possessor
	3.6.2.5 Quantification of Importance

	3.6.3 Command Mappings

	3.7 Database Query Generator
	3.8 Database Interface
	3.9 Choosing a Triplestore Application
	3.10 Response Generator
	3.11 Summary of Conceptual Framework

	4 Implementation
	4.1 Parser Interface
	4.2 Importing Data
	4.3 A System for Creating Domain Mappings
	4.3.1 Unique Identities and Security
	4.3.2 User Account Consistency
	4.3.3 Classification of Account Purpose
	4.3.4 Identification of the Possessor
	4.3.5 Quantification of Importance
	4.3.6 Thesaurus Discovery
	4.3.7 Managing Lexical Concepts

	4.4 Summary

	5 Conclusions
	5.1 Future Work
	5.1.1 Future Work Plan
	5.1.1.1 May - July 2007
	5.1.1.2 August - December 2007
	5.1.1.3 January - June 2008
	5.1.1.4 July 2008 - Completion

	A
	A.1 Minipar Output from a Question
	A.2 Key for Ontology Diagramming
	A.3 Diagram for Wordnet Ontology

	B
	B.1 Screenshot of Parser Interface
	B.2 Screenshots of Musical Data Submission System
	B.3 Screenshots of Thesaurus Management System

	Bibliography

