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Abstract— This report investigates the use of Linkage Learning
in Genetic Algorithms (GAs) to try and determine why it is
worthwhile using this technique to improve the power of GAs.

This report first introduces GAs and how they go about
converging on optimal solutions with comparison to other search
algorithms. Then it discusses what linkage learning is and several
of the techniques used to perform linkage learning. The GA from
‘Learning Linkage’ [1] is then analysed. A re-implementation of
the analysed GA is then tested, modified and experimented on
to gain greater understanding of how the GA learns linkage
and what are the motivating factors behind the improvement in
linkage.

From experimentation on the re-implementation it is con-
cluded that performing crossover using recipient genomes that
are the complement to the optimal building block and the
truncated selection of only optimal building block donors are two
of the factors that motivate improvement in linkage. Leading to
the conclusion that Harik’s linkage learning GA (LLGA) may not
be able to learn both linkage and fitness at the same time. Further
experimentation, which tests for both improvement in linkage and
fitness is suggested, to support the conjecture that Harik’s LLGA
cannot learn both linkage and fitness simultaneously. Finally the
conclusions from the experimentation are combined with the
research on other GAs to answer the following questions:

1) How can functionally dependent genes be aligned adja-
cently in LLGAs?

2) What conditions are required for a LLGA to learn linkage?
3) Why is important for linkage to increase?

Index Terms— Linkage Learning, Genetic Algorithms, Linkage
Skew, Building Blocks

I. INTRODUCTION

GENETIC ALGORITHMS (GAs) were first developed
by John Holland and his colleagues/students at the

University of Michigan in 1975 [2] and first discussed in
his paper ‘Adaptation in natural and artificial systems’ [3].
Genetic Algorithms are an attempt to model the biological
world’s process of natural selection as a method of searching.
Natural selection was a phenomena first described by Charles
Darwin in his book the ‘On the Origin of Species’[4]. He
remarked that natural selection is a process that causes many
species to become extinct but consequently maintains those
well-suited to their environment. This remark was clearly not
Darwin’s biggest contribution to genetics but it is a helpful
conceptualisation of the purpose of GAs.

Prior to the conception of GAs there were three main types
of search methods used to try and determine the optimal set of
parameters in a particular search space; these three methods
were calculus-based, enumerative and random searching [2].
One of the most critical aspects of a search method is its
robustness. The robustness of a search method is basically the
likelihood that it will find the optimal solution in the search
space. All three of the pre-existing search methods are either

not totally robust or are computationally expensive because of
the ‘Curse of Dimensionality.’

Genetic Algorithms work by taking an initial population of
parameters sets, also known as genomes (sets of genes). The
gene values for each genome can be specifically chosen but it
is best if they are chosen randomly, as it will help the algorithm
search across the greatest amount of the parameter space1,
making it more robust. From the initial population a selection
process takes place to determine the new population. Selection
is controlled by a fitness function applied to performance of
each genome, the ‘fitter’, (The better the performance of the
genome in a prescribed tournament), a genome is the more
likely that genome will be involved in the next generation.
There are four different ways that a genome can be involved
in the next generation:

1) The genome can be directly copied to the next genera-
tion

2) The genome can be mutated and then copied to the next
generation. Mutation is the process of randomly select-
ing a gene from the genome and randomly changing its
value.

3) Crossover can be performed between two individual
and the resultant offspring can be copied to the next
generation. Crossover is where two genomes are spliced
together to produce an offspring which shares some
genes values with the first parent and some gene values
with the second. The number of ‘points’ in Crossover, is
the number of times the genetic material in an offspring
changes from being inherited from the first parent to
being inherited from the second or vice-versa.

4) Crossover can be performed between two individual and
the resultant offspring can then be mutated before being
copied to the next generation. It does not actually make
a difference if mutation is performed before or after
crossover.

Individuals generated from one of the last three of these
‘Involvements’ are required for the GA to search the parameter
space.

GAs have some advantages over the other search methods,
which provide them with greater robustness. GAs do not use
derivatives like calculus-based methods do [2], which means
they are capable of handling parameters which are made up
of decision variable sets2. The way that GAs search parameter
space makes them less susceptible to getting stuck at local
optima like some calculus-based methods, such as a steepest
gradient hill-climber [2].

1A multi-dimensional space which encloses every possible set of parame-
ter/gene values.

2A decision variable set could be the set {a,g,c,t}, where the ordering of
this set arbitrary.
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II. LINKAGE LEARNING

Linkage learning in GAs is the process of grouping together
functionally (epistatically) dependent subsets of genes. Genetic
(also known as Physical) linkage is a measure of distance
between the loci of two or more specific functionally de-
pendent genes, this is the same as what the biological world
commonly interprets linkage to be, (see [5]). Linkage does
not necessarily mean genetic linkage, any representation of
the functional dependency between two or more genes, can
be considered a representation of linkage. Many GAs that
learn linkage operate using a two phase method, firstly they
determine the subsets of functionally dependent genes and
then they use some mechanism to improve the genetic linkage
between these genes.

Both the biological world and many GA papers3 have
cited that the generation of genomes with good Linkage is
advantageous because it helps maintain good subsets of genes.
As defined in section I one of the ways that genomes can
populatate the next generation is through crossover. When
crossover is performed the group(s) of genes that affect the
fitness of the genome,(often described as the active genes or
the building block(s)), may be split up. In one-point crossover
the chance of splitting up a group of active genes is proptionate
to the distance between the first and last active gene of that
group. If we take a simple case where there is only one
building block, if one of the parents has an optimal or near
optimal building block (i.e. a highly fit genome), close genetic
linkage is advantageous because it reduces the probability of
the building block being split up.

It is all well and good to say that functionally dependent
genes should be placed adjacent to each other and then this
will make the search more robust; unfortunately the functional
dependency between genes is generally not known. This means
that aligning of functionally dependent genes adjacently must
occur during the search for the optimal genome. Now that we
have a better undertanding of what linkage is this report can
address in greater detail several questions:

1) How can functionally dependent genes be aligned adja-
cently in GAs?

2) What conditions are required for a LLGA to learn
linkage?

3) Why is important for linkage to increase?
There are a number of papers that discuss problems that

both hill-climbing search algorithms and simple GAs strug-
gle or find impossible to solve[6]. Simple GAs find some
Walsh polynomials difficult to solve. Walsh polynomials are
based on combined sets of Walsh functions[7] defined by a
polynomial. Walsh polynomials are not necessarily difficult
for to solve, it is dependent on the co-efficients defined for
the polynomial. Some polynomial co-efficients produce low-
order, short-defining length schema, that are easy for GAs to
optimize. Other polynomial co-efficients produce high-order,
long-defining length schema that are more difficult for GAs
to optimize because high-order schema are more likely to be
deceptive4 and long-defining length schema are more likely to

3mostly those written in the last 20 years
4I.e. converge on local optima rather than the global optimal

be split-up by crossover.
There are many other problems similar to these Walsh

polynomials that simple GAs struggle to solve, due to the
fact that crossover destroys many fit genomes because of large
distance between the first and last active genes. In fact a
”random-mutation hill-climber”, a algorithm that follows local
gradients but with genetic overtones, outperforms simple GAs
on fitness landscapes such the ”Royal Road” function [8] [9].
Linkage learning has been taken up as one of the techniques
that could be used to solve these problems because it can
reduce the probability of groups of functionally dependent
genes being broken up. This makes it easier for a GA to
traverse the fitness landscape towards an optimal solution.

One of the first attempts to produce a GA that could learn
linkage was Goldberg, Korb and Deb’s Messy GA (mGA)[10].
The mGA relies on the fact that the problems that it needs to
resolve are decomposable into a set of sub-problems that can
be solved independently. Having a set of sub-problems means
that an individual in the mGA does not have to specify a value
for every gene. The advantage of being able to concentrate on
separate sub-problems means that each functionally dependent
set of genes can be developed independently into a tightly
linked building block before gradually bringing back together
all the building blocks to generate an optimal individual.
The mGA is a moving-locus mechanism, that is to say the
actual positions of the genes move about the genome to allow
improvement in genetic linkage and produce more tightly-
linked building blocks. The mGA was the first GA that was
shown to converge on the global optimum for a provably
difficult problem, i.e. a deceptive problem. It was compared
against a simple GA which could only get 25% of the sub-
functions correct in tests performed by Goldberg, Korb and
Deb.

In [11], Kargupta acknowledged that the mGA was the first
serious attempt at tackling the issue of linkage learning in
quasi-decomposable5 problems. Kargupta also observed that
for linkage learning to be successful it needs to be able
to represent complex subsets such as 0000, 1111, that he
described as ‘similarity subsets.’ The mGA does not have the
richer relationships required to easily capture such complex
subsets. Kargupta states that GAs needs to be able to detect
order-k delineable relations efficiently, (where k is a constant
integer), rather than just first order relationships between
specific genes. To simplify a framework to store these higher-
order relationships is required, as opposed to just aligning
functionally dependent genes adjacently. Kargupta makes clear
that at press time this was purely a philosophical idea but since
then several implementation have been developed that try and
tackle the representation of complex subsets using higher order
relationships (e.g. BOA, that is discussed later in this section).

The mGA showed that it can solve problems that simple
GAs could not, however there are still problems that the mGA
struggles to solve [12]. Watson and Pollack cited that the mGA
is partial commitment algorithm because it can be broken
down into individually solvable sub-problems. When solving
the sub-problems only genes associated with that sub-problem

5Problems that can be broken down into a set of sub-problems.
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need to be committed to and all other gene values can be
ignored making it only ‘partial’ committment. Watson and
Pollack then go on to say that partial committment GAs should
be successful whether they are moving locus algorithm, where
the ordering of genes can change or a fixed locus algorithm,
which relies on recording links between functionally depen-
dent genes instead. They also cited that the mGA uses a two
phase operation:

1) Limited Commitment
2) Full Commitment

Watson and Pollack stated that by replacing these two phases
with an integrated incremental approach, the algorithm be-
comes more powerful and able solve problems that the original
mGA could not solve. They called this new GA the Incre-
mental Commitment GA (ICGA). This ICGA is capable of
solving hierarchical problems such as the Hierarchical If and
only If (H-IFF) function that resembles a ‘Royal Road’ fitness
landscape but unlike the ‘Royal Road’ fitness landscape this
function cannot be solved by any type of hill-climber[13]. The
ICGA was inspired by the mGA but it uses fixed loci and relies
on building links between functionally dependent links rather
than aligning functionally dependent genes adjacently.

Another approach to incorporate linkage into GAs was
proposed by Pelikan, where he uses Bayesian networks in
his Bayesian Optimization Algorithm (BOA)[14]. Bayesian
networks rely on positive and negative instances, which can be
generated by thresholding the genomes at a particular fitness
function value and setting all genomes above that value to
positive instances. Bayesian networks are a logical way to
tackle this problem because the way they are constructed
means that genes that have functional dependencies on each
other are close nodes in the network. The joint distribution
encoded by the Bayesian network can then be used to generate
new genomes to replace some of the genomes in the current
population to produce the next generation. Pelikan found that
the linkage that the Bayesian network provides produces a GA
that is more efficient than a simple GA [14].

Like the mGA, BOA struggles to solve hierarchical prob-
lems so Pelikan adapted BOA to produce a hierarchical BOA
(hBOA)[15]. hBOA can solve hierarchical problems, such as
hierarchical trap problems, by proper decomposition over a
number of levels, chunking 6 and preservation of alternative
candidate solutions.

BOA and hBOA are quite clever solutions, which can
deal with continuous, discrete and decision variable gene
values. BOA uses machine learning techniques to estimate
the functional dependency between genes and then improves
the genetic linkage of the new population. To gain a greater
understanding of genetic linkage it is better to look at a more
classical example of linkage learning which is unfettered by
non-genetic methods of optimisation.

Harik and Goldberg in their paper entitled ‘Learning Link-
age’ [1], suggest using a method of crossover that allows
the re-arrangement of gene order in binary genomes, so that
linkage learning could occur. One of the objectives of my

6representing and manipulating solution pieces to low-level sub-problems
as if they were single variables

Fig. 1. Harik’s Crossover Mechanism

paper is to re-implement the environment that Harik defined
in [1] to gain a greater understanding of linkage in a purely
genetic mechanism, (no machine learning, like in BOA) and
to try and obtain detailed answers to the three questions stated
previously.

III. HARIK’S LINKAGE LEARNING

The crossover method that Harik and Goldberg use in [1]
is similar to that which occurs in bacterial cells, where the
conservation of gene order is much less likely than for the
crossover that occurs meiosis. Bacterial cells are quick at
adapting to produce versions of themselves that are highly
fit, such as those resistant to antibiotics [16]. Therefore a
crossover method that resemble that of bacterial cells should
produce a GA that can quickly find the optimal solution.

The main question about Harik’s LLGA is, ”Does it cause
linkage learning to occur?” To determine this, firstly the
method of crossover must be analysed. In Harik’s paper, he
describes the crossover mechanism in detail. Figure 1 is a
pictorial representation of Harik’s crossover mechanism.

Firstly he defines that his genomes are circular, to negate any
differentiation in gene position relative to a gene’s closeness
to the end of the genome. As a consequence circular genomes
must have two-point crossover or crossover with an even num-
ber of points. Secondly two genomes, a donor and a recipient,
contribute to produce only ONE offspring. A randomly long
splice is taken from the donor genome and is spliced into the
recipient genome at a random point. From the splice point
in the recipient genome, there is an iterative process through
each gene, (firstly through the donor splice and then through
the whole recipient genome) removing all duplicate genes.
By removing duplicate genes, the gene order of the offspring
genome is significantly different from the order of either the
donor or recipient genome, which may make it have better
(tighter) or poorer (weaker) linkage than its parents. As tight
linkage preserves fitter genomes better, the selection process
should tend to favour genomes with tighter linkage.
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Fig. 2. Fitness Function Distribution for 4-Bit Deceptive Trap Function

Harik defined an implementation with a functionally de-
pendent four gene building block, as a part of a 150 gene
genome. He used the fitness function distribution in Fig. 2 for
this building block.

This distribution is known as a deceptive trap function
because if a calculus-based search algorithm, such as a steepest
gradient hill-climber, was to be used, it would almost certainly
converge on genomes with the four zeros building block, called
the deceptive building block, instead of genomes with the
optimal four ones building block. Harik chose this type of
fitness function distribution because it demonstrates a case
where a GA that promotes tight linkage can find the global
optimum when a calculus-based hill-climber or a simple
genetic search algorithm is unlikely to do so.

Harik performed two control experiments to test whether
predictions on how linkage should improve were correct. Harik
defines linkage as being the largest gap between two active
genes divided by the total number of genes in a genome, there-
fore the best linkage that can be achieved is (150− 4)/150 =
0.973. He measured linkage after the selection stage but before
performing crossover. Both these experiments are somewhat
contrived, in the sense that they always cross a selected optimal
block building genome with a randomly ordered (generated
on the fly) deceptive building block genome, that is also
the optimal building blocks complement. The first experiment
‘Linkage Skew’ where the selected optimal genome was the
donor, showed identical results to those predicted by Harik.
The second experiment ‘Linkage Shift’, is very similar to the
first experiment, apart from the optimal selected genome is the
recipient rather than the donor. The results for this experiment
were slightly different to Harik’s prediction even after he re-
adjusted his prediction but they did show an improvement in
linkage.

After performing the two control experiments Harik ran his
main experiment, which was not contrived like the control
experiments. This main experiment used a similar deceptive
trap function for measuring the fitness of all selected genomes.
The deceptive trap function used was slightly different to the
control experiments because the building block was only of
size 3 in a genome of size 100.

The mechanism that Harik used for selecting genomes is
quite interesting and can be changed by varying a parameter
called the selection rate. This selection rate defines the tourna-
ment size to use from which the fittest individual is selected.
Take for example a selection rate of 1.5, this selection rate
means that half of the selected genome are selected from a
tournament size of two and the other half is selected from a
tournament size of 1 (random selection).

Harik used selection rates from 1.2 up to 2.0 and tested
to see both whether the linkage increases and what value the
building block converges on. For all the selection rates apart
from 1.2 the population converges on the optimal building
block but with no discernible increase in linkage for optimal
building blocks. When a selection rate of 1.2 was used there
was a discernible increase in linkage for the optimal building
blocks but the algorithm converged on the deceptive building
block. So the optimal building block population’s linkage
reaches a peak and then quickly drops down to zero, as the
number of optimal building blocks becomes very small and
then zero.

These results show that it seems very difficult to strike a
balance between converging on the optimal building block
and learning linkage using Harik’s mechanism. The control
experiments that show linkage are contrived and have no
consideration of the average fitness of the population and the
main experiment, that is concerned about fitness only shows
linkage when the GA converges on the deceptive building
block.

The reason that Harik gives for the difficultly in learning
significant linkage in an uncontrived experiment is the ‘Homo-
geneity Effect’. This is the effect that selection process reduces
the diversity in the population, (making the population more
homogeneous) but the crossover mechanism fails to increase
the diversity so that over time the diversity of the population
decreases as the population converges on the optimum. Having
identical genomes means there is no way of producing non-
optimal genomes in the future that provide the pressure for
increased linkage.

As only the control experiments that Harik ran showed
improvement in the linkage of optimal building blocks these
experiments should be focused on to see if the reasons for
increased linkage can be determined. As Harik’s ‘Linkage
Skew’ experiment most closely resembled his predicted results
it makes sense to focus on this mechanism as the results that
it produced are best understood.

Harik’s ‘Linkage Skew’ experiment used an initial popula-
tion of 6400 genomes, all with the optimal building block but
in random orders. These genomes where then used as donors
and crossed with randomly ordered genomes with deceptive
building blocks to produce a new population of 6400 genomes.
I.e. an individual with four active 1-genes is crosed with an
individual with four active 0-genes in random locations. The
objective the ‘Linkage Skew’ experiment was to show that the
four active 1-genes get closer to each other over evolutionary
time.

As the optimal building block genome is the only type of
donor that can be selected the fitness function is not a trap
function (see Figure 2) but a truncated, at the optimal building
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Fig. 3. Truncated Fitness Function Distribution for 4-Bit Building Block

block, fitness function (see Figure 3). This means that although
Harik states that the recipient is the deceptive building block
it is really only the optimal building block’s complement, as
the four zeros building block is no longer a local optima.

The crossover process to produce a new population was
repeated over 50 generations and it was found, as already
stated, that linkage did indeed increase. This result was
significant for two reasons; firstly it showed that there was
some force encouraging tighter linkage; secondly it showed
that the increase in linkage between generations was dependent
on the current linkage, which Harik had hypothesised before
the experiment7.

By having a basis from which linkage learning can be
seen to occur, i.e. Harik’s ‘Linkage Skew’ experiment it
should be possible to develop this experiment to work out
which conditions provide pressure for increased linkage and
which do not. Harik’s ‘Linkage Skew’ experiment has several
conditions, listed below, that make it contrived and therefore
make the search algorithm much less robust.

1) The initial donor population is already optimal.
2) The recipient genomes used are always the complement

of the optimal building block.
3) The selection mechanism for the donor only allows

optimal genomes to be selected.
By gradually relaxing the conditions listed above it should
be possible to make the search algorithm more robust and
help us gain a better idea of what condition(s) are the biggest
contributers to the experimental results that show increased
linkage.

IV. RE-IMPLEMENTATION

As stated in section III, there are several conditions in
Harik’s ‘Linkage Skew’ experiment that can be relaxed. This
section takes these conditions and implements experiments that
gradually relax these conditions to determine those that have
the greatest affect on the improvement of linkage.

7Harik hypothesised that the increase in linkage should equal the linkage
variance in the current population divided by the current linkage.

Matlab was used to implement all the experiments in this
re-implementation, as it is the best tool for prototyping this
type of algorithm because it allows fast development and easy
management of multi-dimensional numerical arrays.

For each experiment a certain number of parameters need
to be defined, as these parameters can directly affect the
results produced. For all the experiments in this paper these
parameters have been kept as close to the Harik’s ‘Linkage
Skew’ experiment as possible. To save explanation for each
experiment, there follows a listing of all the parameters, their
descriptions and values:

• N: The number of genes in the genome = 150
• K: The number of active genes in the genome = 4
• P: The population size at each generation = 500
• G: The number of generations of genomes produced =

50

The parameter values shown are almost identical to those used
by Harik in his ‘Linkage Skew’ experiment. The only main
difference is the population size is 500 instead of 6400. Several
tests were run to see how population size affects results and it
was found that a population size of 500 gives almost identical
results to 6400.8. Harik himself observed in [17] that the
population size is very important, too small a population will
have a lack of diversity and will not thoroughly traverse the
search space, too large a population and the algorithm becomes
too computationally expensive. This was considered when the
population size for these experiments was chosen. Using a
population size the same as Harik, for all of the experiments
would have been too computationally expensive but by proving
the similarity in the test results for population sizes of 500
and 6400, shows that the diversity could not have been to
drastically affected. The size of the population becomes more
important as the size of the building block increase, for each
extra gene in the building block, the number of building blocks
permutations doubles, therefore the population size itself needs
to be doubled. Fortunately the building block size for these
experiments is quite small.

Harik’s ‘Linkage Skew’ experiment measured its linkage
on the donor genomes selected at each generation to maintain
consistency across all these experiments, this is how linkage
is measured.

A. Experiment I

Before testing to see whether Harik’s ‘Linkage Skew’
experiment can be repeated, it would be good to see how
quickly Harik’s mechanism for crossover can increase link-
age, if the fitness function for selecting both the donor and
recipient genomes explicitly selects based on the linkage
of the genomes. By knowing the maximum rate of linkage
learning for a GA that is explicitly selective, (unlike Harik’s
‘Linkage Skew’ experiment), gives a basis for comparison
for experiments that are implicit. Figure 4 shows the results
for an experiment where both the donor and recipient are

8Comparing the results for Harik’s ‘Linkage Skew’ experiment and this
paper’s re-implementation in Experiment II there is almost no difference
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Fig. 4. Experiment I(a): Linkage Learning averaged over 30 runs where
Donor and Recipient are selected using a linear Linkage-based fitness function

Fig. 5. Experiment I(b): Linkage Learning averaged over 30 runs where the
offspring is selected directly from the current population with NO crossover

selected based on a linear linkage-based fitness function9 From
Figure 4 there is a clear improvement in Linkage from an
initial Linkage of 0.55 to 0.79 after 50 generations. There
are two mechanisms at work here, one is Harik’s method
of crossover that reorders the genes and has the potential
to produce offspring with improved linkage; the other is the
fitness function which should select genomes with better than
average Linkage. Figure 5 show results where no crossover
was performed but the same fitness function was used. From
Figure 5 there is a discernible greater and faster increase in
linkage when no crossover is performed. This suggests that
Harik’s crossover mechanism is possibly destructive to linkage
and to a certain extent this is true. It may therefore seem
counter-intuitive to use Harik’s method of crossover but all
mechanisms that change the order of the genes will on average
tend to decrease the linkage of the offspring in comparison to
its parents, if those parents have linkage better than that of

9I.e. a genome with linkage = 0.8 is twice as likely to be selected as a
genome with linkage = 0.4. Linkage is measured by dividing the largest gap
between two active genes and dividing by the total number of genes, the same
measure as used by Harik.

Fig. 6. Experiment II: Re-implementation of Harik’s ‘Linkage Skew’
experiment averaged over 30 runs

a random population. Basically as the linkage of the parents
becomes greater and greater than that of a random population,
the probability that the offspring will have weaker linkage than
its parents increases. This is because the crossover mechanism
cannot work against the linkage distribution gradient that
drives offspring closer to that of a random population’s average
linkage.

The motivation for using Harik’s crossover method can
be seen by comparing the trends of the maximum linkage
genomes for 4 and 5, when crossover is used this maximum
value increases, whereas without crossover the maximum
value stays the same or decreases. This demonstrates that the
crossover method helps to maintain the diversity of linkage in
the population allowing the creation of genomes with greater
linkage than any of the genomes in the previous population.

B. Experiment II

Now that the means by which Harik’s crossover mechanism
affects the linkage of genomes is better understood, a re-
implementation of Harik’s ‘Linkage Skew’ experiment can be
analysed with a greater insight to what is happening between
one generation and the next. Figure 6 shows the results to
this re-implementation. By comparison between the results
from Figure 6 and those for Harik’s paper, the only main
difference is the linkage of the initial population, which is
approximately 0.12 higher. The reason for the difference in the
initial population Linkage is probably due to Harik’s method
of randomizing the order of genomes10. The curves for both
graphs are very similar and the average linkage value after 50
generations is 0.87 in both graphs.

C. Experiment III

Now that we have an implementation, which is as similar
to Harik’s implementation as possible, alterations to the con-
ditions can be made to determine what conditions in Harik’s
implementation provide a drive for increased linkage.

10The method that randomises the initial population’s gene order is not
defined in Harik’s paper
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Fig. 7. Experiment III: Linkage Learning averaged over 30 runs where the
initial population is random not optimal

As already discussed in section III Harik’s ‘Linkage Skew’
experiment is rather contrived in its attempts to obtain results
that show improved linkage. By relaxing the ‘Linkage Skew’
mechanism gradually, one component at a time, it should be
possible to determine which components drive an increase in
linkage.

Harik’s ‘Linkage Skew’ experiment has an initial population
with only optimal building blocks in it, (although the linkage
of population is random). A typical GA would not start with
an optimal population, as what would be the point in trying to
construct new optimal genomes when every genome is already
optimal. Instead of starting with an optimal population, what
would happen if you started with a random population? Figure
7 shows the results obtained after this slight modification was
made.

Figure 7 produces results very similar to Experiment II. This
is hardly surprising as the selection mechanism for the donor
only selects optimal genomes. In Experiment II, each time a
donor genome was selected there was an equal chance it could
be any genome from the population of 500. In Experiment
III, each time a donor genome is selected, the population to
choose from is on average only 500/16 = 31.25 because
the probability of an optimal building block being generated
randomly is 1/16th, therefore the initial selectable population
size is a lot smaller. The most noticeable difference is that the
final linkage value is about 0.03 less than Experiment II, this
is due to a number of genomes with good linkage in the initial
population being eliminated because they are not also optimal.
Due to the very small change in results it is safe to conclude
that this component of Harik’s ‘Linkage Skew’ experiment is
not a significant driver for improved linkage.

D. Experiment IV

A further slight modification that can be made to Harik’s
‘Linkage Skew’ experiment to make it slightly less contrived,
is to change the way that recipient genomes are generated for
crossover. Currently all the recipient genomes are randomly
generated genomes with random linkage but a deceptive
building block, (i.e. four zeros on the active genes). The reason

Fig. 8. Experiment IV: Linkage Learning averaged over 30 runs where the
recipient genome’s building block is random

that Harik chose the deceptive building block he did was
because it is the complement of the optimal building block.
When you cross an optimal donor with a recipient that is its
complement, the only way to produce an optimal genome,
which can be used in the next generation, is for all the active
genes to come from the donor. Due to the way that Harik’s
crossover mechanism works, it is impossible for linkage of the
offspring to be better than that of the donor in his ‘Linkage
Skew’ experiment. This makes it comparable to Experiment
I(b) where no crossover takes place at all. If you compare
the maximum linkage genome over time in Experments I(b),
II and III, all three of them have either a downward or level
trend.

By changing the recipient genome generation mechanism
so that the building block is random not the complement of
the optimal building block makes the experiment less con-
trived. The building block distribution for randomly generated
building blocks is defined below:

• Zero active 1-genes = 1/16
• One active 1-genes = 4/16
• Two active 1-genes = 6/16
• Three active 1-genes = 4/16
• Four active 1-genes = 1/16

By using this distribution for recipient building blocks pro-
vides the potential for an increase in linkage between the donor
and the offspring. Figure 8 shows the results using the new
recipient building block distribution.

Figure 8 shows a much smaller improvement in Linkage
in comparison to Experiments II and III, roughly an increase
of 0.1 rather than 0.3-0.35 of the earlier experiments. As this
experiment was run 30 times an increase of 0.1 can still be
considered significant trend. Another significant result is the
upward trend of the maximum linkage genome, which is a
clear contrast to the level or downward trends in Experiments
II and III. This shows that Harik’s crossover mechanism can
generate offspring with better linkage than its donor parent,
even if the fitness function for the donor does not explicitly
select on linkage.

Due to the sharp contrast in these results it can be concluded
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Fig. 9. Experiment V(a): Linkage Learning averaged over 30 runs where
the donor genome is selected using a super-linear ramping fitness function

that crossing with a complementary building block, is one
of the driving factors for good linkage. Unfortunately as
already discussed, the reason the previous two experiments had
good improvement in linkage was because by crossing with
complementary building blocks, the effect of Harik’s crossover
mechanism is nullified. When crossover is nullified the effect
that it has of pulling offspring’s average linkage closer to
that of a random population is also eliminated, making the
divergence from a random population’s average linkage faster.

E. Experiment V

So far every alteration made to the Harik’s mechanism has
reduced the rate of Linkage improvement but there is still
a discernible increase over 50 generations. One of the main
components that makes Harik’s GA contrived, that has yet to
be investigated is the fitness function for the donor genome.
Presently it is ‘truncated’ with only the capacity to select
genomes with optimal building blocks. By relaxing this fitness
function so that it can select non-optimal building blocks
would make it less contrived.

Although Harik defined the fitness function as being a trap
function (see Figure 2 because it was truncated so that only
optimal building blocks could be selected, when relaxing the
selection mechanism, it does not really matter what the fitness
function distribution is as long as the optimal building block
has the highest fitness value. Figure 9 uses a super-linear
ramping fitness function. Below is a listing of the fitness
function value for each type of building block.

• Zero active 1-genes = 010 = 0
• One active 1-gene = 110 = 1
• Two active 1-genes = 210 = 1024
• Three active 1-genes = 310 = 59049
• Four active 1-genes = 410 = 1048576
By using this super-linear fitness function the probability in

the first generation of the donor selection mechanism picking
an optimal genome is only 0.76, assuming the random building
block distribution, as defined in section IV-D, which should
gradually increase as the linkage becomes tighter and the

Fig. 10. Experiment V(b): Linkage Learning averaged over 30 runs where
the donor genome is selected using a linear ramping fitness function

population distribution tends towards more optimal building
blocks.

The super-linear ramping function is basically a linear
ramping function (where the number of active 1-genes is the
fitness function value) raised to the power of 10. A super-
linear function is necessary to produce results that show
an increase in linkage. This is because using only a linear
function increases the number non-optimal building block
donors selected and therefore also increases the probability
that an optimal offspring will be generated from two non-
optimal building blocks, where the linkage of the donor
genome does not matter. By having optimal building blocks
in the new generation that have not survived because of their
tight linkage means that selecting an optimal building block
does not necessarily mean you are selecting a genome with
better than average linkage. Figure 10 is the same experiment
as Figure 9 but using only a linear ramping fitness function,
where the probability of selecting an optimal building block
in the first generation is only 0.25. In [17] it states that for an
an optimal building block to survive over time, the probability
of one being selected must be greater than 0.5. This suggests
that the number of optimal building blocks in the population
are likely to decrease yet further and make it more and more
difficult to learn linkage as the donor population becomes more
dissimilar to that of the optimal population used in Harik’s
‘Linkage Skew’ experiment, as shown in Figure 10.

By testing using varying powers to raise the super-linear
fitness function it was found that a power of 5-6 is required
to show a discernible improvement in Linkage, this is equal
to roughly a 0.5 probability of selecting an optimal building
block in the first generation. To confirm definitively the super-
linear power required to demonstrate improved Linkage, would
require further investigation with significance testing such as
Student T tests[18].

The results from these experiments show that as long as
the initial probability of selecting an optimal genome is a
significant majority, then there is very little difference in the
the improvement in linkage. The question of why reducing
the probability of selecting an optimal genome eliminates any
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Fig. 11. Probability Distributions for building blocks after crossover using
Experiment II Mechanism. (Left: Poor Linkage Donors, Right: Good Linkage
Donors)

sign of linkage has been addressed, however it would be
useful to apply some mathematical logic to why there is no
increase in linkage, as well as why the increase in linkage
in the experiments was less than for Harik’s ‘Linkage Skew’
experiment.

F. Experimentation Conclusion

From Experiment II to Experiment V, the rules of Harik’s
‘Linkage Skew’ have been relaxed to try and created an
experiment which is less contrived and could therefore be
applied in more general circumstances. Although we have
managed to show that with less contrived experiments linkage
can still be learnt, the degree of linkage learnt continued to
decrease throughout. The question is, ‘”Is it possible to fully
understand why this phenomena occurs?”’

Lets first take Harik’s ‘Linkage Skew’ experiment and
work out the probability distribution of building blocks after
crossover when they have both good and poor linkage. Figure
11 shows both probability distributions. These distributions are
very different to each other but it should be noted that there
is a distinct increase in the probability of the optimal building
blocks surviving crossover when there is good linkage, which
after all is the whole point of linkage learning. A second
thing that should be noted about these distributions is that the
average building blocks are the same, (2 active 1-genes per
genome). This means that although Harik’s mechanism will
learn linkage it cannot converge on an optimal value, which
further highlights how contrived Harik’s ‘Linkage Skew’ ex-
periment was.

Now lets take Experiment IV mechanism, it produces the
probability distributions as shown in Figure 12, when linkage
is poor and good. As can be seen from these probability
distributions, the increase in the probability of the optimal
building block is much less at 0.28 instead of 0.49. This
difference explains why there is a much lower increase in
linkage for Experiment IV than Experiment II. As already
stated for Experiment II the average number of active one-
genes after crossover is the same whether there is good or poor
linkage. However with Experiment IV the average number
of active one-genes is 3 instead of 2, which is closer to the
optimal building block. This shows how the Experiment IV is
less contrived than Harik’s Linkage Skew experiment, where
the average number of active 1-genes is the same as that for
a set of random genomes.

Fig. 12. Probability Distributions for building blocks after crossover using
Experiment IV Mechanism. (Left: Poor Linkage Donors, Right: Good Linkage
Donors)

Fig. 13. Probability of Optimal Building Blocks after Crossover as proba-
bility of Donor Building Blocks decreases

Experiment V has a lower probability of selecting an opti-
mal donor as the raising power for the super-linear function is
decreased. As the probability of selecting an optimal building
block donor decreases, the probabilities for optimal building
blocks after crossover also decreases, in both the poor and
good linkage cases. Purely for illustrative purposes an example
of this phenomena is given in Figure 13, looking at the values
you can see how reducing the probability of selecting an
optimal donor reduces the drive for increased linkage because
the probability of producing an optimal offspring does not
vary as much dependent on the linkage of the donor. In
fact the probability for producing an optimal genome after
crossover when linkage is poor is likely to be higher than
0.12 because optimal genomes can be produced from two
non-optimal parents. This makes the difference in probability
between good and poor linkage donors even less than 0.14,
making the drive for increased linkage even smaller. That is
why a super-linear function such as Experiment V(a) show
increased linkage whereas Experiment V(b) that has a linear
function does not.

The experiments show that as you make the mechanism
less contrived and more like a realistic GA, the amount of
linkage learnt decreases but as demonstrated mathematical the
average number of active 1-genes gets closer to the optimum
after crossover (whether the Linkage is good or poor). This
clearly demonstrates that with Harik’s crossover mechanism, a
balance between learning linkage and finding optimal genomes
needs to be struck, unfortunately from the experimental results
and Harik’s main experiment it appears that there may be
no balance where you can achieve both of these at the
same time. Further testing would be required to improve the
certainty of this conclusion. All the experimentation in this
paper has concentrated on increased linkage and not worried
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too much about increasing the average fitness of genomes.
More experimental evidence which shows fitness to increase
but linkage to remain unchanged would lend further weight to
the earlier conclusion.

G. Conclusion

To conclude lets consider the three questions set out in sec-
tion II. Firstly, ”How through the processes of linkage learn-
ing GAs do functionally dependent genes become adjacently
aligned?” In Harik’s ‘Learning Linkage’ paper genes can be
adjancently aligned through the crossover mechanism. Harik
demonstrated in his paper that two mechanisms are at work,
‘Linkage Skew’ and ‘Linkage Shift’. Harik’s implementation
is one of only a few implementations discussed that uses a
purely genetic technique to re-order genes and attempt to learn
linkage, in contrast to BOA, that uses techniques that more
resemble machine learning. Through the experimentation in
section IV it was shown that even after relaxation of Harik’s
‘Linkage Skew’ experiment there is still the potential for link-
age learning. This demonstrates that functionally dependent
genes can be aligned adjacently using non-genetic approaches
such as machine learning Bayesian networks but also using a
purely genetic approach as demonstrated by Harik’s LLGA.

The second question asked, ”What conditions are required
for a LLGA to learn linkage?” It is clear from the exper-
imentation that for linkage to increase in a GA that uses
purely genetic mechanisms, very strict conditions need to be
imposed, which unfortunately makes the GA very difficult
to apply to generalised circumstances. Other GAs that learn
linkage require less strict conditions because many of them
can identify functionally dependent relationships and linkage
can be changed explicitly to take into account the functional
dependencies.

Finally, ”Why is it important for linkage to increase?”
The experimentation in this report probably gives the clearest
demonstration of why it is important for linkage to increase.
Figures 11 and 12 clearly show better linkage preserves opti-
mal genomes better. Other GAs show that increased linkage is
important because it allows the search algorithm to traverse the
parameter space more efficiently and decreases the chance of
it getting stuck at a local optima, which reduces the algorithms
robustness.

drn
May 13, 2005
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