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ABSTRACT

This report firstly examines how Morphogenesis can be interpreted through the use of
computer modelling, concentrating on reaction-diffusion equations and how they can be
used to simulate real-world animal skin patterns. The report then focuses on the work
done by Greg Turk in his 1991 paper ”Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion” [19]. The work accomplished in Turk’s paper is discussed; implementa-
tions based on his work in one, two and three dimensions are constructed and analysed for
this report. This analysis compares the implementations’ results to both those achieved by
Turk and real-world skin patterns. The analysis also attempts to determine how reaction-
diffusion models proposed by Turk and others function, in particular, how changing para-
meters affects the patterns produced. The report concludes with a discussion of whether
reaction-diffusion is an appropriate model for the natural phenomenon of animal skin pat-
tern formation. Finally, further work is proposed to extend the current implementations,
as these provide a solid basis to construct a generator for more complex reaction-diffusion
models.
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Chapter 1

Introduction

1.1 Morphogenesis

The fourth edition of American Heritage of the English Language dictionary describes
Morphogenesis as the ”Formation of the structure of an organism or part; differentiation
and growth of tissues and organs during development.” [6]

Alan Turing was one of the first to consider the mathematical theory behind Morphogenesis.
Turing produced a paper in 1952 [18] and several papers that remained unpublished until
1992 on the topic of Morphogenesis. These papers concentrated on how mathematics could
be applied to naturally occurring phenomena such as ‘Fibonacci Phyllotaxis’ which concerns
itself with explaining patterns such as the formation of the seed head of sunflowers or the
spiral patterns that occur round the stems of Euphorbia. [17] This phenomenon is described
as ‘Fibonacci Phyllotaxis’ because the Fibonacci number series defines these patterns. is’
because the Fibonacci number series defines these patterns.

The main phenomenon that Turing concerned himself was that of ‘Reaction-Diffusion’,
(R-D), which is a mathematical attempt to explain things such as animal skin patterns.
An analogy that Turing used to describe this mathematical theory has become known as
the ‘missionaries and cannibals’ model. This analogy defined the two basic components,
inhibitor as missionaries and activator as cannibals. This model allowed only the cannibals
to reproduce but two missionaries could convert a cannibal, (to a missionary). If this is
considered over a 2D map of an island, this would generate pockets of cannibals surrounded
by missionaries, which could be compared to the spotty pattern observed on a cheetah.
Turing proposed that modifications to the rules of the model would produce other patterns
such as stripes.

1



Chapter 1 Introduction 2

1.2 Purpose of Report

The course is designed to give a deep level of understanding in one area of Biologically-
inspired Computing whilst gaining exposure to several subjects. The project aims to re-
search an area, find a key paper, and replicate the work done in this paper. By in depth
implementation and investigation, we achieve a good understanding of the topic. Short
presentations inform other course-members of our research, and vice versa, building a good
exposure to the world of biologically inspired computing.

This report details the work done investigating morphogenesis, which is realised through
literary review, and the emulation of the work described in a key paper, selected from the
reviewed literature. The key paper in this instance is work done by Greg Turk, and is
described in Section 2.3. The project implementation also extends past Turk’s progress,
which is explained in chapter 4.



Chapter 2

Literature Review

2.1 Turing’s Initial Paper

As already stated the dictionary definition of Morphogenesis is ”The formation of the
structure of an organism or part”. [6] In detail, human beings begin as a single cell and
through many biological processes develop into fully grown adults consisting of around 1015

cells. These cells of many different types are arranged into extremely complicated structures
to perform a wide range of vital functions in the body.

However, Alan Turing, one of the most creative thinkers of the 20th century, used this term
mostly in the sense of pattern formation rather than this more general meaning. In 1952, he
published a paper that explained the chemical basis of morphogenesis in order to discuss a
possible mechanism by which the genes of a zygote may determine the anatomical structure
of the resulting organism [18]. In this paper, he proposed a Reaction-Diffusion system that
explains the pattern formation using morphogenesis. He asked a fundamental question;
how do patterns appear in a region which has nothing to serve as a template? [18] It is
suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis
[18].

Alan Turing’s paper has been widely cited in the mathematical theory of biological pattern
formation [16], and his theory is extended and applied to many other pattern generation
techniques.

3
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2.2 Current Status

2.2.1 Morphogenesis Research Overview

Morphogenesis is one of the major outstanding problems in the biological sciences. It
concerns a fundamental question of how biological form and structure are generated from a
single cell. Morphogenesis covers a wide range of biological processes. It concerns adult as
well as embryonic tissues, and includes an understanding of the maintenance, degeneration,
and regeneration of tissues and organs as well as their formation [13]. Morphogenesis also
addresses the problem of biological form at many levels, from the structure of individual
cells, through the formation of multi-cellular arrays and tissues, to the higher order assembly
of tissues into organs and whole organisms [13].

2.2.2 Morphogenesis and Skin Pattern Generation after Turing

One of the central issues in morphogenesis concerns the formation of skin pattern. In
1952, Alan Turing proposed a theory for pattern formation in which he showed that a
system of chemicals could evolve spontaneously into a spatial pattern. He then hypothesized
that this served as a pre-pattern for subsequent cell differentiation [18]. In 1974, Catmull
introduced texture mapping, as a method of adding visual richness to a computer generated
image without changing the geometry [5]. In 1977, Jonathan Bard firstly hypothesized a
mechanism for the production of zebra stripes in the three species of extant zebra [3]; and
later in 1981, Murray showed that the chevrons at the base of the zebra’s limbs is the
shape expected by the overlapping of two Turing-type reaction-diffusion systems [11]. In
1983, Oster, Murray and Harris proposed an alternative theory for morphogenesis, in which
mechanical effects induced cell motion and cells formed clumps which then differentiated.
The resulting system of equations described the evolution of cell density, extracellular
matrix (ECM) displacement and density is a highly complex system of coupled non-linear
partial differential equations of different types [1].

In 1991, two pieces of texture synthesis works using R-D were proposed. Witkin and Kass
demonstrated that a wide variety of patterns can be created using variations of one basic
R-D equation [20]. In detail, they showed the importance of anisotropy by introducing a
rich set of new patterns that are generated by anisotropic reaction-diffusion [21]. Moreover,
they also demonstrated how reaction-diffusion systems can be simulated rapidly using fast
approximations to Gaussian convolution [19]. In the same year, Turk showed the tech-
nique consisting of R-D and mesh direct mapping methods to generate texture on arbitrary
surfaces.
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2.2.3 Morphogenesis used in Reaction-Diffusion

How do the cells of an embryo arrange themselves into particular patterns? Turing proposed
that this could be controlled by a set of simple partial differential equations that describe
the concentration of some chemical substances, morphogens as he called them, that can
diffuse amongst the cells and also be produced within the cells. One morphogen, the
Inhibitor, suppresses the production the other, the Activator. The levels of each chemical
varies over time due to the reaction (production of morphogens) and diffusion, hence the
name. With the correct parameters a steady-state can occur and hence a pattern is formed.
Such chemical systems are known as Reaction-Diffusion systems.

2.3 Key Paper

”Generating Textures on Arbitrary Surface Using Reaction-Diffusion” written by Greg Turk
was chosen as the key paper. This paper emphasizes on two methods that can be applied
at different stages of pattern generation. The first one is a procedural method which is used
for texture synthesis, whereas the second one focuses on how to fit a texture to a random
surface. Although these two methods can be used separately, there are advantages to in
using both together in terms of generating natural textures on complex models [19].

In detail, the first method described in this paper, known as Reaction-Diffusion, is a chem-
ical mechanism for pattern formation; it introduces how two or more chemicals that diffuse
across a surface and react with one another can be form stable patterns [19]. This paper
firstly shows R-D implementations in 1D and 2D; by varying the parameters,forms differ-
ent patterns. The paper then extends the method by cascading multiple R-D systems, to
generate more complex patterns such as the ones seen on giraffes.

Having formed the patterns, they then need to be mapped to the surface of an object. In
order to avoid distortion of the textures especially on 3D models, the paper introduces the
second method of generating a mesh over the surface of a polyhedral model that can be
used for texture synthesis [19]. R-D can then be processed directly on the mesh.

Finally, this paper suggests some possible on cascading techniques and other pattern cre-
ation methods.

2.4 Texture Mapping Methods

There are three main methods that can be applied for texture synthesis - texture placement,
procedural texture synthesis and texture synthesis from samples.
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The first method takes an existing texture from a rectangular pixel array and wraps it
onto a surface [20]. This method aims to minimize noticeable seams between patches and
stretching and distortion of the pattern. The lapped texture, proposed by Praun et al., is
an extension of texture placement; it takes one or more irregularly shaped texture patches
and place many copies of the patches in an overlapping fashion over a surface [12]. This
technique produces excellent results since the nature of the overlapping patches is often
unnoticeable (See Figure 2.1) [20].

Figure 2.1: Four different textures pasted on the bunny model. The last picture illustrates
changing local orientation and scale on the body.

The second technique is procedural texture synthesis; a great strength of it is that each
new method can be used in conjunction with already existing functions. Reaction-Diffusion
is one of the most representative methods here. In addition, R-D is used in different
biological mechanisms proposed by different people to achieve different goals. For example,
as mentioned before, Turk demonstrated the R-D proceeded directly on arrays of cells that
have been placed over a polygonal surface in order to avoid noticeable seam and distortion,
whereas Fleischer et all. showed how interacting texture elements on a surface to create
texture geometry such as scales and thorns [7].

Since one pitfall of procedural texture synthesis is that it requires programmer keep writing
and testing code until the output has the right ‘look’ [20], the third method, texture synthe-
sis from samples, was developed. It allows the user to supply a small patch of the desired
texture and to create more texture that looks similar to this sample [20]. A hierarchical
mesh would be created using this approach.

By comparing with these three techniques, Reaction-Diffusion, one of the closest analogies
to real-world biology, was finally chosen since this project is after biologically motivated
solutions rather than graphical approaches. More specifically, Turk’s paper is selected as
the key literature since it provides not only the R-D method but also a direct mapping
mechanism, which avoids distortion and noticeable seams.



Chapter 3

Goals

The first goal of the project was to perform a investigation into how reaction-diffusion
works in one and two dimensions. This required a study of how reaction-diffusion systems
evolve across one dimension, the number of iterations required to produce stability and the
comparison between the levels of activator and inhibitor after stabilisation.

The main goal of this project was to replicate the work of the key paper, Greg Turk’s
”Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion.” [19] This goal has
several sub-goals. These sub-goals include firstly replicating reaction-diffusion in two di-
mensions to produce patterns that both resemble real-world skin patterns such as zebra
stripes and cheetah spots and the patterns produced by Turk.

The second sub-goal in emulating Greg Turk’s work was to use procedural texture synthesis
to directly map reaction-diffusion patterns onto three-dimensional models. To achieve this
goal several appropriate models needed to be found. Methods and parameters for procedural
textural synthesis were required, in order to emulate both the work done by Turk and
resemble real-world examples. It was decided to concentrate on emulating two skin patterns,
zebra stripes and cheetah spots and this left the emulation of cascading patterns, such as
cheetah spots, as a time-permitting goal.

7



Chapter 4

Design and Implementation

4.1 Introduction to Reaction-Diffusion

Reaction-Diffusion (R-D) is the foundation upon which Turk’s 1991 paper is built. R-D is
where two or more chemicals diffuse over a surface, and react with each other. Diffusion
is usually at unequal rates and results in stable patterns such as spots or stripes being
produced. Turk’s paper considers a number of different systems, as does this report. How-
ever, to understand the system it is easiest to inspect a two-chemical system first; the more
complex systems can then be introduced as required.

The general equations for two chemical R-D are given in eqn 4.1.

∂I

∂t
= F (I,A) + DI∇2I

∂A

∂t
= G (I,A) + DA∇2A (4.1)

Where the two chemicals involved are the activator (A), and the inhibitor (I). These two
equations define the change in chemicals, both have a similar structure. The first term is the
reaction term, which is a function dependent on both the activator and the inhibitor. The
second is the diffusion term which only depends on the 2nd order differential of the relevant
chemical and its diffusion coefficient. Turing [18] proposed a specific implementation of this
system, which is shown in equations 4.2 and 4.3.

∇Ij = s (16− IjAj) + DI (Ij+1 − 2Ij) (4.2)

∇Aj = s (IjAj −Aj − βj) + DA (Aj+1 + Aj−1 − 2Aj) (4.3)

Turing worked with very early digital computers (Manchester Mark 5) and realised that he
could represent a line of biological cells with a discrete data structure. Thus, his proposed
equations considered a digital approximation to a second order differential, known as the

8
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Laplacian. It can be derived from the difference between two first order differences:

f ′′(x) ∼= f ′(x)− f ′(x + 1) f ′′(x) ∼= −f(x) + 2f(x + 1)− f(x + 2) (4.4)

Which can be represented as a convolution template in Figure 4.1 It should be noted that

Figure 4.1: Laplacian for 1D Reaction-Diffusion

the operators coefficients sum to zero; in a region of continuity it would be expected that
no diffusion would occur, so this operator gives a correct response. Equations 4.2 and 4.3
are used to build a system to experiment with 1D systems, as described in section 4.2.

4.2 Initial Matlab Implementation

4.2.1 Matlab

Matlab was thought to be a suitable language to implement investigative work for a num-
ber of reasons. These included the good environment for numerical computation, a large
number of built in utilities and the ease of displaying functions. One further aspect is that
Matlab lends itself to multi-dimensional processing. Thus, Matlab was chosen for the initial
exploration, as described in the following sub-sections.

4.2.2 Progress

Source code was written to implement for the two-chemical R-D system described by equa-
tions 4.2 and 4.3, to model a line of cells. The implementation use a substrate, β, is
initialised with some random variation in order to generate patterns which are not too
uniform. The code was written so that the parameters for cell count, initial values for
activator and inhibitor, and the reaction speed coefficient could be set without direct code
editing.

The investigation used parameter values similar to those suggested in Turks paper [19]. A
progression through 2800 iterations is shown in Figure 4.3; (only the activator levels are
plotted here). As expected, the system took approximately 1200 iterations to stabilise and
displays clear peaks and troughs, representing stripes along the line of cells. Figure 4.2
shows the values for both the inhibitor and the activator along the line of cells at 2800
iterations. It is clearly visible that the two chemicals have complementary values; where
the inhibitor has a high concentration, the activator cannot exist, and in regions of high
activator concentration, no inhibitor is present. If the activator represents a black pigment
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and the system is constructed upon a white substrate, we would see a line with black stripes
centred at cells 26, 51, and 78, with white stripes in between.

Figure 4.2: 1D Final Concentrations of Inhibitor and Activator
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Figure 4.3: 1D Reaction-Diffusion of Activator Over Time
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4.2.3 Extension to 2D

A 2D implementation in Matlab was started but the execution time was very slow. Since
Matlab is interpreted rather than compiled, it is quick for prototyping but slow upon
execution. This was prohibitive to development, so the group looked for a replacement
language, which is discussed in 4.3.2.

4.3 2D Investigation

4.3.1 Mathematical Theory

As described in Section 4.2 a simple Laplacian is used to perform reaction-diffusion, Fig-
ure 4.1, this simple Laplacian can be expanded to consider two dimensions. The one-
dimensional example considers that each cell has only two neighbours1, when this is scaled
up to two-dimensions each cell then has four neighbours. This is achieved by combining
one horizontal with one vertical 1D Laplacian (see Figure 4.4). This produces diffusion
coefficients in both the horizontal and vertical directions but the actual reaction terms re-
main unchanged. Like the 1D Laplacian the sum of all the values totals zero to maintain
stability in the system.

Figure 4.4: Laplacian for 2D Reaction-Diffusion

4.3.2 Pros of OpenGL

C with OpenGL was eventually chosen over Matlab to implement reaction-diffusion in 2D.
Although the Matlab 1D R-D code was perfectly acceptable, initial trials with 2D R-D in
Matlab executed very slowly; One 2D texture generation would take at least 20 minutes.
Due to such huge increases in execution time, it was envisaged that the graphical processing
required for the 3D R-D method, would lead to unacceptably high execution times. New
tools were therefore needed to take the place of Matlab.

OpenGL, the premier environment for developing portable, interactive 2D and 3D graphics
applications, was selected since it is compiled not interpreted resulting much faster process-
ing. Many 2D R-D examples were found that had been implemented in C, suggesting that

1A neighbour is considered to be another cell that share an edge with the original cell.
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C is a more suitable development environment for this kind of task. The 2D examples found
could also be used as a basis for a 3D implementation. C has large amounts of freely avail-
able source code and therefore it was more likely (than with Matlab) to find pre-written
applications to perform task such as 3D model readers.

4.3.3 Discussion of 2D Implementations Found

The world-wide web was scoured to find 2D implementations in OpenGL, which could be
either have their source code or their parameters for reaction-diffusion modified to gen-
erate patterns that emulate Greg Turk’s work and real-world patterns. Three significant
implementations were found at [15].

The first implementation found was an attempt to emulate some of the work Greg Turk did.
This implementation was capable of producing anything from zebra stripes to cheetah spots
and various patterns in between. Figure A.2 shows some of the patterns generated. In this
particular implementation five parameters determine reaction-diffusion,j these parameters
can be found in appendix B.

The second implementation found was similar to the first but it allowed the seeding of cell
as either inhibitor or activator through mouse clicking. In theory this should have created
different pattern depending on which cells were seeded, unfortunately this did not seem
to happen, this may have been because the diffusion speed was too quick and because the
cells had to be seeded whilst reaction-diffusion was occurring. The technique used by this
implementation may however prove useful when it comes to 3D direct-mapping when trying
to affect the patterns generated on certain areas of a three-dimensional model such as the
head. For this type of seeding to work effectively the seeds would probably have to be
selected before reaction-diffusion begins.

The final implementation found used a cascading technique. This is where an initial
reaction-diffusion the same as in implementation one takes place. After a certain num-
ber of reaction-diffusion cycles, (initially 20,000), all the inhibitor cells are frozen, all the
activator cells are reset to neutral and a second reaction-diffusion occurs within the areas
of activator cells. Reaction-diffusion using cascading can produce more than two colours as
can be seen in Figure 4.5, where yellow is the primary inhibitor colour, black the primary
activator and secondary inhibitor and a grey/yellow the secondary inhibitor, this produces
a pattern similar to leopard spots. The techniques found in these three implementations
can potentially all be adapted in the implementation of skin pattern mapping on three-
dimensional models, to produce results that meet the goals of emulating Turk’s work and
resembling real-world animal skin patterns.
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Figure 4.5: Reaction-diffusion using cascading

4.4 3D Mathematical Theory

The main goal of the project was to implement some kind of R-D system upon 3D objects,
which requires further modification to the basic R-D equations introduced in section 4.1.
Talking about three dimensions is perhaps slightly misleading since the reaction-diffusion
system only acts on the surface of an object, and the surface itself is only two dimensional.
However, this notation is used to distinguish the work focused on surfaces of 3D models
from the simpler 2D work.

The surface is made up of triangular polygons described by the 3D model (see section 4.5).
Each of these is used to represent a cell, similar to the pixels in the 2D grids. However, since
the cells are of variable size, there is no formal grid on which the vertices of each polygon
lie. The cells have three neighbouring cells which share an edge, rather than the four in
the Cartesian grid structure. These two aspects require a method for approximating the
diffusion differently to the previous approach. The lengths of the edge were considered as a
measure of the level of diffusion between two cells, which is illustrated in Figure 4.6. When
considering cell Cij , the neighbouring cell N3 has a shorter edge shared with Cij than N1.
This causes its diffusion weighting to be lower than that of neighbour N1.

4.4.1 Five-Chemical Reaction-Diffusion System

Turk also used a reaction-diffusion system proposed initially by Meinhardt [10] that involved
the interaction of five chemicals across a substrate. This system uses lateral activation and
local exclusivity to create patterns of stripes. If random perturbations are introduced, ran-
dom stripe patterns are formed, but if stripe initiator cells are used regular stripe patterns
can be generated.

Meinhardt’s five-chemical system uses mutual exclusivity of the chemicals g1 and g2 brought
about by a common repressor r, in order to ensure the presence of one or the other stripe
colour but never both. The lateral activation which ensures stripe formation is provided
by the diffusible substances s1 and s2; these two chemicals provide long-range activation
from one feedback system to the other. This system is governed by equations 4.5 to 4.9.
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Figure 4.6: Reaction-Diffusion in 3 Dimensions

∂g1

∂t
=

cs2g1
2

r
− αg1 + Dg

∂2g1

∂x2
+ ρ0 (4.5)

∂g2

∂t
=

cs2g2
2

r
− αg2 + Dg

∂2g2

∂x2
+ ρ0 (4.6)

∂r

∂t
= cs2g1

2 + cs1g2
2 − βr (4.7)

∂s1

∂t
= γ(g1 − s1) + Ds

∂2s1

∂x2
+ ρ1 (4.8)

∂s2

∂t
= γ(g2 − s2) + Ds

∂2s2

∂x2
+ ρ1 (4.9)

The relationship between the two g and s chemicals, can be thought of as analogous to
the relationship between humans and plants. In this analogy, consider humans to be the
chemical g1, and plants to be the chemical g2, then consider carbon dioxide is s1, and
oxygen is s2. Humans require oxygen to respire and produce carbon dioxide as a waste
product, which is poisonous to them. Plants need carbon dioxide for photosynthesis and
produce oxygen as a waste product. Oxygen is not actually harmful to plants but for this
analogy to work we assume it is. Therefore neither organism can exist without the other to
produce its ‘activator’ chemical and break down its ‘inhibitor’. The difference between this
analogy and Meinhardt’s system is the mutual exclusion brought about by the chemical r,
in order to prevent the two organisms from existing in the same place.
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4.5 3D Models

4.5.1 PLY

This is a simple object description file format for research work with polygon models. The
files can exist in binary or ASCII formats - the ASCII format makes it easy to understand
how the model is built up, whereas the binary format is more compact. It is made up of
a header and a body, the former describing the information structure and content of the
latter. Two attributes are standard in each PLY file: the vertices and faces. In addition,
the format allows custom attributes to be defined by the user; the header must be modified
to include details on the structure for these new attributes. Any attributes which are not
expected by a later tool are ignored. [14]

4.5.2 3DS

This 3D object format is a proprietary format of AutoDesk who produce 3-D CAD software
tools. [9] It is a binary format, made up of data blocks called chunks. Each chunk starts
with an ID and a data length. The ID identifies the type of data in the current chunk,
this is followed by the data. The format allows subordinate chunks to be included in this
data, forming hierarchical structures. These are present if the data length is greater than
that required for the particular data type. The structure requires all block types to be
understood by the reader, and additional data requires new block types to be defined.

4.5.3 Model Choice

The 3DS format is widespread; many models are available both freely and commercially.
The PLY format is less used but simpler to understand, process, and extend. The PLY for-
mat and supporting software2, is freely available, due to the educational for its development.
Thus, the PLY format was chosen for this project.

A shareware 3D tool was used to convert models into the PLY format in order to be
compatible with 3D surface mapping. [8]

4.6 3D OpenGL Implementation

4.6.1 OpenGL 3D Rendering

The way in which objects and surfaces are rendered using the OpenGL GLUT toolkit is
appropriate for the slightly simplified model of cell structure that is utilised by this project.

2Such as source code to read and write PLY data into C programs.
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In our key paper Turk defines a method for placing cells so they are randomly and evenly
distributed across an arbitrary surface. The technique he described is not possible with the
GLUT toolkit, however a suitable simplified model can be used. In this simplified model,
each cell is represented by a single polygon, (see Section 4.4), thus allowing GLUT to
render each cell directly. Although on models with low polygon counts, this simplification
introduces inaccuracies, the good results are obtained on large models (> 50, 000 cells).

The GLUT function calls required to render a polygon are shown in code extract in listing
4.1. This method for rendering each polygon separately allows a different colour to be
assigned to each cell, thus, the colour can be used to represent the activator concentration
within each cell. It is therefore possible to loop through each cell in an array containing
the vertex (point) coordinates and concentration levels, making the rendering of the model
very efficient.

glColor3fv(colour );

glBegin(GL_POLYGON );

glVertex3fv(vertex1_xyz );

glVertex3fv(vertex2_xyz );

glVertex3fv(vertex3_xyz );

glEnd ();

Listing 4.1: GLUT code to render a polygon

4.6.2 Basic Cube Implementation

Using the rendering method described in the previous section, the implementation of a
simple cube in OpenGL was constructed. A 2D array was used to store the x, y and z
coordinates of each vertex, and another 2D array stored vertex indices for each polygon.
The vertex coordinates and indices were hard-coded into the program, this allowed rapid
prototyping of the program without the additional complication of external model files.

It was decided to attempt to use this simple unit cube for prototyping the 3D Reaction-
Diffusion implementation. This decision identified a problem that we had failed to recognise
previously. The R-D equations proposed by Turing and used by Turk are based on a model
of a cell structure in which no two cells share a neighbour cell. The difference between this
model and the rendering of the basic cube using four-sided polygons is shown in Figure 4.7.

To overcome this problem each face (polygon) of the cube was divided into two triangles,
thus removing the possibility of shared neighbours. This was a more sensible work-around
for the problem than attempting to rewrite the R-D equations because the 3D models that
had been collected all contained triangular polygons. This required the R-D equations to
be adapted as explained in Section 4.4 to account for having only three neighbouring cells.
However, another problem was introduced; each cell no longer had two neighbours in each
the x- and y- directions. This is addressed in Section 4.6.5.
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Figure 4.7: Left image shows 2D cells. Right shows cube with shared neighbours

To perform R-D simulation on the cube model, each cell’s neighbours had to be known.
Initially this was calculated by hand and hard-coded into the program for rapid prototyping.
The altered R-D equations were implemented and tested on the cube (see Figure 4.8), which
displayed variation of the colour of the faces, indicating that some process was occurring.
However the simplicity of the model limited the extent of testing. Thus, work began on
models defined in the PLY file format discussed in Section 4.5.

Figure 4.8: Reaction-Diffusion Cube Implementation
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4.6.3 Reading in PLY Files

The PLY format was chosen as the input for this application for the reasons explained in
earlier. There is a free, open-source C library for the reading and writing of PLY files, called
RPly [2]. It is not the only library available but it is the most suitable for this project,
since it can efficiently read and write both ASCII and binary encoded PLY files, as well as
utilising callback functions for model data input.

RPly uses callbacks for retrieving data from the PLY files, which makes it very easy to
accommodate custom extensions to the PLY format. This and the ability to write out PLY
files are important for reasons explained in Section 4.6.4.

Reading the vertex coordinates and vertex indices for the polygons is very simple using
RPly. The values are read one by one and the appropriate callback function is called,
which stores each value into an array and increments an index pointer. Initially fixed-sized
arrays were used for simplicity but subsequently dynamic memory allocation was used in
order to make the process more general and able to cope with arbitrary sized models.

4.6.4 Additional Model Data

In order to perform R-D simulation on the imported models, each cell’s neighbours must
be known. For small models such as the basic cube, the values can be calculated on the
fly but as the number of polygons increases the computational complexity of the neighbour
search becomes prohibitively expensive.

It was decided that before R-D simulation should occur, the neighbours should be calculated
and stored in a 2D array for use as a lookup table in the R-D function. The neighbour
search algorithm loops through all three edges (vertex pairs) of each polygon, and then
loops through every other polygon in the model to see if they share vertex pairs. Pseudo-
code for this algorithm is shown in Algorithm 1. It may be possible to make the neighbour
search algorithm more efficient by searching cells with similar indices first, and only if this
fails then search the whole model. However because we are able to store the neighbour data
in the PLY file, this search only needs to be performed once for each model and therefore
the current algorithm was considered acceptable.

Algorithm 1 Pseudo-code for neighbour search algorithm
1: for all polygons in array do
2: v1, v2, v3 = polygon vertices
3: for all other polygons in array do
4: if v1, v2, v3 match two of other polygon’s vertices then
5: mark this as a neighbour
6: end if
7: end for
8: end for
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The neighbour search algorithm was later extended to store a normalised value for the rela-
tive length of the edges between adjacent cells, in order to implement the diffusion-weighting
system Turk proposes. This system defines that more diffusion occurs across longer edges
than across shorter edges over an equal amount of time, as discussed in Section 4.4. In
terms of real-world biology, this system makes more sense than diffusion coefficients for
x and y directions, since a larger surface area between cells would allow more chemical
permeation through the cell membranes.

In order to use lighting techniques in OpenGL to give the model a more 3D look, the
vertex normals must be known. This is required so that the renderer can calculate the
incident light upon certain sections. Again this data is not normally provided in a PLY file
(although some models did contain normal values) and therefore an algorithm was required
to generate the normals from the PLY data.

The normal at each vertex is the average of the normals of each face around that point,
therefore a method for calculating the normals of a surface given its three vertices was
required. The normal of a plane can be calculated by the cross product of the difference
between the vertex vectors:

[v1− v2]× [v2− v3] (4.10)

A function was written to calculate this, and this function was called from the loop that
traverses the face and vertex arrays to generate the x, y and z normal vectors. The normals
are averaged for the faces around each vertex, followed by normalisation to give a unit
normal vector.

Generating all this extra data takes a considerable amount of time for large models (≈
20 minutes for bunny.ply with ≈ 70, 000 faces). Therefore it was sensible to store this
additional information in a custom extension to the PLY file format. The PLY format was
designed to allow this and the RPly library made writing the extra data into a correctly
formatted PLY file trivial.

4.6.5 Stripe Generation in 3D

Considering all the principles explained previously in Section 4.6, a fully functioning R-D
simulator was created that could synthesise random spots directly on the surface of any
given 3D object described by a PLY file. However at this stage it was not possible to
generate stripe patterns in this way due to the fundamental change in the model that
occurred when transitioning to 3D.

In 2D there are diffusion coefficients defined for the x and y directions, this allowed stripes to
be generated simply by making one of the coefficients greater than the other. Unfortunately
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in 3D using complex models with triangular faces, the x and y directions are not explicitly
defined. The alignment of the neighbour cells is arbitrary and therefore cannot be defined
to be in either the x or y direction.

One possible solution to this problem is to use the normal of the shared edge to define
the direction of that neighbour. This would then allow diffusion to that neighbour to
be proportional to the size of the x or y component of the normal vector. In this way
it would be possible to create greater diffusion in one direction, however it would also
introduce inaccuracies. There is also the question of how you classify the z-axis, would the
z-component of a vector be considered to be the equivalent of x or y? With the standard
use of the x, y and z axes, intuition tells us that it should be considered equivalent to the
x-component. However the PLY format defines no standard orientation and therefore the
models are often found not to be correctly aligned for this assumption to work.

Turk applied Meinhardt’s five-chemical R-D system (see Section 4.4.1) to produce stripes
in 3D, and so it was decided to follow this path. The implementation of this system in 3D
required only a trivial extension to the simulator framework that had been developed, but
adapting and implementing the new set of equations in 3D was harder. The initial imple-
mentation generated random stripe patterns by introducing perturbations to the substrate.

Further work was required to generate regular stripe patterns, this required the use of stripe
initiator cells, which are cells that have a greater concentration of one chemical and are
frozen in that state. This provides an input to destabilise the system which causes stripes
to form radially around each initiator cell. For initial testing, stripe initiator cells were
chosen randomly and to show that the technique worked.

A complicated mouse-picking function was required to allow the user to select cells with the
mouse pointer that would act as stripe initiators. The implementation of this was tricky
and far from perfect, cells are not always picked correctly when the model is zoomed out,
but it is adequate for this application. With this system and the user interface described
in Section 4.7.2, patterns such as the zebra in Figure 7.1 can be produced.

4.6.6 Cascading

In order to generate more complex patterns such as the leopard spots in Figure 7.2, Turk
used a cascade process originally suggested by Bard [4] as the process responsible for com-
plex mammalian coat patterns.

The cascade process involves running standard R-D on a random substrate, in order to
generate a spot pattern, this pattern is then used as the substrate for a subsequent R-D
simulation. Different patterns can be created by changing parameters between the two
R-D runs, and by setting cells with certain concentration levels as ‘frozen’ for the second
iteration, (see Section 4.3.3).
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In Turk’s implementation, the cascade occurs after a hard-coded amount of time has
elapsed; presumably he selected this amount of time through trial error. This makes the
process less effective on some larger models or when different parameters are used therefore
a more universal general approach was desirable. It was hypothesised that once a stable
pattern had been achieved the cumulative amount of movement creation of the chemicals
would tend towards zero. So the ability to monitor the amount of change in the chemical
levels was added to the simulator program, which would hopefully allow for the cascading
to be triggered automatically upon convergence.

Testing with this monitoring capability showed that the assumption was incorrect; the
amount of change of chemical concentrations remained at a high level even when the pat-
tern stabilised. This is presumably because the chemicals still diffuse amongst the close
neighbours, so the net effect does not alter the pattern.

Therefore it was necessary to perform profiling of the cumulative chemical change, in order
to identify a characteristic point at which a pattern can be assumed stable. No graph-able
data was produced from this, but Figure 4.9 shows the approximate shape of the graph of
cumulative change. The point at which cascading occurred was chosen to be the bottom of
the dip immediately after the main positive slope. This point can be detected automatically,
by which time the pattern has stabilised on most of the models tested.

Figure 4.9: Graph of Cumulative Chemical Change
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The leopard spot pattern seen in Figure 7.2 was created by first running R-D on the
horse model with parameters set to generate large spots (s = 0.003). When convergence
is detected, cells with activator concentrations between 0 and 2.5 were fixed at chemical
levels so that neither is dominant (cA = cI = 4). Then R-D is run on this substrate with a
large value for s (0.02), which ordinarily generates smaller spots. In this case because the
frozen cells contain equal levels of activator and inhibitor, the spots tend to form in areas
adjacent to the large spots, which results in the leopard style coat pattern.

4.7 User Interface

4.7.1 Motivation

There are several reasons why thought needs to be given to the design of the user interface
for this system. Initially there needs to be a simple interface at the command line to set-up
the type of reaction-diffusion to take place and the 3D PLY model to use. After this, when
the OpenGL window is loaded there needs to be a user interface to control reaction-diffusion
and the view of the 3D model.

When a 3D model is loaded from a file, the central point of the model is not necessary at the
origin of the 3D space displayed in the OpenGL window. As the camera for the OpenGL
window is always pointed at the origin, to be able to view the whole of the model, the
camera viewpoint needs to be adjustable by users. Furthermore when a model is loaded,
the initial orientation of the model from the perspective of the OpenGL camera is not
necessarily the most suitable orientation for viewing reaction-diffusion, (see Figure A.1).
Therefore the user needs to be able to rotate the model on all three axes.

The maximum and minimum x and y coordinates are recorded to ensure that the distance
of the camera from the model is sufficiently far away that all the model can fit into the
OpenGL window, (although this may require manual adjustment of the camera viewpoint
by the user). However because the model may have to be rotated to produce a more
aesthetic orientation, this may cause the model to no longer fit inside the window, a user
controlled zooming function3 is therefore necessary.

The ability to adjust the camera viewpoint, its distance from the model and the orienta-
tion of the model is useful for several other reasons. Firstly, for the five chemical (zebra
stripe) reaction-diffusion implementation can require the seeding of cells, with the facili-
ties previously described, the model can be adjusted to display the cell that needs to be
seeded. Seeding also requires the user interface to provide a method for particular cells
to be selected. The adjustment facilities are also useful to allow the user to focus on how
reaction-diffusion evolves on different parts of the model or at different distances from the
model.

3In real terms this is moving the camera so that it is either nearer or further away from the model.
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As described in Section 4.6, reaction-diffusion directly mapped to models can be exported so
they can be displayed in a viewer where no further reaction-diffusion takes place. Therefore
a user interface is also required to facilitate this exporting.

In Section 4.6.6, convergence is detected automatically to allow cascading to begin, however
it would be useful to start cascading manually if convergence is not detected or the user
wishes to start cascading earlier.

4.7.2 Implementation

Before a user interface for the OpenGL window can be designed a small amount of set up
is required at the command line. There are four different executables that can be run,
three of them generate reaction-diffusion patterns on 3D models; the last is a viewer to
load a model with a pre-generated reaction-diffusion pattern. The executable files with the
parameters that need to be passed to them are listed below.

• rdspots < PLY file > [−p < Parametersfile >]

• rdstripes < PLY file > [−p < Parametersfile >]

• rdcascade < PLY file > [−p < Parametersfile >]

• rdviewer < Patternfile >

Once the command is executed, the system generates neighbouring and normals data where
necessary. When the rdstripes executable is loaded the command line asks how many cells
the user wants to seed. Once this is determined the OpenGL model is loaded and the user
must select the the cells to seed using the mouse as discussed in Section 4.6. Once all the
cells have been seeded, reaction-diffusion can begin.

The rest of the OpenGL window user interface has been implemented with keyboard con-
trols. To begin reaction-diffusion the user must press space, the user can also use space to
pause reaction-diffusion. The arrow keys were determined to be the most logical choice for
adjustment of the camera’s viewpoint. Below is summary of the function each key performs:

• Right arrow: Moves camera viewpoint to the left.

• Left arrow: Moves camera viewpoint to the right.

• Up arrow: Moves camera viewpoint down.

• Down arrow: Moves camera viewpoint up.
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Initially these controls may seem a little illogical but in real terms they mean that the
model itself is moved in the direction of the pressed arrow key, which was found to be more
intuitive for the user. It was also considered that the most logical keys for zooming in and
out were the ‘+’ and ‘-’ keys.

The model in Figure 4.10 is a summary of how rotation about all three axes has been
implemented. The model in Figure 4.10 allows rotation in both the clockwise and anti-

Figure 4.10: Representation of how to control model rotation

clockwise direction, for example, to rotate on the y-axis the user must press ‘a’ to rotate
clockwise and ‘d’ to rotate anti-clockwise. The choice of keys was determined because of
their proximity to each other; attempts were made to ensure the key choice was logical as
possible but it was inevitably going to be difficult to convert three-dimensional rotation
onto a two-dimensional keyboard.

After adjustments in viewpoint, model rotation and zooming it is possible for the user
to reset to the initial values by pressing ‘r’, as it may be quicker to find the positioning
required. As discussed in Section 4.7.1 the user must be able to specify when he or she
wishes to export a skin pattern, thus, by pressing ‘e’ the user can export this 3D mapped
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model as a pattern file, which can be loaded in a separated viewer4 along with PLY model
file, where no further reaction-diffusion takes place. For the cascading implementation,
despite convergence detection being implemented to start cascading, it was decided that
space bar should be used to control the start of manual cascading, where the user desired
it.

By clicking on the cross of the OpenGL window, the user can quit the system but ‘q’ has
been implemented as a keyboard control for doing this.

4The controls for this viewer are the same as the main system, except for those which handle reaction-
diffusion.
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Project Organisation and

Milestones

5.1 Work Division

The initial research at the beginning of this project required to determine the key paper
and obtain a background for the project was carried out by all four members of the group.
Once the project was determined Robert Mills implemented a 1D reaction-diffusion system
in Matlab. The 2D implementations were found by Qing Yan Zhang. These implementa-
tions were then modified by David Newman to produce source code that could be compiled
on both Linux and Windows, as several of the implementations were not suited to Win-
dows compilations. All the group members then set about modifying the parameter values
in these 2D implementations to generate suitable patterns. Qing Yan Zhang then investi-
gated different methods of texture synthesis to see whether procedural texture synthesis of
reaction-diffusion is the most appropriate method to map skin patterns to 3D models.

Simon Smith was the first member to concentrate on 3D implementations, he firstly found
source code to import PLY files and then adapted one of the 2D implementations to produce
mapping of spot patterns to 3D models. He also developed a method to optimise reaction-
diffusion texture mapping by determining neighbouring polygons and their normal vectors;
this information is stored as part of the PLY file. After this David Newman formalised the
user interface for the 3D implementation which enabled uncomplicated control of the 3D
model and reaction-diffusion. At the same time Robert Mills attempted to find appropriate
PLY models to perform mapping to, this often involved converting data from other formats
to PLY. Finding models was quite difficult as very few appropriate models exist and those
that do were often found to not be sufficiently detailed.

27
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Once one 3D implementation was complete, the group researched how other types of
reaction-diffusion could be mapped. Simon Smith took these ideas to produce further im-
plementations by adapting the first. These provide reaction-diffusion stripes and cascading
patterns on 3D models.

For both presentations and the final report all group members contributed an equal amount
of slides/write-up. David Newman was responsible for integrating the each group member’s
write-up into one LaTeX document.

5.2 Key Milestones

This section describes the principal achievements of the team, providing an indicator of
project flow in chronological order.

• Key paper determined

• Project goals determined

• 1D Reaction-Diffusion example implemented in Matlab to aid understanding of math-
ematics and the effect of varying parameters

• Initial progress presentation

• Matlab dropped in favour of OpenGL for 2D implementations

• 2D R-D examples found, and parameters varied to generate a range of patterns

• Basic 3D implementation in OpenGL, starting with a 12-cell cube

• PLY format selected for 3D models

• 3D implementation maps skin patterns onto animal models of arbitrary complexity

• Advanced 3D features added, including rotation and lighting

• User interface developed to control rotation etc. during execution

• 5-chemical R-D (Meinhardt) implemented to generate stripes

• 2nd presentation

• Cascading systems implemented
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Results

6.1 Spots Reaction-Diffusion System

Figure 6.1 is the output by using the default parameters1. From Figure 6.2, it can be seen
that reaction speed S is the most significant factor that affects the R-D output. The first
two pictures in Figure 6.2 show the outputs of R-D by increasing the S at different levels
based on the default value of S, while the third image presents the output of R-D when the
S is 5 times lower than the default value. From these three screen shots, it can be seen that
the higher reaction speed results smaller spots. Through the testing process, it was also
noticed that the higher reaction speed results shorter processing time. Figure 6.3 shows the

Figure 6.1: Default pattern, (DA = 0.0399, DI = 0.229, S = 0.005).

outputs of R-D with low diffusion rates of activator (DA) and inhibitor (DI) respectively.
As shown in first image, by reducing the DA, the black spots become thinner. However,
reduction of the DI causes bigger spots. While processing the testing, it was noticed
that lower DA resulted shorter process time, but lower DI caused longer processing time.
Furthermore, as shown in the third image, when the diffusion DI decreases to a certain
level, the R-D process would not be able to be continued any more. Raising of diffusion

1A listing of all the parameter sets shown in the spotted bunny screen shots can be found in Section B.3.

29
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Figure 6.2: (a) reaction speed S doubled, (b) reaction speed S multiplied by 20, (c)
reaction speed S divided by 5

Figure 6.3: (a) reduced the activator’s diffusion rate (DA), (b) reduced the inhibitor’s
diffusion rate (DI = 0.2), (c) further reduced the inhibitor’s diffusion rate (DI = 0.15),

R-D cannot continue.

rate obviously speeds up the R-D process. However, when the rate increases to a certain
level, the output becomes completely saturated with inhibitor. Although the manner in
which this occurs depending on whether the value for DI or DA is raised the final outcome
is the same.

6.2 Stripes Reaction-Diffusion System

Meinhardt originally proposed the five-chemical reaction diffusion with the following para-
meters2. [10]
p1 : 0.04
p2 : 0.06
p3 : 0.04
Dg : 0.05
Ds : 0.2
Through using these parameters3 produced (a) in Figure 6.4. The parameters previously

2A listing of all the parameter sets shown in the zebra screen shots can be found in Section B.4.
3Combined with seeding inhibitor cells on each hoof and the middle of the face and activator cells on the

nose and both of the ears.
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defined can affect the skin patterns produced in different ways. Dg and Ds affect the rate
at which the two g and two s chemicals to diffuse therefore by increasing the value of Dg

the stripes can be made wider as can be seen in (b) of Figure 6.4. If Dg is increased too
much so that it is almost the same as Ds the pattern is overwhelmed with activator, if
the Dg and Ds values are swapped over very little activator is produced and the reaction-
diffusion ceases after a short time. When Meinhardt discussed his five-chemical system he

Figure 6.4: (a)Meinhardt’s original parameters, (b)increased value for Dg, (c)increased
value of p2.

did not explain directly what p1, p2 and p3 represented, except to say that p1 affects the g
chemicals, p2 affects the r chemical and p3 the s chemicals. Therefore testing was required
to find out how they affected reaction-diffusion. By increasing the value of p1 or p3 or by
decreasing the value of p2 caused the pattern to be overwhelmed with activator. However,
if the value of p2 is increased relative to the Meinhardt’s original parameters the black
stripes generated are thinner and the white stripes slightly thicker as can be seen in the (c)
of Figure 6.4.

Due to the amount of time required to generate patterns, the amount of time required to
generate definitive explanations of how each parameter effects the pattern would take many
hours of investigation. Therefore the conclusions drawn in this section are based only on
five to ten parameter sets.

6.3 Cascading Reaction-Diffusion System

The results of the cascading system are affected by many different variables, such as the
point at which it cascades, as well as the standard R-D parameters. Only the standard
parameters are readily available for the user to change without altering the source code,
the results below were created by only changing those standard parameters.

The two leopard-print results seen in Figure 6.5 were created by generating large spots
and then cascading with a smaller spot forming system. The large spots are set to have
activator and inhibitor concentrations of 4 and frozen in this state. When this pattern is
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used as the substrate for the next pattern forming system, the new spots tend to form
around the edges of the original spots.

Figure 6.5: (a)coloured leopard-skin horse, (b)greyscale leopard-skin bunny.

The bunny was generated with the default parameter options, however the to generate the
leopard pattern on the horse required modification of these parameters: DA was decreased
to 0.0399, DI was left unchanged as 0.229, for the first iteration the speed of reaction S

was set to 0.002, for the second run (S2) it was changed to 0.01.

There are many other complex patterns that can be created using the cascading technique
as shown by Turk [19], however due to the length of time required to generate each pattern
(double that of regular spot formation) experimentation in this area has been restricted.

6.4 Accompanying CD

This report is accompanied by a CD with the 3D Implementations that have been described
in Section 4.6, along with PLY models, parameter and pattern files. Appendix C contains a
map of this CD, which is broken down into four main directoires; two for Windows users and
two for Linux users. One of the Windows directories contains pre-compiled executables of
the 3D Implementations. These executables have been compiled on WindowsXP and should
be executable by Windows users who have OpenGL with the GLUT toolkit installed. The
second Windows directory contains the source code for the 3D implementations with a batch
file to build the executables. The two Linux directories are very similar to the Windows
directories; one contains pre-compiled executables and the second has the source code and
a makefile to build the executables.
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Conclusions and Further Work

7.1 Conclusions

Many methods are available to generate skin patterns using reaction-diffusion systems;
when combined with 3D model mapping the possibilities are extensive. This report de-
scribes the implementation and investigation of several systems, namely the 2-chemical
arrangement upon which the field is founded on, a 5-chemical variant and cascading where
one stabilised reaction-diffusion forms the substrate for a second. Seeding was also used in
conjunction with the 5-chemical variant to improve resemblance of patterns to real-world
animals.

The main achievement of the project is the bespoke software implementation of three
fascinating R-D systems, which are capable of easily synthesising patterns on any arbitrary
model supplied in the versatile PLY format, exporting and viewing patterns without re-
generation, and allowing the user to define R-D system parameters without the need to
re-compile the software. In addition, the code has been developed and tested on both
Linux and Windows based operating systems, in the aim of platform independence for
future investigation or development.

The main goal of the project was to replicate work from the key paper, which included
generating patterns akin to a zebra’s stripes and a leopard’s spots. The systems aimed to
generate patterns which were comparable to both those generated in the aforementioned
key paper, as well as real-world animals. Figures 7.1 to 7.2 show patterns (a) created with
software from this project, (b) from Turk’s work in 1991, and (c), a real world example of
a corresponding skin pattern. Modern lighting techniques make the patterns in (a) more
impressive visually than in (b), but for both Figure 7.1 and Figure 7.2, the images are very
comparable (remembering that each execution of the software has random permutations to
begin with). The comparison to (c) in these cases shows similar traits, but more complexity
in the case of the real animal; for instance the zebra has a completely white belly. If it
was desired to emulate the skin of a single animal in great detail, more prior information
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would have to be built into the model. This could include specifications, which would
allow different R-D systems to be applied to different regions, such as not allowing pigment
variation on the belly. However the goal of this project was elsewhere.

In the case of Figure 7.3, Turk did not generate a 3D model with spots on, so the bunny
was arbitrarily chosen as a test model (poor lab rabbits!). The pattern shows nice variation
with a mixture of spots and wavy stripes, which are also exhibited to a certain extent in
the rabbit shown in Figure 7.3 (b). In summary, the patterns generated show excellent

Figure 7.1: (a) this project’s zebra, (b) Turk’s zebra, (c) real-world zebra.

Figure 7.2: (a) this project’s leopard pattern, (b) Turk’s leopard pattern, (c) real-world
leopard.

Figure 7.3: (a) this project’s spotted bunny, (b) real-world bunny.
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resemblance to the models seen in the key paper and exhibit characteristics seen in real-
world animals, although the pattern complexity in genuine animals is greater than in the
computer-generated cases. This provides an indication that the reaction diffusion systems
implemented do indeed represent one mechanism employed by real-world biology in the
generation of the wide variety of skin patterns seen across the animal kingdom.

7.2 Further Work

Though this project has made significant achievements against its goals, the area is still
wide open for further research. To improve on the work described previously, the following
extensions are proposed:

1. Optimisation of algorithms used in 3D implementation

Although C with OpenGL was used to improve execution speed over the initial attempts,
overall operation is still quite slow, especially with large 3D meshes. Functionality was the
primary objective, over execution times. A quicker execution would enable experimental
investigation to be more widespread in parameter selection.

2. Practical comparison of texture mapping methods

Three categories of texture mapping methods are described in Section 2.4. Procedural
texture synthesis was employed; this was deemed to be the best for the application theo-
retically. However, it would be interesting to generate patterns with methods from each
category, in order to confirm or disprove the theoretical beliefs.

3. Implement other R-D methods

Many reaction-diffusion systems exist; three interesting examples are realised in this work.
Using the framework for generating and displaying patterns on 3D models, extensions to
implement further R-D systems should be relatively straightforward.

4. Improve Convergence Detection

The cascading implementation requires convergence to be detected. Although this is im-
plemented and works well for the large 3D models, its performance could be improved for
smaller models.



Appendix A

Screen Shots

Figure A.1: Initial and Aesthetic Orientations for Horse Model
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Figure A.2: A) Cheetah spots B) Cheetah spots with greater speed of diffusion C) Zebra
Stripes D) Same as A but with a slightly lower horizontal inhibitor diffusion co-efficient



Appendix B

Parameter Files

B.1 Parameters for 1st 2D Implementation

DAX - Diffusion coefficient of Activator in the horizontal direction.
DAY - Diffusion coefficient of Activator in the vertical direction.
DIX - Diffusion coefficient of Inhibitor in the horizontal direction.
DIY - Diffusion coefficient of Inhibitor in the vertical direction.
S - Speed of diffusion.

A) Cheetah spots,
DAX 0.03199,
DAY 0.03199,
DIX 0.229,
DIY 0.229,
S 0.005.

B) Cheetah spots with greater speed of diffusion,
DAX 0.03199,
DAY 0.03199,
DIX 0.229,
DIY 0.229,
S 0.001.

C) Zebra stripes,
DAX 0.09597,
DAY 0.03199,
DIX 0.229,
DIY 0.229,
S 0.005.
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D) Same as A but with a slightly lower horizontal inhibitor diffusion co-efficient,
DAX 0.03199,
DAY 0.03199,
DIX 0.209,
DIY 0.229,
S 0.005.

B.2 Parameters for 3rd (cascading) 2D Implementation

DA - Diffusion coefficient of Activator in the horizontal and vertical directions.
DI - Diffusion coefficient of Inhibitor in the horizontal and vertical directions.
S - Speed of diffusion.

DA 0.03125,
DI 0.125,
S 0.005.

B.3 Parameters for Spotted Bunny 3D Implementation

DA - Diffusion coefficient of Activator.
DI - Diffusion coefficient of Inhibitor.
S - Speed of diffusion.

1) Original Parameters in first screen shot,
DA 0.0399,
DI 0.229,
S 0.005.

2) Altered Reaction Speed, (S).

A)DA 0.0399,
DI 0.229,
S 0.01.

B)DA 0.0399,
DI 0.229,
S 0.1.

C)DA 0.0399,
DI 0.229,
S 0.001.

3) Altered Diffusion coefficients, (DA and DI).
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A)DA 0.01,
DI 0.229,
S 0.005.

B)DA 0.0399,
DI 0.2,
S 0.005.

C)DA 0.0399,
DI 0.15,
S 0.005.

B.4 Parameters for Zebra 3D Implementation

p1 - Affects the diffusion of g chemicals.
p2 - Affects the diffusion of r chemical.
p3 - Affects the diffusion of s chemicals.
Dg - The diffusion rate of g chemicals.
Ds - The diffusion rate of s chemicals.

A)p1 0.04,
p2 0.06,
p3 0.04,
Dg 0.05,
Ds 0.2.

B)p1 0.04,
p2 0.06,
p3 0.04,
Dg 0.1,
Ds 0.2.

C)p1 0.04,
p2 0.08,
p3 0.04,
Dg 0.05,
Ds 0.2.
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CD Map

• Linux

– Executables

∗ 5chemparams.txt - Parameters file for stripy reaction-diffusions.

∗ bestzebra.pat - Pattern file with reference horse nbs.ply and stripy skin pat-
tern. pattern data to map to it.

∗ bunny nbs.ply - PLY file of a bunny with neighbouring and normals data.

∗ dolphin nbs.ply - PLY file of a dolphin with neighbouring and normals data.

∗ horse nbs.ply - PLY file of a horse with neighbouring and normals data.
data mapped to it.

∗ leopardbunny.pat - Pattern file with reference bunny nbs.ply and cascading
skin.

∗ leopardhorse.pat - Pattern file with reference horse nbs.ply and cascading
skin.

∗ params.txt - Parameters file for spots and cascading reaction-diffusions.

∗ rdcascade - Executable for mapping cascading reaction-diffusion on 3D mod-
els.

∗ rdspots - Executable for mapping reaction-diffusion spots on 3D models.

∗ rdstripes - Executable for mapping five chemical reaction-diffusion stripes
on 3D models.

∗ rdviewer - Executable for viewing mapped reaction-diffusion patterns on 3D
models.

– Source

∗ 5chemparams.txt - Parameters file for stripy reaction-diffusions.

∗ bestzebra.pat - Pattern file with reference horse nbs.ply and stripy skin pat-
tern. pattern data to map to it.

∗ bunny nbs.ply - PLY file of a bunny with neighbouring and normals data.
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∗ dolphin nbs.ply - PLY file of a dolphin with neighbouring and normals data.

∗ horse nbs.ply - PLY file of a horse with neighbouring and normals data.
data mapped to it.

∗ leopardbunny.pat - Pattern file with reference bunny nbs.ply and cascading
skin.

∗ leopardhorse.pat - Pattern file with reference horse nbs.ply and cascading
skin.

∗ Makefile - Builds four executable (rdcascade, rdspots, rdstripes and rd-
viewer).

∗ params.txt - Parameters file for spots and cascading reaction-diffusions.

∗ rdcascade.c - C file for mapping cascading reaction-diffusion on 3D models.

∗ rdspots.c - C file for mapping reaction-diffusion spots on 3D models.

∗ rdstripes.c - C file for mapping five chemical reaction-diffusion stripes on 3D
models.

∗ rdviewer.c - C file for viewing mapped reaction-diffusion patterns on 3D
models.

∗ rply.c - C file for read in of PLY file data.

∗ rply.h - C header file for read in of PLY file data.

• Windows

– Executables

∗ 5chemparams.txt - Parameters file for stripy reaction-diffusions.

∗ bestzebra.pat - Pattern file with reference horse nbs.ply and stripy skin pat-
tern. pattern data to map to it.

∗ bunny nbs.ply - PLY file of a bunny with neighbouring and normals data.

∗ dolphin nbs.ply - PLY file of a dolphin with neighbouring and normals data.

∗ horse nbs.ply - PLY file of a horse with neighbouring and normals data.
data mapped to it.

∗ leopardbunny.pat - Pattern file with reference bunny nbs.ply and cascading
skin.

∗ leopardhorse.pat - Pattern file with reference horse nbs.ply and cascading
skin.

∗ params.txt - Parameters file for spots and cascading reaction-diffusions.

∗ rdcascade.exe - Executable for mapping cascading reaction-diffusion on 3D
models.

∗ rdspots.exe - Executable for mapping reaction-diffusion spots on 3D models.

∗ rdstripes.exe - Executable for mapping five chemical reaction-diffusion stripes
on 3D models.
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∗ rdviewer.exe - Executable for viewing mapped reaction-diffusion patterns on
3D models.

– Source

∗ 5chemparams.txt - Parameters file for stripy reaction-diffusions.

∗ bestzebra.pat - Pattern file with reference horse nbs.ply and stripy skin pat-
tern. pattern data to map to it.

∗ bunny nbs.ply - PLY file of a bunny with neighbouring and normals data.

∗ dolphin nbs.ply - PLY file of a dolphin with neighbouring and normals data.

∗ horse nbs.ply - PLY file of a horse with neighbouring and normals data.
data mapped to it.

∗ leopardbunny.pat - Pattern file with reference bunny nbs.ply and cascading
skin.

∗ leopardhorse.pat - Pattern file with reference horse nbs.ply and cascading
skin.

∗ run.bat - Builds four executable (rdcascade.exe, rdspots.exe, rdstripes.exe
and rdviewer.exe).

∗ params.txt - Parameters file for spots and cascading reaction-diffusions.

∗ rdcascade.c - C file for mapping cascading reaction-diffusion on 3D models.

∗ rdspots.c - C file for mapping reaction-diffusion spots on 3D models.

∗ rdstripes.c - C file for mapping five chemical reaction-diffusion stripes on 3D
models.

∗ rdviewer.c - C file for viewing mapped reaction-diffusion patterns on 3D
models.

∗ rply.c - C file for read in of PLY file data.

∗ rply.h - C header file for read in of PLY file data.
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