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Abstract

This project attempts to determine whether the rules of the well-known board game “Risk” can be adapted to generate a game model that then permits the development of Artificial Intelligence (AI) players that can play the game.  This game was chosen as it provides an environment that allows analysis of some of central processes of AI.

The development game model comprised of several parts, a verification engine, a Graphical User Interface (GUI) to interact with the game model and a general infrastructure to support the AI players, which includes methods to automate and benchmark them.

The process followed by AI players has two components, firstly applying heuristics to choose the moves to be taken and then a reinforcement-learning algorithm to adjust the values of these heuristics.  Both components have been shown, (through the benchmarking of AI players against each other), to improve the AI players performances, which shows that  “Risk” has been suitably adapted to generate a game model that provides an environment to develop AI players.  The algorithm models both for applying heuristics and reinforcement learning could in future be adapted to other AI problems or extended to further improve the performance of AI players. 
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1. Introduction

The two main goals of the project have been to develop a game model based loosely around the well-known board game of “Risk” and then develop Artificial Intelligence (AI) players to play this game. 

A game based around the rules of “Risk” was chosen as it provided a suitable environment to develop heuristics and because it also provided the opportunity to use learning algorithms for example “reinforcement learning” or “genetic” algorithms.  The purpose of developing both the heuristics and learning algorithms for this game environment was because of its generic nature this provided the opportunity demonstrate ideas that could be applied in different areas of AI research.

Both the two main goals have had their own sets of sub-goals.  The first goal, the development of the game environment had the following set of sub-goals:

· Adapt of the rules of the game “Risk” so that an appropriate set of rules can be determined for the game model.

· Implement of a flexible verification engine that prevents illegal moves but allows modification to the game rules without alteration to source code being required.  

· Implement of a Graphical User Interface (GUI) so that the game model can be viewed and interacted with by the user.

· Create an infrastructure so that the game model can support the AI players.

Modification of rules was a necessary part of the sub-goals for two reasons, firstly so that the primary set of rules could be modified so they would be balanced for all large set of strategies and secondly time-permitting to allow testing of AI players in several environments.

The second goal, the development of AI players to play the game designed had the following set of sub-goals:

· Develop simple AI players using heuristics, which can be shown to outperform a completely random move choice player.

· Develop players with more sophisticated heuristics and use benchmarking against the simpler AI players to show the improving performance of AI players.

· Use learning algorithms to further improve the performance of the sophisticated AI players, again through benchmarking against simpler players.

2. Background

2.1 The Original Game of Risk

Below is a simplified description of the original 1959 rules of the board game Risk; a full listing of the rules can be found in [1].

Risk is a popular strategy board game created in 1959 by Parker Brothers Inc.  The game can have between three and six players.  The board used for Risk is a map of the world broken into the six main continents (Antarctica is not included).  These six continents are each broken into several different territories; in total there are 42 different territories.  The winner of the game is the player that eliminates all other player and occupies all 42 territories.  At the beginning of each game every player is given an equal number of territories (or almost equal if 42 is not divisible in to the number of players).  Each player must then place just one army in each region they have been allocated.  Once this is done the game can begin.  Each player takes turns; a turn consists of four parts:

1. Accumulation of armies,

2. Placing of armies,

3. Attacking opponent territories,

4. The “free” move.

At the beginning of each turn a player can accumulate additional armies.  The number of additional armies the player is entitled is equal to a total arrived at by the three methods described following. The first is by the player counting up the number of territories he/she holds and dividing the result by three, if this is not a whole number the result is rounded down.  The second is if the player holds all the territories on a continent, if so the player acquires a defined number of armies (depending on which continent he/she holds all the territories on).  The final method of accumulating armies is by collecting certain sets of cards.  A player collects a card every time he/she has a turn where he/she captures an opponent’s territory.  There are three different cards that can be collected, once a player has collected three of the same card or one of each of the three different cards, he/she can trade them in for a defined number of armies, the number of armies that can be acquired increases every time a player trades in a set of cards.  

The player can then take the total of all the armies that he/she has accumulated in the three methods described previously and place them in one or more of the territories that he/she occupies.  After the armies have been placed, the player may start his/her attacks.  A player may attack any opponent’s territory with armies from one of his/her adjacent territories.  A player may continue to attack an opponent’s territory as long as the amount of armies that he/she commits to the attack is less than the number of armies he/she has in the territory he/she is attacking from.  As long as that condition is met the player may have as many attacks as he/she likes.  

When a player commits armies to an attack he/she may roll up to three dice but must roll less dice than the number of armies he/she is committing to the attack.  The defending player may roll a maximum of two dice unless they only have one army in the territory he/she is defending and then he/she may roll only one die.  The scores of the highest die rolled by each player are compared and the player with the lowest score loses an army and the player with the highest score must remove that die.  If the scores are equal the defending player’s die counts as being higher.  If both players still have one die left, then the highest die of each player is compared again and the player with the lowest score loses an army.  Each roll of the dice can only lead to a maximum of two armies being lost by both players in total.  The dice are then rolled again using the same method until one player has no armies left.  Each time the dice are rolled the number of dice rolled by each player must be no greater than the maximum as defined earlier.

If the attacking player is successful in capturing a territory he/she must move the armies he/she committed to the attack into that territory, he/she can also move as many armies as he/she likes into this territory from the territory that he/she attacked from, ensuring that at least one army is kept in the original territory.

At the end of a player’s turn he/she may move any number of armies from one of his/her occupied territories to another, (ensuring that the first territory still has at least one army in it).  This type of move may only be made once at the end of a player’s turn and is called the “free” move.

As previously explained the winner of the game is the player who occupies all 42 territories and the players continue to take turns until all but one player is eliminated.

2.2 Learning Algorithm Research

Using learning algorithms is a necessary part development of AI players for the game.  There are many difference methods available to simulate intelligence.  Each algorithm has its advantages over other algorithms, which means some methods may be better suited to this particular than others.  Two algorithms that may be best suited for AI players, in the “Risk” based game are reinforcement-learning and genetic algorithms.

2.2.1 Reinforcement-learning Algorithms

The explanation below is based on an explanation given in [2]. 

Reinforcement learning as its name suggests is an algorithm that learns from its previous experience.  Depending on how successful the algorithm has been in the past, it will alter certain variables in an attempt to increase its success in the future.  When the algorithm is more successful it will alter its variables less than when it is not so successful, this hopefully leads to the algorithm converging on the ideal values for these variables.  One of the main difficulties with reinforcement learning is choosing the variables, which will affect how the algorithm chooses which actions to take.  The initial values of the variables also need to be determined.  Once these variables have been identified and their initial values set, the algorithm needs to be told how to vary them, so that over time each of them will converge on their ideal value and produce a highly successful player.

Setting the value of certain variables is only the top level of how reinforcement learning actually works.  At the beginning of each run of the algorithm, the variables are adopted by the policy.  The policy is one of four parts to the algorithm whilst it is running; the other three parts are the reward function, the value function and the model. The definition of a “reward function” for an action is the calculation of the difference between the value of the current state and the value of the state after that action.  The “reward” is the result of the reward function for a particular action.  In the case of a game of Risk moving to a state where you have a greater percentage of the total number of armies than before has a higher “reward”, than moving to a state where you have a lower percentage of the total number of armies.  The “value function” is similar to the “reward function” but looks at the long-term consequences of an action.  In terms of reinforcement learning this is the amount of opportunities for future “rewards” a particular action provides.  The “model” is used for planning and can look at the current state and try to predict what future states I likely to be.  The model is often provided by an external supervisor therefore making reinforcement learning a type of supervised learning.  Older reinforcement learning algorithms did not use models and therefore were unsupervised learning algorithms.  Reinforcement learning with models gives the algorithm a two pronged approached to its decision making, it can learn not just from it own experience but also understand underlying strategies to a game explained by the model.

2.2.2 Genetic Algorithms

The explanation below is based on an explanation given in [3].  

Like the reinforcement learning algorithm each AI player’s actions are based on a certain set of variables.  The main difference in the two algorithms is how the values of these variables are chosen.  With a genetic algorithm a certain number of sets of parameters with random values are chosen.  The AI players performing these various sets of parameters are then tested to see how they perform against each other.  In the case of playing games of “Risk” the performance of a player is classified as the percentage of games it wins against all the other players, in genetic algorithms this is known as its “fitness function.”  The players that have the lowest “fitness function” and are below a certain threshold, e.g. those who win less than 10% of the games they play are usually discarded as this often improves the convergence of the algorithm on a good player.  Taking the AI players that are not below the threshold a certain number of pair are chosen, usually half the original number of AI players.  Each set of parameters may be in more the one pair; sometimes the number of pairs each set of parameters is in is skewed so that the better sets are in more pairs than those sets less successful.  This again is to try and cause the algorithm to converge on a good AI player (a good set of parameters) quicker.  Once the pairs a have been chosen the two sets of parameters are split roughly in half, the first half of the parameters from one set are put together with second half from the other set, this makes the first child, the second child is made up from the remaining two other halves.  This is done for every pair of parameter sets.  Once all the children sets of parameters have been produced, the odd parameter in some of the child parameter sets is changed this is called “mutation.”  Like in genetics, where a mutation sometimes gives an animal a highly beneficial trait, a random parameter may inexplicably create a set of parameters, which produces a highly successful AI player.  

With the new sets of parameters (AI players), testing can be performed again; each of these new players will be tested against the set of players from which their parents came.  This is essential to keep the definition of the “fitness function” consistent otherwise comparison of the successfulness of two players from separate generations would be impossible and would make it very difficult to converge on a good player.  

The process of producing children from the parent sets of parameters continues until, the “fitness function” of the best player produced each time varies so little that finding a significantly better player is unlikely.  As there are so many possible permutations on the set of parameters that defines an AI player it impossible to ever be certain that a genetic algorithm will converge on the best set of parameters.  

2.2.3 Conclusion

From the study of both the reinforcement learning and genetic algorithms both algorithms have their advantages.  A genetic algorithm would be able to search a much wider area of possible parameter sets because of the random choice of parameter values and would probably converge on a very good AI player.  The disadvantage of the genetic algorithm is that it does not have any concept of how to generate a good player, other than splicing the parameter sets of two other good players.  An AI player that plays “Risk” will have a set parameters that are not mutually exclusive, so putting two parameters together, one each from two already successful players may generate a considerably worse player, this might make the convergence on a good player quite disjointed.  The advantage of a reinforcement-learning algorithm is that it has much greater control on how the parameter values of the AI player are changed depending on success of the AI player and even how successful that player has been in certain areas, (e.g. defending and attacking), this means that converging on a good player should be significantly quicker.  This is why a reinforcement-learning algorithm should be the best way of developing my AI player.  Like the genetic algorithm there is no guarantee on being able to find the best set of parameters but this could even vary depending AI players’ opponents.

3. Design & Implementation of Game Framework

3.1 Initial Design Decisions

Java (SDK 1.4.0) is the programming language in which the game model has been designed.  The reason for the use of Java is for it familiarity and portability between different systems, Java also provided “Swing” packages to allow a fast development of a Graphical User Interface to demonstrate the game model and the actions of the AI players in a more visible way.

3.2 Adapting the Original Risk Game Rules

The first critical decision that had to make in development of this project was how to translate the original rules for the game “Risk” (as described in 2.1) into a game model, which could then be analysed to develop an Artificial Intelligence player.  Many of the rules for the original game were easy to translate to a game model but some rules were unnecessarily complicated and others were not really suitable for analysis and this is why these have either been discarded or adapted.

One of the best examples of a rule that has been discarded due to its complexity is the type of board the game is played on.  The original game of “Risk” is played on a map of the world but it was decided it would be better for the game model to use a grid of squares for two reasons; first was that designing an interactive GUI for the map of the world would have been much more complicated than designing a similar GUI for a grid; second was that a grid of squares had a much more straightforward concept of adjacency whereas adjacency for a map of territories would have had to have been much more closely defined.  Another rule that has been discarded due to its lack of suitability for analysis was the cards that could be collected and then traded in as sets to obtain additional armies.

Many of the original rules have been modified generally to improve their suitability for analysis.  An example of this was the rolling of dice, instead of the complicated comparison of highest dice, both players get a single score and the lowest scoring player loses an army, (or as modelled in the game model, a man).  This allowed a more straightforward method of analysing the probability of each player winning a battle.  

3.3 Design of Game Model and Game Rule Input File

One of the most important factors considered in adapting the original rules into the game model was to allow specific rules to be changed easily so that the game rules could be tailored so that a suitably complex game environment could be generated, otherwise there would have been no point in designing a sophisticated AI player, on the other hand the environment needed to be kept to a level where it was not too complex, as this may have made designing an AI player which could be more successful than a completely random player near impossible.  The simple manipulation of the rules allowed the degree of complexity of a winning strategy to be altered so that it meet a happy medium. 

Many modifications to the original rules of “Risk” were made for the game model, so many that to state all the specific changes would overly time-consuming, so instead below is a list of the generic rules, which have been set to true for all game models, followed by the specific rules unique which can be unique to each game model:

· The game is played on a grid of squares.

· There are two players, red and blue.

· Red always starts the game.

· You can only move to an adjacent square.

· If both players are trying to occupy the same square a battle ensues.

· A battle does not end until either one side withdraws or has no men left in the battle square.
· In battles both players roll a score and the highest score wins the roll.

· After each pair of turn the number of men in each square is incremented or decremented according to a specific function.
GRID_X:  The number of squares horizontally on the grid.

GRID_Y:  The number of squares vertically on the grid.

MEN_PER_PLAYER:  The number of men each player starts the game with.

NO_OF_SQUARES:  The number of squares each player starts the game with.

SQUARE_ALLOCATION:  How the squares are allocated to each player, randomly, chosen by each player or loaded from file.  

MEN_ALLOCATION:  How the men are allocated to the squares for each player, randomly, chosen by each player or loaded from file.  

MEN_ADDED:  The function that determines how the number of men in each square, are incremented or decremented after a pair of turns.

DIAGONAL_SQUARES_ADJACENT:  A Boolean defining whether diagonal squares are adjacent.

DEFENDER_WITHDRAW: A Boolean defining whether the defending player can withdraw his/her men to an adjacent square not occupied by the opponent.

ATTACKER_WITHDRAW: A Boolean defining whether the attacking player can withdraw his/her men to an adjacent square not occupied by the opponent.

SCORE_RESULT:  Defines whether the player who rolls the lower score loses all his/her men in that square or only loses one man from the battle.

DRAWS:  Defines what happen when both players roll the same score, this could be that either the defending or attacking player always wins when the scores are tied or both player re-roll until there is not a tie. 

SCORE_MAX:  Defines the maximum score a player can roll, (before any weighting factor is applied).  This can be a constant value (e.g. 10) or a value that can vary (e.g. number of men in the battle). 

WEIGHTED:  A Boolean defining whether a player’s score should be multiplied by the number of men that player has in the battle.

WINNER:  Defines how the game’s winner is decided, whether it is the last player left on the board or the player who has the highest score based on a points system after a finite number of turns.

NO_OF_TURNS:  Defines the number of turns each player has before the end of the game.  If this is set to zero then the game lasts until there is only one player with men left.

POINTS_PER_MAN:  Defines how many points are scored for each man left on the board when each player’s scores are totalled to determine a winner. 

POINTS_PER_SQUARE:  Defines how many points are scored for each square occupied by each player when the scores are totalled to determine a winner.

MOVES_PER_TURN:  Defines the number of moves a player can take in a turn.

RED_PLAYER:  Defines whether the red player is a human or AI player.  If the player is an AI player the pathname and filename of the AI player input file is defined. 

BLUE_PLAYER:  Defines whether the blue player is a human or AI player.  If the player is an AI player the pathname and filename of the AI player input file is defined.

It was decided that best way these specific rules could be modified easily was through the use of an input file, an example of an input file can be found in appendix 1.  The syntax is mainly straightforward, each line has the description of the game rule parameter (e.g. “GRID_X”) followed by the value for that parameter (e.g. “10”), and this is then followed by a semi-colon to signify the end of a line.  A very straightforward syntax has allowed the file to be interpreted successfully in a lesser amount of code.

All game rules files have a “.rg” extension, this was to allow means the use “javax.swing.filechooser” package a filter which can be applied when attempting to open a game rules file so that only “.rg” files are visible.  Once a game rules file has been selected it is parsed to a reader, (see “RiskGameReader.java” in source code folder of accompanying CD), which can read in the specific syntax from a file and parse the file information to the relevant areas of the program. 

3.4 Positions Input File

One of the options to for the way that squares and men can be allocated to each player was “from file”; the advantage of loading the positions from file is that the same game start state can be generated over and over again very quickly.

The positions file has been defined is in an XML style, an example of a positions file, (for ten squares and one hundred men per player on a ten by ten grid), can be found in appendix 2.  The file firstly defines the red squares and then the blue.  Typical XML style delimiters within angle bracket have been used to signify the start and ends of lists, in this case lists of red and blue squares.  Each set of angle brackets (“<>”) has three values inside delimited by commas; these values represent the x co-ordinate, y co-ordinate and the number of men to place in the square defined by these two co-ordinates.

Like the game rules files, positions files have been given their own unique extension “.pos” so that a file filter can be used so that a user can only select an appropriate file to open when attempting to load a positions file.  Again similar to the game rules file, the position file is parsed to a reader (see “PositionReader.java” in source code folder of accompanying CD), this reader then extracts the appropriate data and a parses the information onto the relevant areas of the program.

3.5 The “Men Added” Function

Most of the syntax for the game rules input file is quite straightforward, except for the “Men added” parameter; this parameter is a function, which calculates a new value for ‘X’ (the number of men in a square).  The best way to determine whether the function parsed in by the input file was a valid function was to design a context free grammar, which could parse the function in the file as a text string.  Below is the context free grammar that was designed to parse the “Men added” functions:

Func  (  SubFunc  SignExt

SubFunc (  (  SubFunc  SignExt  )  |  Value  SignExt

SignExt (  Sign  SubFuncExt  |  (
SubFuncExt  (  (  SubFuncExt  SignExt  )  | Value  SignExt

Value  (  X  |  Number

Sign (  +  |  -  |  *  |  /  |  ^

Number  (  -  PreDecimalDigit  |  PreDecimalDigit

PreDecimalDigit  (  [0-9]  PreDecimalDigitExt

PreDecimalDigitExt  (  [0-9]  PreDecimalDigitExt  |  .  PostDecimalDigit  |  (
PostDecimalDigit  (  [0-9]  PostDecimalDigitExt

PostDecimalDigitExt (  [0-9]  PostDecimalDigitExt  |  (
Whilst the function string is being parsed it is also tokenised into arithmetic operators (i.e. +, *, etc.), X’s and numbers, this set of tokens is then stored as part of the game model, as well as the function string for reference.  The set of tokens is required so that the “Add men” function can be applied to each square at the end of a pair of turns.  Each square has to be calculated separately, as the result of the function can vary depending what X (the number of men currently in the square) is.

The algorithm for calculating the new value for each square is achieved by traversing a copy of the list of tokens.  Firstly the algorithm traverses the list of tokens searching for ‘X’s, if it finds any it replaces it with the current number of men in the square.  The algorithm then traverses the list of tokens searching for both left and right parentheses and recording the positions of where they are found in.  Once the algorithm finds a right parenthesis, it then recursively passes to the main method of the algorithm a sub-list of the tokens that were found between the last left parenthesis found and this right parenthesis.  The main method of the algorithm is called recursively until the sub-list of tokens contains no parentheses.  This sub-list is then traversed in search of power ‘^’ signs; if one is found, the tokens either side of the power sign are cast as doubles and the first double is raised to the power of the second.  The result of this is then inserted in the sub-list before the three tokens of the power calculation.  The old power calculation is then removed from the sub-list of tokens.  

E.g.  
Before calculation 
8 * 5 ^ 3 – 2



After calculation

8 * 125 5  ^ 3 – 2



Old calculation removed
8 * 125 – 2.

The algorithm then continues to traverse to the end of the sub-list, searching for more power signs, if it does not find any it then searches for division signs ‘/’, multiplication sign ‘*’, subtraction signs ‘-‘ and finally addition signs ‘+’.  It is important it does the search for symbols in this order as a divide and multiply bind more tightly to numbers than add and subtract.

E.g.  
Additions before multiplications
8 + 5 * 6 + 4 = 130; WRONG



Multiplications before additions
8 + 5 * 6 + 4 = 42; CORRECT
Once the algorithm has finished there will only be one token left in the sub-list, the result of the function of the sub-list, this must be the case as the function would not have been successful parsed when the game rules file was loaded and there would not have been any list of tokens generated.  The values gradually recurse back up to the full list of function tokens, which is eventually replaced with a single token, the result of the whole function.

E.g.  
Initial function tokens: 
( 9.09 *  ( X ^ 2 ) / 3 ) + 6.11 – X * 2.5

X = 25, (current men 

in square):

( 9.09 * ( 25 ^ 2 ) / 3 ) + 6.11 – 25 * 2.5

Recurse with sub-list:
25 ^ 2

Power:
 

25 ^ 2 = 625.

Recurse up with result:       ( 9.09 * 625 / 3 ) + 6.11 – 25 * 2.5

Recurse with sub-list: 
 9.09 * 625 / 3

Division:

 625 / 3 = 208.33

Multiplication:

 9.09 * 208.33 = 1893.75

Recurse up with result:
 1893.75 + 6.11 – 25 * 2.5

Multiplication:

 25 * 2.5 = 62.5

Subtraction:

6.11 - 62.5 = -56.39

Addition:

1893.75 + -56.39 = 1837.36

Final result:

(9.09* (X^2)/3)+6.11–X*2.5 = 1837.36.

3.6 Collecting Statistics

As the main goal of this project was to design an AI player, one of the most essential requirements of the software is to generate statistics on the matches played by AI players, so the better players can be determined along with their reasons for success. Collecting statistics can also be useful to ensure that the coding is accurate, as anomalies in the statistics will highlight particular code errors.

Below is a list of the statistics that the software calculates:

· The games won by each player,

· The total number of squares occupied / men held by each player at the end of a game,

· The total points scored by each player,

· The total number of battles won by each player,

· The total number of men lost by each player,

· The total number of men gained by each player, (by the “men added” function),

· The total number of attacking / defending withdrawals by each player,

· The total number of men committed to attacks by each player,

· The total number of battles initiated by each player,

· The total number of moves to already self-occupied squares.

· The total number of moves to empty squares.

The total points scored should by each player, is an example of how statistics can be used to validate could, this should be equal to the total number of men multiplied by the “POINTS_PER_MAN” parameter of the rules, plus the total number of squares multiplied by the “POINTS_PER_SQUARE” parameter however if this is not the case there must be an error in the code.

It was decided that the output of statistics should to a file, as this provides a permanent record of the statistics.  It was also decided that the output of statistics should be in a format that allows the results to be read back in again, so that if necessary this can be used by other section of the programs at later dates. So that data can be recalled and processed easily the data is stored in an XML style.

Appendices 5.1 and 5.2 contain short examples of statistics output files. The differences between the statistics output file in 5.1 and 5.2, is that the second is the output file produced by running a tournament file.  Differences between the two files are required to clearly define the separate matches being run, which are delimited by the <match_n> and </match_n>, which is the typical XML method to separate objects, this is not required in the first file as only one match is run.  Single values are stored as follows <blue_games_won=5>, with the angle brackets delimiting one value from the next and the equals sign separating the value description tag from the value itself.

Each match that is part of a statistics file has three sections, the first defines the match, the rules and positions file to be used, and how many games are to be played as part of the match and the two AI players to play each other.  The second section is the individual statistics from each game played between the two AI players.  The final section is a summary of the results of all the games played, including the number of games each AI player won and the totals of the statistics included in the individual games results.

3.7 Tournament Files

To benchmark the more sophisticated AI players against simpler players is quite a long-winded monotonous process, with each match set up manually, a tournament file allows either a round-robin tournament to be set up between each AI player whose filename is included in the tournament file or a tournament.  The sytax of the tournament file also allows a slightly more specific tournament where only first AI player of the file plays all the other AI players or the tournament file.

A tournament file is to be used at the command line when the program is being used in statistics mode.  Nominally tournament file have a “.trn” extension but this is not enforced by any filter.  
The first line of a tournament file specify whether each AI player should playe every other AI player as both red and blue, (that would be “RED_AND_BLUE TRUE;”), therefore doubling the number of matches that needs to be played.  The next line specifies whether a tournament should be set up that plays the first player listed against the rest of the players.  The remainder of the file specifies all the AI player files to be included in the tournament.

3.8 The Graphical User Interface

Designing a graphical user interface for the game was not one of the main goals of the project but to allow a reasonable human interactivity with the game such as human vs. human, human vs. AI player and the observation of AI player games, a good GUI was required.  The most essential part of the GUI was that it should be very straightforward to use, as its main intention is to serve as a tool to demonstrate the purpose of the project to someone who is coming to it for the first time.  Instructions on how to use the GUI can be found in the user manual, (appendix 7).

3.9 The Command Line Interface

The command line interface was designed to perform two particular tasks; firstly to collect statistics so that AI players can be benchmarked against each other; secondly to perform reinforcement learning training on the AI players.  Using a command line interface made performing these tasks quick and easy.  How to use the command line interface can be found in the user manual, (appendix 7).

3.10 Program Testing

As stated in sections 3.6 concerning collecting statistics, it was possible to assess certain aspects of the code’s accuracy by looking at the output of the statistics file.  A test running 100 games with the game rules file “p1vp2.rg” (see appendix 1) and positions file “standard.pos”, (see appendix 2), can be used to highlight some errors, the following command line can be used to execute this test:

java CustomPanelTest 100 p1vp2.rg standard.pos EC_test1.txt null null
The following results should be obtained from the statistics file if there were not any errors in the coding:

a. The total games won by red and blue should equal 100.  If not all the individual game results should be checked and the number of draws added on should equal 100.  It is highly unlikely there will be any draws.

b. The total number of squares occupied by each player combined should not exceed the number of games played multiplied by the size of the grid, i.e. 100 x 100 = 10,000.

c. The points scored by each player should equal the number of squares multiplied by the “POINTS_PER_SQUARE” value of the rules file (i.e. 10 points), plus the number of men multiplied by “POINTS_PER_MAN” value (i.e. 1 point).

d. The total number of men of each player at the end of the game, should be equal to 100 (the number of games played) multiplied by the “MEN_PER_PLAYER” parameter (i.e. 100) plus the total number of men gained minus the total number of men lost.

e. Attacking and defensive withdrawals by both players should equal zero as the rules file forbids withdrawals.

f. For each player the number of battles initiated, plus the number of moves to self-occupied squares, plus the number of moves to empty squares should equal 100 (number of games played) multiplied by “NO_OF_TURNS” parameter (i.e. 100), giving a total of 10,000.  Assuming no player is eliminated within 100 turns, which is very unlikely with the two very simple AI players being used.

Appendix 5.3 contains the results section of EC_test1.txt, from these results the six discussed tests have been analysed to give the following results:

a. Red games won equals 23, blue games won equals 77, a total of 100 as expected.

b. Squares occupied by red equals 3065, squares occupied by blue equals 3535, a total of 6600, as expected less than 10,000.

c. The number of red men equals 175,849 multiplied by 1 equals 175,849.  The number of red squares equals 3065 multiplied by 10 equals 30,650.  Adding these two answers together equals 206,499, which is the number of red points scored as expected.  The number of blue men equals 207,557.  The number of blue squares equals 3535 multiplied by 10 equals 35,350.  Adding these two answers together equals 242,907, which is the number of blue points scored as expected.

d. The number of red men gained equals 213,781 minus the men lost (47,932) plus the number of games multiplied by the MEN_PER_PLAYER parameter (10,000) equals 175,849, the number of red men left at the end of the game as expected.  The number of blue men gained equals 239,580 minus the men lost (42,023) plus the number of games multiplied by the MEN_PER_PLAYER parameter (10,000) equals 207557, the number of blue men left at the end of the game as expected.

e. The number of attacking and defensive withdrawals by both players equalled 0 as expected.

f. The number of battles initiated by red equals 2252, the number of moves to already self-occupied squares equals 4870, the number of moves to empty squares equals 2878, giving a total of 10,000, as expected.  The number of battles initiated by blue equals 1954, the number of moves to already self-occupied squares equals 5547, the moves to empty squares equals 2499, giving a total of 10,000 as expected.

All the tests returned the results expected, which gives increased assurance that the code is operating correctly.

4 Design & Implementation of AI Players

4.1 Choice of Game Rules and Positions Files

To keep consistency throughout all the AI players each player has been tested in the same game environment, this means using the same rules and positions files.  Once a successful AI player has been developed the rules and positions file could then be altered so if the AI player is still successful in different game environments.  Game rules file “p1vp2.rg” (see appendix 1) and positions file “standard.pos” (see appendix 2), have been designed to serve as the consistent game rules and positions file.  

“p1vp2.rg” rules have been chosen to meet two requirements; firstly eliminate unneeded complexity, this included prohibiting withdraws and limiting players to one move per turn; secondly to keep consistency between games, this includes making the square and men allocation from file so that it is the same every game.  The rules file has also been designed to even out certain pairs of strategies, weighting the scores for battles dependent on how many men each player has in the battle, this encourages grouping more men in less squares but the “men added” function of X+X^0.1 encourages having men more spread out.

The positions file was designed to give equality between the red and blue players, as blue’s positions are a mirror image of red’s positions.

4.2 AI Player Design

Text-based files have been used to specify the rules of the game and the starting position for a game, the use of this type of specification is also used for input set of heuristics for AI player because of its straightforwardness and is consistency with the rest of the design.  

Each move that can performed by an AI player has certain attributes associated to it, the three central attributes are, which square to move from, which square to move to and finally how many men to move.  Both squares associated with a move are objects of the game model and therefore they have their own attributes, these attributes include whether a square is red, blue or empty and if occupied how many men occupy that square.  An AI player specification takes into consideration all these attributes, as well as global attributes associated to the player itself, such as how many men it has relative to its opponent.  

The heuristics designed for the AI Player serve one of the following purposes:

· Dismiss unsuitable moves.

· Order moves in degree of suitability.

· Determine an appropriate number of men to move.

These three purposes can be achieved in two different ways, firstly constraining the choice with a real number value and secondly activating or suppressing a type of behaviour or choosing a behaviour from a list.

One essential characteristic that each heuristics has is a default value, this is designed to be a value which suppresses any effect the heuristic has on choosing the move for the player.

4.3 AI Player Move Choice Algorithm

Figure 4.3 is an action diagram that shows how heuristics have been applied to determine the move chosen by an AI player.  Sections 4.4-4.6 show in greater detail how each heuristic works.
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Figure 4.3: *MAX = “MAXIMUM_ATTACK” x AI player’s men in “from square”

MIN = “MINIMUM_ATTACK” x Opponent’s men in “to square.

The action diagram in figure 4.3 has to be traversed every time a move is made, (i.e. up to 200 times a game), this means that the time taken to play a game can be quite significant especially with two more advanced AI players, where a game can take approximately 20 seconds.

4.4 Implementation of Simple AI Players
At the start of an AI player’s move, a list of all squares occupied by the player is compiled, from this list the following heuristics can then be applied.

4.4.1 “Insignificant” Heuristic

Each square from the list is analysed to see whether the number of men that occupy that square relative to the total number of men of the is less than the decimal given after the “INSIGNIFICANT” tag of an AI player file, if so it is removed from the list.  Once every square has been analysed if the list has become empty, the original list is re-compiled again.  The default values of this heuristic is 0, this would cause no squares to be removed from the list which is the equivalent of suppressing the behaviour.

4.4.2 “Rank Significance” Heuristic

If the “RANK_SIGNIFICANCE” value is “TRUE”, then the vector of squares is sorted in descending order of the number of men occupying each square.  The sorting algorithm used to sort the square is a merge sort and is adapted from [5].  The default value of this heuristic is “FALSE” as this suppresses the behaviour of the heuristic.

4.4.3 Testing of Simple AI Players

“aiPlayer0.aip”, “aiPlayer1.aip” and “aiPlayer2.aip” (see appendix 3) are files, which represent these first two heuristics.  “aiplayer0.aip” represents a player using no heuristics (i.e. completely random move choice), “aiPlayer1.aip” represents a player using the first heuristic and “aiPlayer2.aip” represents a player using both heuristics.  As the number of heuristics used increases the performance of the player should increase in comparison to a random player (i.e. “aiPlayer0.aip”). A test of these three AI players can be performed using the following command line:

java CustomPanelTest 50 p1vp2.rg standard.pos simple_ais_test.txt tourn3.trn null

The above command line runs a 50 games per match tournament using the rules file “p1vp2.rg”(see appendix 1), the positions file “standard.pos” (see appendix 2) and the tournament file “tourn3.trn” (appendix 3.2).    The statistics are then passed to a file entitled “simple_ais_test.txt” which can be found on the accompany CD in the \simple_ais_tests\ folder.  Table 4.4.3 is a summary of the tournament run by this test:

	AI Player
	 
	Red
	 

	Number
	0
	1
	2

	 
	0
	 
	26-24
	34-16

	Blue
	1
	25-25
	 
	36-14

	 
	2
	7-43
	21-29
	 


Table 4.4.3: For each match the red score is followed by blue score.

Table 4.4.3 clearly shows that “aiPlayer2.aip” is the best AI player file.  “aiPlayer1.aip” and “aiPlayer0.aip” win roughly the same number of games against each other but “aiPlayer1.aip” is more successful against “aiPlayer2.aip.”  These two observations demonstrate that in general as more heuristics are added the performance of the player improves.

4.5
Implementation of Intermediate AI Players

4.5.1
“Attack Decimal” Heuristic

This heuristic processes the list of significant squares to generate every possible move that can be made from every square in the list.  Each move is then categorised into three lists, moving to a square already occupied, a square occupied by the opponent or to an empty square.  The three lists are then reconstituted into one list, the order in which they are reconstituted depends on whether the proportion of men the player has on the grid, (i.e. if the AI player is red, total number of red men divided by the total number of red and blue men), is greater than or less than the value for “ATTACK_DECIMAL”.  If the proportion of men is greater than attack decimal then the vector is reconstituted in the following way:


Opponent occupied squares,


Empty squares,


Already occupied squares.

If the proportion of men is less than the attack decimal then the vector is reconstituted as follows:


Empty squares,


Already occupied squares,


Opponent occupied squares.

Basically what this heuristic does, is make the player in an “attacking state”, when it is in more commanding position (i.e. has a large number of men relative to its opponent) and a “defensive state” when it is not in a commanding position.  The default value for this heuristic is 0 and this deactivates the behaviour of heuristic.

4.5.2
“Minimum Attack” Heuristic

Assuming that from 4.5.1, the AI player is considered to be in an “attacking state”, the list holding all possible moves is now enumerated, for each move, the number of opponents men in the “to square” of the move, (if the move is to an empty or already occupied square this value is obviously 0), is multiplied by the “MINIMUM_ATTACK” value, if this product is greater than the total number of men in the “from square” of the move, then the next move in the list is analysed to see meet the criteria, this continues either until there is an attack that can made that meets the criteria or a move to an empty or already occupied square is reached, (which implicitly meets the criteria).  Once a move has been chosen a random number of men between the “MINIMUM_ATTACK” multiplied by the number of opponent’s men product and the total number of men in the AI player’s square is selected. 

If the AI player is considered to be in a “defensive state” from 4.5.1, the first move of the vector is chosen, this implicitly meets the discussed criteria, as the move would be to an empty or already occupied square.

The default value for the “MINIMUM_ATTACK” heuristic is 0, which causes the first move of the list to always be chosen this is the equivalent of the behaviour of this heuristic being suppressed.
4.5.3 “Maximum Attack” Heuristic

This heuristic determines the maximum number of men that should be moved.  The value of the heuristic multiplied by the total number of men in the “from square” is the upper limit of the number of men that can be moved.

This heuristic interacts quite strongly with the “Minimum Attack” heuristic at two stages; firstly in determining which move to choose, if the product for the “from square” multiplied by the value of “MAXIMUM_ATTACK” is greater than the product calculated from the “Minimum Attack” heuristic, (number of opponent’s men is multiplied by the “MINIMUM_ATTACK” value), then the move is selected; secondly, the product calculated in this heuristic is the upper limit when a random number of men to be moved is chosen, where the product calculated for the “Minimum Attack” heuristic is the lower limit.

The default value for the “MAXIMUM_ATTACK” heuristic is 1, which makes the only constraint on the number of men being moved the number of men currently occupying the “from square”, which is the equivalent of the behaviour of this heuristic being suppressed.

4.5.4 “Type Num Men” Heuristic

Any move that has been selected will have a “MINIMUM_ATTACK” x No. opponent’s men value less than “MAXIMUM_ATTACK” x No. AI player’s men, this is implicit if a move is to an empty or already occupied square.  The number of men to move falls between the two above constrained, exactly how many men are moved is chosen by this heuristic.  The heuristic value can be “MIN” (i.e. “MINIMUM_ATTACK” x No. opponent’s men), “MAX” (i.e. “MAXIMUM_ATTACK” x No. AI player’s men), “AVERAGE” which is halfway between the two and “RANDOM” which is a random number of men between the two constraints.  “RANDOM” is the default value for this heuristic, which suppresses the heuristic’s behaviour.  If the number of opponent’s men is zero, which would also cause the number of men to be chosen to move to be zero if the parameter is “MIN” then the number of men to move is set to one.

4.5.5 Testing of Intermediate AI Players

“aiPlayer3.aip” introduces the “ATTACK_DECIMAL” heuristic, “aiPlayer4.aip” introduces the “MINIMUM_ATTACK” heuristic, “aiPlayer5.aip” introduces the “MAXIMUM_ATTACK” heuristic and the “aiPlayer6?.aip” introduce the “TYPE_NUM_MEN” heuristic, ‘a’ uses “MIN”, ‘b’ uses “MAX” and ‘c’ uses “AVERAGE”.  To determine which AI player file is the most successful and which heuristic makes the most difference to the AI player performance, each player must be matched with every other player, playing 50 games as both red and blue.  To see how the intermediate players are improvement on the simple players “aiPlayer2.aip”, the most successful player from the simple players should also be included in the tournament.  The following command line runs the tournament described:

java CustomPanelTest 50 p1vp2.rg standard.pos inter_ais_test.txt tourn4.trn null

This command line produces a statistics file entitled “inter_ais_test.txt”, this file can be found in the \inter_ai_players\ folder of the accompanying CD.   Table 4.5.5a is a summary of the results from the tournament that was run:

	AI Player
	 
	 
	 
	Red
	 
	 
	 

	Number
	2
	3
	4
	5
	6a
	6b
	6c

	 
	2
	 
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0

	 
	3
	0-50
	 
	50-0
	50-0
	50-0
	50-0
	50-0

	 
	4
	0-50
	0-50
	 
	3-47
	0-50
	43-7
	0-50

	Blue
	5
	0-50
	0-50
	44-6
	 
	0-50
	50-0
	0-50

	 
	6a
	0-50
	0-50
	50-0
	45-5
	 
	50-0
	39-11

	 
	6b
	0-50
	0-50
	2-48
	0-50
	0-50
	 
	0-50

	 
	6c
	0-50
	0-50
	50-0
	43-7
	3-47
	50-0
	 


Table 4.5.5a: For each match the red score is followed by blue score.

From Table 4.5.5a it can be seen that all the intermediate players are better than the best simple AI player (“aiPlayer2.aip”), which shows that the introduction of the “ATTACK_DECIMAL” heuristic (in “aiPlayer3.aip” onwards) and setting it to 0.4 makes a significant improvement to the AI players, probably what makes the most difference is grouping the different types of moves, Which has lead to generally attacking moves being made.  Table 4.5.5a also shows that the introduction of the “MINIMUM_ATTACK” heuristic also significantly improves the performance of the AI player.  The introduction of the “MAXIMUM_ATTACK” heuristic and setting it 0.9 appears to reduce the performance of the AI player which shows that there is not a significant advantage leaving some of the men in the square moved from, in comparison to the maximum number of men available to the attack.  The “TYPE_NUM_MEN” heuristic also makes a significant difference to the performance of the AI Player but this very much depends on the value that the heuristic is set to, if it is set to “MAX” as in “aiPlayer6b.aip” and “AVERAGE” as in “aiPlayer6c.aip”, then the performance is improved in comparison to “aiPlayer5.aip” (which has the same heuristics except “TYPE_NUM_MEN” is set to its default value of “RANDOM”).  Setting the “TYPE_NUM_MEN” heuristic to “MIN” like in “aiPlayer6a.aip” actually make the performance worse than “aiPlayer5.aip.”

From studying all the results from Table 4.5.5a it is clear to see that “aiPlayer6b.aip” is the best player file, however changing the value of “MAXIMUM_ATTACK” value from 1 to 0.9 made the performance of the AI players worse, so “aiPlayer6b.aip” probably does not have the best possible set of heuristic values.  By creating a new AI player (“aiPlayer7.aip”), which has the same heuristic as “aiPlayer6b.aip” but has the “MAXIMUM_ATTACK” heuristic set back to 1.  “aiPlayer7.aip” must be tested against all the other intermediate players to see if it is actually an improvement on “aiPlayer6b.aip.”  The following command line runs the aforementioned test:

java CustomPanelTest 50 p1vp2.rg standard.pos inter_ais_test2.txt tourn5.trn null

The rules, position and tournament files can be found in the appendices.  The statistics output file “inter_ais_test2.txt” can be found on the accompanying CD in the \inter_ais_tests\ folder, a summary of the results can be found below in table 4.5.5b:

	Colour of aiPlayer7.aip
	Red 
	Blue

	 
	2
	50-0
	0-50

	 
	3
	50-0
	0-50

	Versus  
	4
	49-1
	0-50

	AI Player 
	5
	50-0
	0-50

	No.
	6a
	50-0
	0-50

	 
	6b
	50-0
	0-50

	 
	6c
	50-0
	0-50


Table 4.5.5b: For each match the red score is followed by blue score.

All the results in table 4.5.5b have the games won by red first.  From the table it can be seen that “aiPlayer7.aip” out performs all of the other intermediate AI players, only losing one game out of 700. 

4.6 Implementation of Advanced AI Players

The heuristics involved with the advanced players are designed both to try and improve on the performance against the best AI players so far but also to try and make the AI player more ruthless against the weaker AI players.

4.6.1 “Reinforce Ratio” Heuristic

This heuristic is invoked when the AI player is an “attacking state” (see 4.5.1) and there are moves to opponent squares but none of them meet the criteria of the heuristics for “Minimum Attack” and “Maximum Attack”.  When this occurs the algorithm for the heuristic takes the first move to an opponents square of the list and analyses the “to square” of the move and determines whether any other AI player occupied squares is adjacent, if so the number of men in that adjacent square multiplied by the value for “REINFORCE_RATIO” is moved to the original “to square.”  As the heuristic name suggests this reinforces the number of men in a square, so that hopefully the original move planned to an opponent square will meet the criteria for “Minimum Attack” and “Maximum Attack” next turn.  This heuristic is designed mainly to make the AI player more ruthless against weaker AI players, as generally this is the only time when only unviable attacks will be available and the AI player will want to make an attack.

If the “REINFORCE_RATIO” value is 0, its default value, then the heuristic is never invoked even when the state of the game is applicable.

4.6.2 “Attack Empty” and “Defend Empty” Heuristics

These heuristics are invoked when the move chosen is to an empty square, “ATTACK_EMPTY” is used when the AI player is in an “attacking state” and “DEFEND_EMPTY” is used when the AI player is in a “defending state” (see 4.5.1).  Both the “ATTACK_EMPTY” and “DEFEND_EMPTY” values determine what proportion of men is moved to the empty square.  When a player is in an “attacking state”, the only reason a player would be moving to an empty square is because the AI player is not adjacent to any opponent squares, this means all or a large majority of the men want to be moved so that the AI player will hopefully be in a position and with enough men in that position to attack an opponent square next turn.  If the AI player is in a “defending state” it may benefit the player to move around 50% of its men to take advantage of an “men added” function which benefits players who have their men more spread out.

“ATTACK_EMPTY” and “DEFEND_EMPTY” parameters can both be set to 0 to suppress their behaviour. 

4.6.3 Testing of Advanced AI Players

“aiPlayer8.aip” introduces the “REINFORCE_RATIO” heuristic, “aiPlayer9.aip” introduces the “ATTACK_EMPTY” and “aiPlayer10.aip” introduces the “DEFEND_EMPTY” heuristic (see appendix 3), these players along with the best intermediate player, “aiPlayer7.aip” must be played against each other to determine which AI player is the best.  The following command can be used to run the described test:

java CustomPanelTest 50 p1vp2.rg standard.pos advanced_ais_test.txt tourn6.trn null

The rules, positions and tournament files can all be found in the appendices.  The statistics output file, “advanced_ais_test.txt” can be found on the accompanying CD in the \advanced_ais_tests\ folder.  A summary of the results from the test is shown in table 4.6.3a below:

	AI Player
	 
	       Red
	 

	Number
	7
	8
	9
	10

	 
	7
	 
	49-1
	47-3
	47-3

	Blue
	8
	0-50
	 
	26-24
	21-29

	 
	9
	1-49
	22-28
	 
	21-29

	 
	10
	0-50
	27-23
	25-25
	 


Table 4.6.3a: For each match the red score is followed by blue score.

From table 4.6.3a, it is clear to see that the “REINFORCE_RATIO” heuristic, with its value set to 0.5 improves the performance of the AI player; the “DEFEND_EMPTY” and “ATTACK_EMPTY” heuristics give no definitive improvement or worsening to the performance of the AI player, however purely based on total games won “aiPlayer9.aip” edges being the best AI player with a total of 204 games won.

The other reason for the heuristics for the advanced AI players is to make them more ruthless against the simpler AI players, this means being able to eliminate all the men of a simpler player in the prescribed number of moves more often.  To test this all the advanced players and “aiPlayer7.aip” can be tested against the simple players (i.e. “aiPlayer0.aip”-“aiPlayer2.aip”).  Several command lines need to be run for this test, one tournament file needs to be written for each AI player to play the simple AI players.  The following command line is a generic version of the four command lines that need to be run:

java CustomPanelTest 50 p1vp2.rg standard.pos advanced_ais_test2?.txt tourn7?.trn null 

Both question marks can be replaced with the letter ‘a’ for “aiPlayer7.aip”, ‘b’ for “aiPlayer8.aip”, ‘c’ for “aiPlayer9.aip” and ‘d’ for “aiPlayer10.aip”.  The rules, positions and tournament files used can be found in the appendices, the statistics output files can be found on the accompanying CD in the /advanced_ais_tests /folder, a summary of the results can be found in table 4.6.3b:

	AI Player  No.
	7
	8
	9
	10

	Colour
	 
	Red
	Blue
	Red
	Blue
	Red
	Blue
	Red
	Blue

	Versus  
	0
	157
	13
	250
	0
	594
	445
	301
	267

	AI Player 
	1
	0
	0
	180
	0
	398
	1409
	454
	1254

	No.
	2
	0
	165
	0
	0
	1116
	186
	908
	343


Table 4.6.3b: Each result is the total points scored by the simple player in the match.

It is clear to see from table 4.6.3b that the “ATTACK_EMPTY” and “DEFEND_EMPTY” heuristics actually make the AI player less ruthless against the simple AI players.  “aiPlayer7.aip” has the best results but only just better than “aiPlayer8.aip.”  

Taking into account of the results from both table 4.6.3a and 4.6.3b, “aiPlayer8.aip” is the best AI player overall.  To benchmark definitively how good “aiPlayer8.aip”, so that if new AI players are created they can be compared, a tournament against all the other AI players must be run using the following command line:

java CustomPanelTest 50 p1vp2.rg standard.pos advanced_ais_test3.txt tourn8.trn null

The rules, positions and tournament files for this command line can be found in the appendices.  The statistics output file that the command line produces “advanced_ais_test3.txt” can be on the accompanying CD in the \advanced_ais_tests\ folder.  Table 4.6.3c is a summary of the results from the statistics file:

	Versus AI Player No.
	0
	1
	2
	3
	4
	5
	6a
	6b
	6c
	7
	9
	10

	Colour of
	Red
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	24-26
	25-25

	aiPlayer8.aip
	Blue
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	29-21
	22-28


Table 4.6.3c: For each match the red score is followed by blue score.

From the table 4.6.3c it is clear to see that “aiPlayer8.aip” out performs all AI Players except “aiPlayer9.aip” but from table 4.6.3b, the small deficit in games won, which is not significant enough to draw any strong conclusions about whether “aiPlayer9.aip” is a better player and this is outweighed by the greater ruthlessness of “aiPlayer8.aip” against simple AI players.

4.7 Summary of AI Player Files

Below in figure 4.7 is the layout for an AI player file, (listings of all AI player files can be found in appendix 3):
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Figure 4.7
The syntax for an AI Player file is identical to that used for the game rules file, this allows the reader for the rules file to be adapted to read AI player files.  The first line of the file specifies the number of games played by the AI player, this is used by the reinforcement-learning element of the program, (see section 5).  For each heuristic of the AI player file figure 4.7 shows the set of possible values and the default value for each heuristic.

5 Design & Implementation of Reinforcement Learning

5.1
Introduction

As described in section 2.2.1, reinforcement learning works by analysing the past performance of the algorithm, (i.e. the AI player file) and modifying the heuristics appropriately dependent on the statistics collected on the performance of the AI player file.  An example for playing the game of “Risk” is if the AI player loses a lot of battles, the heuristics should be altered to reduce the number of battles the AI player initiates or make sure the battles initiated have a higher chance of victory.

5.2 Design of Reinforcement Learning Algorithm

Through inspection of all the heuristics in the AI player files, the heuristic that seems most suitable for adjustment through reinforcement learning is the “MINIMUM_ATTACK” heuristic, as the value of this heuristic can directly effect whether a player opts for a battle of to move to an empty square, as well as the likelihood of the player winning the battle and the number of men the player is likely to lose in a battle, these are all crucial factors which effect the number of games a player will win.

As seen in section 4.7, there is a parameter of the AI player file entitled, “GAMES_PLAYED”, this value is crucial in determining how much the values of the heuristics should be changed.  A second factor, which effects how much the value of the heuristics change is the relative success of the AI player in its previous match, if an AI player won all its games in its last match the values of the heuristic parameters are not be adjusted at all, whereas if the player lost all its matches the value is changed quite significantly.

To decide whether to adjust a parameter up or down depends on certain statistics that have been produced whilst the AI player has been playing its current match.  In the case of the “MINIMUM_ATTACK” heuristic the value is adjusted upwards if the number of battles initiated relative to its opponent is greater than the number of battle won relative to its opponent, if the opposite is true then the heuristic is adjusted downwards.

5.3 Implementation of Reinforcement Learning Algorithm

Despite the statistics output files being designed in a XML style so that they can be read in straightforwardly, it is easy to use the variables already stored and which have been used to generate the statistics output file to determine how the reinforcement learning algorithm should adjust the heuristics.

For each statistic there is a value for red and a value for blue, the blue value can be subtracted from the red to give a comparative value, showing which statistics red scores higher in, the array of statistic values can be multiplied by minus one to show the same but for blue.  In particular from the array of comparative values, the values for battles initiated and battles won are looked at to determine whether the “MINIMUM_ATTACK” heuristic value should be adjusted up or down.

As described in section 5.2, the adjustment of the heuristic value is quite subtle and the amount of change is dependent on number of games already played by the AI player and the performance of the AI Player in its previous match, this is called the performance weighting.  The performance weighting of an AI player is quotient of the games lost divided by the games played.  This formula produces a value of 0 if all the AI players’ games are won, therefore sensibly the heuristic value is not altered, the formula also produces the value 1 if the AI player loses all its games, which would mean that the heuristic value is adjusted quite significantly.  The significance of the adjustment of the heuristic value is also dependent on the quotient of the number of games played by the AI player in the match divided by the total number of games played by the AI player after the match.  Taking the “MINIMUM_ATTACK” heuristic as an example to be modified, the following formula is used:

New_MININUM_ATTACK = (old_MINIMUM_ATTACK * ( no._games_already_played + no._games_of_match * (1 ± performance_weighting ))) / ( no._games_already_played + no._games_of_match)

If the relative (in comparison to the opponent of the reinforcement learning player) number of battles initiated is greater than the relative number of battles initiated, the performance weighing is added, which will mean that the new MININUM_ATTACK value becomes higher than the old value however if the relative number of battles initiated is less than the relative number of battles initiated the performance weighting is subtracted, meaning the new “MINIMUM_ATTACK” value becomes lower than the old value.

When a new set of heuristics are generated for a reinforcement learning AI player, they are pre-pended to the original file with the number games used to generate the new heuristics included.  Keeping each set of heuristics with the number of games each set of heuristics was generated from is useful because the AI player file can be used as a record of how the heuristics have been modified over time, it also allows a special reader (see “ReinforcementPlayerReader.java” in \source_code\ folder of the accompanying CD), which can take a file with many set of heuristics and retrieve information on the latest set of heuristics, (at the start of the file) and the total number of games played by the AI player, (the total of “GAMES_PLAYED” parameter at the start of each set of heuristics), the regular AI player reader (see “AIPlayerReader.java” in \source_code\ folder of the accompanying CD), only reads in the first set of heuristics of a file, so the many sets of heuristics generated in a reinforcement learning player does not effect how the AI player reader works. 

5.4 Testing of Reinforcement Learning Players

Reinforcement learning should be used to “tweak” the values of heuristics for an already successful AI player; therefore “aiPlayer8.aip” (i.e. the best AI player from section 4) should be the base AI player file to have its “MINIMUM_ATTACK” heuristic “tweaked.”  The way that the reinforcement learning algorithm ”tweaks” its “MINIMUM_ATTACK” heuristic (see formula of section 5.3) means that the only AI players that beat “aiPlayer8.aip”, at least in a few games, are worth being used in the player’s reinforcement learning, in the case of “aiPlayer8.aip”, this is “aiPlayer9.aip” and “aiPlayer10.aip.”  As “aiPlayer8.aip” is now a reinforcement-learning player, a copy of heuristics has been saved as “reinforcePlayer1.aip.”  The next significance choice is how many games each AI player should play against “reinforcePlayer1.aip”, the default value for the initial number of games played (as stated in section 4.7) is twenty.  Twenty was chosen, as it should be large enough to give a realistic picture of how the reinforcement-learning player performs against a particular opponent but not to high that the training of a reinforcement-learning player takes too greater amount of time.  The following command line was used to run the described reinforcement learning:

java CustomPanelTest 20 p1vp2.rg standard.pos reinforce_test1.txt tourn9.trn reinforcePlayer1.aip 

The files used in this command line can be found in the appendices, “reinforce_test1.txt” \reinforcement_learning_tests\ folder, these results are not especially important, what is more important is the new value of the “MINIMUM_ATTACK” heuristic of “reinforcePlayer1.aip” after its training, which is 1.37 and this can be seen in the AI player file in appendix 3.14.  As the new value for “reinforcePlayer1.aip” has been generated from a starting point of 1.5 it is difficult to determine whether this had a significant influence on the final value, this can be determined by running the same training on sets of heuristics where the “MINIMUM_ATTACK” heuristic is set to 0.75 and 3, these heuristic sets are represented by AI player files “reinforcePlayer2.aip” and “reinforcePlayer3.aip” respectively which can be found in appendices 3.15 and 3.16.  Figure 4.6a shows how all three reinforcement-learning players converge on a value of roughly between 1.35 and 1.4, suggesting that the “MINIMUM_ATTACK” heuristic’s optimum value is somewhere in this range.
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There is only one way to prove definitively that the new value of the “MINIMUM_ATTACK” heuristic is an improvement on the old value of 1.5 and that is to test “reinforcePlayer1.aip” against all of AI player as “aiPlayer8.aip” was tested against to generate the results for table 4.6.3c, it would also be beneficial to test it against “aiPlayer8.aip” itself.  The test described can be run by using the following command line:

java CustomPanelTest 50 p1vp2.rg standard.pos reinforce_test4.txt tourn10.trn null

The files used in this command line can be found in the appendices, “reinforce_test4.txt” can be found in the \reinforcement_learning_tests\ folder of the accompanying CD.  Table 5.4b below summarises these results:

	Versus AI Player Number
	0
	1
	2
	3
	4
	5
	6a
	6b
	6c
	7
	8
	9
	10

	Colour of 
reinforcePlayer1.aip
	Red
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	50-0
	41-9
	31-19
	32-18

	
	Blue
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	0-50
	17-33
	10-40
	14-36


Table 5.4b: For each match the red score is followed by blue score.

Two observations can be made from table 5.4b; firstly “reinforcePlayer1.aip” beats “aiPlayer8.aip” 74-26 overall, which is sufficiently significant to suggest the heuristic’s new value provides an improvement in performance; secondly in the same matches as “aiPlayer8.aip” played for table 4.6.3c, “reinforcePlayer1.aip” only loses 61 games compared to “aiPlayer8.aip”’s 102, which is also a significant improvement in performance.

6 Conclusions & Future Work

6.1 Summary

This project has had three parts of implementation:

· Implementation of a game framework, this includes the implementation the game model and of rules, positions, statistics and tournament files and the implementation of the GUI and command line interface.

· Implementation of the AI player files and move choice algorithm determined by the heuristics of the AI player file.

· Implementation of reinforcement learning algorithm to adjust the value of the “MINIMUM_ATTACK heuristic.

The implementation of the game environment and all that it involves was crucial to the implementation of the last two parts, for obvious reasons without a game model and rules there was nothing to implement an AI player for but there are other elements of the game framework that were needed for the implementation of the AI players and their reinforcement learning.  The implementation of a GUI allowed analysis of the AI player behaviour to help determine new heuristics and the production of statistics files via the command line interface to give concrete evidence of how the heuristics affected the performance of an AI player.  Tournament files were also a very useful utility of the game framework as they allowed a large amount of statistics gathering with minimal user input, which was an essential part of the implementation of the last two parts.  Finally the facility to use the command line interface not just to run long tournaments and collect statistics but also to set a specific player to be trained using the reinforcement learning algorithm and have its “MINIMUM_ATTACK” adjusted was another way that the game framework implementation was essential to the implementation of the last two parts.

6.2 Assessment

The first goal of this project, (as stated in the project brief in appendix 6), was to adapt and simplify the rules of the original game of “Risk” to produce a game model, which AI players could be designed to play in.  This goal was achieved by the implementation of game rules and positions file and a verification engine to ensure that any moved performed, whether by an AI or human player, was legal.  The game rules file also allowed one of the sub-goals to be achieved, this was to ensure that the verification engine is flexible and allow changes of rules, so that an appropriate set of rules could be chosen to test the AI players without having to keep changing parameters within the source code.

The second and most important goal defined in the project brief was to develop AI players.  This task was to be achieved by developing simple AI players and gradually building on them to create more sophisticated players, the more sophisticated were then benchmarked against the simpler players to show that the development had been successful.  Section 4 shows how heuristics were gradually introduced to produce more and more sophisticated AI players, which through testing were proven to be more successful than the earlier simpler players.  Section 5 introduced a reinforcement-learning algorithm that could adjust the value of certain heuristics and through testing was shown to improve the performance of the AI player in comparison to all the AI players that were developed in section 4.

The motivation to develop AI players was to design new algorithms that could be applied in other areas of AI research; the game environment was specifically designed to be quite generic so that the algorithm developed could be adapted to other AI environments.  Both the move choice and reinforcement learning algorithms could be adapted to other AI tasks.  The move choice algorithm is a decision-making algorithm; decision-making is the central part of almost all AI tasks.  The formula used to adjust the “MINIMUM_ATTACK” heuristic could also be used to adjust heuristic values for AI agents for all manner of tasks.

One of the time-permitting goals of the project was to test the best AI player under many different sets of game rules to determine whether the heuristics and their values are generic across different game environments, there was not sufficient time to achieve this but this time-permitting goal can be added to the further work that can be undertaken for this project.

6.3
Future Work

There are two main areas of future work that could be undertaken.  The first in continuing to improve the most sophisticated AI players even further, the second is to create new game rules files and try to develop AI players that can be successful over more than one set of rules.  

There are two methods in which improving AI players can be tackled; the first is by adding more heuristics to the AI specification file and the second is by developing further the reinforcement-learning aspect of the AI players.  The best approach would be to use both methods to improve the ability of the AI players.

6.3.1 Adding Heuristics

There are certain additional heuristics, which could be added to try and improve the performance of AI players:

1. A heuristic which could invoke a behaviour to try to move closer to opposition squares that are suitable to be attacked if there is currently no moves available to start a battle which meets the “MINIMUM_ATTACK” and “MAXIMUM_ATTACK” criteria.

2. A heuristic to prevent moves to squares where the opponent is likely to attack and be successful in defeating the AI player.

3. There is already a heuristic “ATTACK_DECIMAL” to determine whether to carry out an attacking move or not and orders the type of moves appropriately.  A second lower decimal could be used to be even more defensive, ordering moves as follows:

Already occupied squares,



Empty squares,



Opponent squares.

This may be a useful behaviour, as moving to empty squares, may increase the number of men gained through the “men added” function but may leave both the square moved to and the square moved from more vulnerable to attack.

By using the GUI aspect of the program to view sophisticated AI players playing against each other may give more ideas for the design of new heuristics.

6.3.2 Greater Reinforcement-learning

Reinforcement learning is achieved by analysing statistics of previous matches to determine how to modify values of heuristics, in section 5 only one heuristic was modified using this method, the remainder of the heuristics could also benefit from being modified depending on the values of certain statistics.  

The “MAXIMUM_ATTACK” heuristic is probably the most obvious to adjust using reinforcement learning, from testing in section 4.4, it was determined that 1 appears to be the optimum value for the “MAXIMUM_ATTACK” heuristic but this could be proved by using a reinforcement learning algorithm such like that used to adjust the “MINIMUM_ATTACK” heuristic.  Before this new algorithm could be introduced the statistics used to determine the adjustment would have to be determined, the best choice would probably be relative number of men lost, i.e. if an AI player had lost more men than its opponent the “MAXIMUM_ATTACK” heuristic would be increased and if it had lost less it would be decreased.

Heuristics with real number values are probably best suited to the adjustment provided by reinforcement learning algorithms, so “ATTACK_DECIMAL” and “REINFORCE_RATIO” heuristics may also be suitable candidates.

6.3.3 Different Game Environments

So far an AI player has only been developed to play under one set of rules and a specific set of starting positions, one of the additional (time-permitting) goals of the project was to determine whether the AI player would be as good under different sets of rules and positions.  Once it is known how the AI player has performed across several environments; if it has been successful then conclusions can drawn to suggest that the heuristics developed are generic to many game environments; if unsuccessful plans for new heuristics and the modification of old heuristics can be made to try to improve the AI player’s general success over many different environments.
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Appendices

Appendix 1: p1vp2.rg

Can also be found on accompanying CD at \source_code\p1vp2.rg

GRID_X 10;

GRID_Y 10;

MEN_PER_PLAYER 100;

NO_OF_SQUARES 10;

SQUARE_ALLOCATION FROM_FILE;

MEN_ALLOCATION FROM_FILE;

MEN_ADDED X+X^0.1

DIAGONAL_SQUARES_ADJACENT TRUE;

DEFENDER_WITHDRAW FALSE;

ATTACKER_WITHDRAW FALSE;

SCORE_RESULT ONE_MAN;

DRAWS REROLLED;

SCORE_MAX NO_OF_MEN_IN_BATTLE;

WEIGHTED TRUE;

WINNER SCORED;

NO_OF_TURNS 100;

POINTS_PER_MAN 1;

POINTS_PER_SQUARE 10;

MOVES_PER_TURN 1;

RED_PLAYER aiPlayer1.aip;

BLUE_PLAYER aiPlayer2.aip;

Appendix 2: standard.pos

Can also be found on accompanying CD at \source_code\standard.pos

<RED_SQUARES><0,4,10><1,4,10><2,4,10><3,4,10><4,4,10><5,4,10><6,4,10><7,4,10><8,4,10><9,4,10></RED_SQUARES>

<BLUE_SQUARES><0,5,10><1,5,10><2,5,10><3,5,10><4,5,10><5,5,10>

<6,5,10><7,5,10><8,5,10><9,5,10></BLUE_SQUARES>

Appendix 3

Appendix 3.1: aiPlayer0.aip

Can also be found on accompanying CD at \source_code\aiPlayer0.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0;

RANK_SIGNIFICANCE FALSE;

ATTACK_DECIMAL 0;

MINIMUM_ATTACK 0;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;
Appendix 3.2: aiPlayer1.aip

Can also be found on accompanying CD at \source_code\aiPlayer1.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE FALSE;

ATTACK_DECIMAL 0;

MINIMUM_ATTACK 0;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.3: aiPlayer2.aip

Can also be found on accompanying CD at \source_code\aiPlayer2.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0;

MINIMUM_ATTACK 0;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.4: aiPlayer3.aip

Can also be found on accompanying CD at \source_code\aiPlayer3.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 0;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.5: aiPlayer4.aip

Can also be found on accompanying CD at \source_code\aiPlayer4.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.6: aiPlayer5.aip

Can also be found on accompanying CD at \source_code\aiPlayer5.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 0.9;

TYPE_NUM_MEN RANDOM;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.7: aiPlayer6a.aip

Can also be found on accompanying CD at \source_code\aiPlayer6a.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 0.9;

TYPE_NUM_MEN MIN;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.8: aiPlayer6b.aip

Can also be found on accompanying CD at \source_code\aiPlayer6b.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 0.9;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.9: aiPlayer6c.aip

Can also be found on accompanying CD at \source_code\aiPlayer6c.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 0.9;

TYPE_NUM_MEN AVERAGE;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.10: aiPlayer7.aip

Can also be found on accompanying CD at \source_code\aiPlayer7.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.11: aiPlayer8.aip

Can also be found on accompanying CD at \source_code\aiPlayer8.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0;

DEFEND_EMPTY 0;

Appendix 3.12: aiPlayer9.aip

Can also be found on accompanying CD at \source_code\aiPlayer9.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 1;

DEFEND_EMPTY 0;

Appendix 3.13: aiPlayer10.aip

Can also be found on accompanying CD at \source_code\aiPlayer10.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 1;

DEFEND_EMPTY 0.5;

Appendix 3.14: reinforcePlayer1.aip

The heuristics below are only the final followed by the initial sets of heuristics produced after all reinforcement learning training. The full listing of the file can be found on accompanying CD at \source_code\reinforcePlayer1.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.3688314;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.5;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;

Appendix 3.15: reinforcePlayer2.aip

The heuristics below are only the final followed by the initial sets of heuristics produced after all reinforcement learning training. The full listing of the file can be found on accompanying CD at \source_code\reinforcePlayer2.aip.

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.3924321;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 0.75;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;
Appendix 3.16: reinforcePlayer3.aip

The heuristics below are only the final followed by the initial sets of heuristics produced after all reinforcement learning training. The full listing of the file can be found on accompanying CD at \source_code\reinforcePlayer3.aip

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 1.4162294;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;

GAMES_PLAYED 20;

INSIGNIFICANT 0.1;

RANK_SIGNIFICANCE TRUE;

ATTACK_DECIMAL 0.4;

MINIMUM_ATTACK 3;

MAXIMUM_ATTACK 1.0;

TYPE_NUM_MEN MAX;

REINFORCE_RATIO 0.5;

ATTACK_EMPTY 0.0;

DEFEND_EMPTY 0.0;

Appendix 4

Appendix 4.1: example_tourn1b.trn

Can also be found on accompanying CD at \source_code\example_tourn1b.trn

HOME_AND_AWAY FALSE;

FIRST_PLAYER_VERSUS FALSE;

aiPlayer1.aip;

aiPlayer2.aip;

aiPlayer3.aip;

Appendix 4.2: tourn3.trn

Can also be found on accompanying CD at \source_code\tourn3.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS FALSE;

aiPlayer0.aip

aiPlayer1.aip

aiPlayer2.aip
Appendix 4.3: tourn4.trn

Can also be found on accompanying CD at \source_code\tourn4.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS FALSE;

aiPlayer2.aip

aiPlayer3.aip

aiPlayer4.aip

aiPlayer5.aip

aiPlayer6a.aip

aiPlayer6b.aip

aiPlayer6c.aip

Appendix 4.4: tourn5.trn

Can also be found on accompanying CD at \source_code\tourn5.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer7.aip;

aiPlayer2.aip;

aiPlayer3.aip;

aiPlayer4.aip;

aiPlayer5.aip;

aiPlayer6a.aip;

aiPlayer6b.aip;

aiPlayer6c.aip;

Appendix 4.5: tourn6.trn

Can also be found on accompanying CD at \source_code\tourn6.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS FALSE;

aiPlayer7.aip;

aiPlayer8.aip;

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 4.6: tourn7a.trn

Can also be found on accompanying CD at \source_code\tourn7a.trn
RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer7.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;
Appendix 4.7: tourn7b.trn

Can also be found on accompanying CD at \source_code\tourn7b.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer8.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;
Appendix 4.8: tourn7c.trn

Can also be found on accompanying CD at \source_code\tourn7c.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer9.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;
Appendix 4.9: tourn7d.trn

Can also be found on accompanying CD at \source_code\tourn7d.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer10.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;

Appendix 4.10: tourn8.trn

Can also be found on accompanying CD at \source_code\tourn8.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

aiPlayer8.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;

aiPlayer3.aip;

aiPlayer4.aip;

aiPlayer5.aip;

aiPlayer6a.aip;

aiPlayer6b.aip;

aiPlayer6c.aip;

aiPlayer7.aip;

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 4.11: tourn9.trn

Can also be found on accompanying CD at \source_code\tourn9.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

reinforcePlayer1.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 4.11: tourn9a.trn

Can also be found on accompanying CD at \source_code\tourn9a.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

reinforcePlayer2.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 4.11: tourn9b.trn

Can also be found on accompanying CD at \source_code\tourn9b.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

reinforcePlayer3.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 4.11: tourn10.trn

Can also be found on accompanying CD at \source_code\tourn10.trn

RED_AND_BLUE TRUE;

FIRST_PLAYER_VERSUS TRUE;

reinforcePlayer1.aip;

aiPlayer0.aip;

aiPlayer1.aip;

aiPlayer2.aip;

aiPlayer3.aip;

aiPlayer4.aip;

aiPlayer5.aip;

aiPlayer6a.aip;

aiPlayer6b.aip;

aiPlayer6c.aip;

aiPlayer7.aip;

aiPlayer8.aip

aiPlayer9.aip;

aiPlayer10.aip;

Appendix 5

Appendix 5.1: example1a.txt

Can also be found on accompanying CD at \example_stats_files\example1a.txt

<file=example1a.txt>

<tournament_file=null>

<game_rules_file=p1vp2.rg>

<game_positions_file=standard.pos>

<no_games_played=3>

<red_player_type_file=aiPlayer1.aip>

<blue_player_type_file=aiPlayer2.aip>

<game_1>

<red_points=2401><blue_points=2635>

<red_squares=36><blue_squares=38>

<red_men=2041><blue_men=2255>

<red_battles_won=13><blue_battles_won=16>

<red_men_lost=314><blue_men_lost=381>

<red_men_gained=2255><blue_men_gained=2536>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=312><blue_men_committed=350>

<red_battles_init=15><blue_battles_init=14>

<red_move_occupied=50><blue_move_occupied=58>

<red_move_empty=35><blue_move_empty=28>

</game_1>

<game_2>

<red_points=2185><blue_points=2037>

<red_squares=28><blue_squares=32>

<red_men=1905><blue_men=1717>

<red_battles_won=21><blue_battles_won=24>

<red_men_lost=521><blue_men_lost=507>

<red_men_gained=2326><blue_men_gained=2124>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=463><blue_men_committed=583>

<red_battles_init=24><blue_battles_init=21>

<red_move_occupied=50><blue_move_occupied=55>

<red_move_empty=26><blue_move_empty=24>

</game_2>

<game_3>

<red_points=2189><blue_points=2381>

<red_squares=32><blue_squares=33>

<red_men=1869><blue_men=2051>

<red_battles_won=17><blue_battles_won=32>

<red_men_lost=456><blue_men_lost=359>

<red_men_gained=2225><blue_men_gained=2310>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=365><blue_men_committed=533>

<red_battles_init=28><blue_battles_init=21>

<red_move_occupied=44><blue_move_occupied=56>

<red_move_empty=28><blue_move_empty=23>

</game_3>

<results>

<red_wins=1><blue_wins=2>

<red_points=6775><blue_points=7053>

<red_squares=96><blue_squares=103>

<red_men=5815><blue_men=6023>

<red_battles_won=51><blue_battles_won=72>

<red_men_lost=1291><blue_men_lost=1247>

<red_men_gained=6806><blue_men_gained=6970>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=1140><blue_men_committed=1466>

<red_battles_init=67><blue_battles_init=56>

<red_move_occupied=144><blue_move_occupied=169>

<red_move_empty=89><blue_move_empty=75>

</results>

</file>


Appendix 5.2: example1b.txt

Can also be found on accompanying CD at \example_stats_files\example1b.txt

<file=example1b.txt>

<tournament_file=example_tourn1b.trn>

<match_1>

<fixture=aiPlayer2.aip,aiPlayer1.aip>

<game_rules_file=p1vp2.rg>

<game_positions_file=standard.pos>

<no_games_played=1>

<red_player_type_file=aiPlayer2.aip>

<blue_player_type_file=aiPlayer1.aip>

<game_1>

<red_points=1647><blue_points=2678>

<red_squares=27><blue_squares=41>

<red_men=1377><blue_men=2268>

<red_battles_won=18><blue_battles_won=42>

<red_men_lost=775><blue_men_lost=512>

<red_men_gained=2052><blue_men_gained=2680>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=753><blue_men_committed=423>

<red_battles_init=41><blue_battles_init=19>

<red_move_occupied=38><blue_move_occupied=49>

<red_move_empty=21><blue_move_empty=32>

</game_1>

<results>

<red_wins=0><blue_wins=1>

<red_points=1647><blue_points=2678>

<red_squares=27><blue_squares=41>

<red_men=1377><blue_men=2268>

<red_battles_won=18><blue_battles_won=42>

<red_men_lost=775><blue_men_lost=512>

<red_men_gained=2052><blue_men_gained=2680>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=753><blue_men_committed=423>

<red_battles_init=41><blue_battles_init=19>

<red_move_occupied=38><blue_move_occupied=49>

<red_move_empty=21><blue_move_empty=32>

</results>

</match_1>

<match_2>

<fixture=aiPlayer3.aip,aiPlayer1.aip>

<game_rules_file=p1vp2.rg>

<game_positions_file=standard.pos>

<no_games_played=1>

<red_player_type_file=aiPlayer3.aip>

<blue_player_type_file=aiPlayer1.aip>

<game_1>

<red_points=5750><blue_points=1956>

<red_squares=72><blue_squares=25>

<red_men=5030><blue_men=1706>

<red_battles_won=31><blue_battles_won=3>

<red_men_lost=129><blue_men_lost=401>

<red_men_gained=5059><blue_men_gained=2007>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=0><blue_men_committed=470>

<red_battles_init=0><blue_battles_init=34>

<red_move_occupied=32><blue_move_occupied=48>

<red_move_empty=68><blue_move_empty=18>

</game_1>

<results>

<red_wins=1><blue_wins=0>

<red_points=5750><blue_points=1956>

<red_squares=72><blue_squares=25>

<red_men=5030><blue_men=1706>

<red_battles_won=31><blue_battles_won=3>

<red_men_lost=129><blue_men_lost=401>

<red_men_gained=5059><blue_men_gained=2007>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=0><blue_men_committed=470>

<red_battles_init=0><blue_battles_init=34>

<red_move_occupied=32><blue_move_occupied=48>

<red_move_empty=68><blue_move_empty=18>

</results>

</match_2>

<match_3>

<fixture=aiPlayer3.aip,aiPlayer2.aip>

<game_rules_file=p1vp2.rg>

<game_positions_file=standard.pos>

<no_games_played=1>

<red_player_type_file=aiPlayer3.aip>

<blue_player_type_file=aiPlayer2.aip>

<game_1>

<red_points=5504><blue_points=2328>

<red_squares=70><blue_squares=30>

<red_men=4804><blue_men=2028>

<red_battles_won=13><blue_battles_won=6>

<red_men_lost=247><blue_men_lost=204>

<red_men_gained=4951><blue_men_gained=2132>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=0><blue_men_committed=719>

<red_battles_init=0><blue_battles_init=19>

<red_move_occupied=29><blue_move_occupied=65>

<red_move_empty=71><blue_move_empty=16>

</game_1>

<results>

<red_wins=1><blue_wins=0>

<red_points=5504><blue_points=2328>

<red_squares=70><blue_squares=30>

<red_men=4804><blue_men=2028>

<red_battles_won=13><blue_battles_won=6>

<red_men_lost=247><blue_men_lost=204>

<red_men_gained=4951><blue_men_gained=2132>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=0><blue_men_committed=719>

<red_battles_init=0><blue_battles_init=19>

<red_move_occupied=29><blue_move_occupied=65>

<red_move_empty=71><blue_move_empty=16>

</results>

</match_3>

</file>

Appendix 5.3: ec_test1.txt 

Individual game results are on accompanying CD at \error_checking_tests\ec_test1.txt

<red_wins=23><blue_wins=77>

<red_points=206499><blue_points=242907>

<red_squares=3065><blue_squares=3535>

<red_men=175849><blue_men=207557>

<red_battles_won=1674><blue_battles_won=2532>

<red_men_lost=47932><blue_men_lost=42023>

<red_men_gained=213781><blue_men_gained=239580>

<red_attack_wd=0><blue_attack_wd=0>

<red_defend_wd=0><blue_defend_wd=0>

<red_men_committed=39909><blue_men_committed=52106>

<red_battles_init=2252><blue_battles_init=1954>

<red_move_occupied=4870><blue_move_occupied=5547>

<red_move_empty=2878><blue_move_empty=2499>

Appendix 6: ProjBrief.doc

A Game of Intelligent Risk: Project Brief

I propose to set out a project based in the game theory field of computing.  I plan to develop a game based loosely around the rules of the strategy board game “Risk”.  Then to develop an intelligent computer player to play the game that I have developed.

“Risk” is a game in which each player is initially randomly allocated an equal number of regions of the world and an equal number of “men” to allocate to these regions.  At the beginning of the game each player is given a task to complete, such as conquering a continent or eliminating another player.  Each player then takes it in turns to move a number of men from one region to another adjacent region.  This adjacent region may be already occupied by the player, unoccupied or occupied by another player.  In the case of a region being occupied by another player, a battle ensues.  The rolling of a die decides the winner of each battle; the player who rolls the lower number loses one man.  Then the die is rolled again and again until one player has no men left, leaving the other player the winner of the battle.

The rules of “Risk” are quite complex and therefore one of the first tasks will be to simplify the rules to level where they can be analysed in the time frame available.  Simplifications to the game will probably include limiting the number of players to two and eliminating the “task” element in favour of the last player left on the board or the player who is the best position after an agreed finite number of moves being the winner.  Another sensible simplification would be to replace the map of the world board with a simpler board such as a grid of squares.

In developing the code there will have to be two distinctly separate blocks.  The first is that of a verification engine which checks that the players are following the rules correctly.  This block of code should be quite flexible to allow the rules to be altered appropriately to eliminate any blatant loopholes that an informed would be able to exploit.

The second block of code for the game will be the computer player.  Initially the computer based players will be quite basic such as a random player whose every decision is chosen randomly or an attacking player who will attack whenever possible (i.e. in an adjacent square to the other player).  The development of these players is important so that more can be learnt about the strategies and tactics needed to be successful in the game.

Once several simple computer based players have been developed a cleverer computer player could be designed from the knowledge gained by playing the simpler players against each other.  This cleverer computer player could then be benchmarked against the simpler players to see how successful this development had been.

As the code developed for the verification engine will have been design to be flexible, this will allow the rules to be changed easily.  Depending on the amount of time still available and the success of the cleverer computer player, the rules could be slightly altered to see whether the player is still as successful.  This would help determine whether a cleverer computer player needs to be designed precisely for its environment to be successful or whether it can use strategies that remain successful over a wide variety of game environments. 

Appendix 7: User Manual

To run the software no specific operating systems is required but Windows 98 or later is the recommended operating system as this was the operating system was tested on.  The operating system must have installed a java runtime environment of SDK 1.4.0 or later. The software can be run in two different modes, A GUI mode and a command line mode for generating statistics, a processor of 2GHz or faster is recommended if a large number of games are to be run in the command line mode. 

The Graphical User Interface

To run the game in the GUI mode, firstly a dos or terminal window must be opened.  The directory must then be switched to the \source_code\ directory of the accompanying CD and then the following command line can be entered to load the GUI:


java CustomPanelTest

Figure 1 is a snapshot of the window of my GUI with a game in progress.
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Figure 1

As can see from the figure 1, the main panel is the green panel, which displays the grid of the board.  The size of the grid remains constant, with the size of the squares varying to keep the grid size the same.  The squares of the grid can either be empty, red, blue or both (when a battle is taking place, as can be seen in the screenshot above).  The number of red men in each square is shown in the top left of the square, the number of blue men is shown in the bottom right.  

The main drop down menu currently only has a “File” option, this allows both game rule and position files to be loaded from disk.  To start a game firstly a rules file must be open, this can be achieved by selecting the “Load Game Rules” from the file menu, once the file choose window opens, an “.rg” file must be selected from the \source_code\ directory of the accompanying CD.  Once the rules have been loaded the positions can be loaded by selecting “Load Game Start State” from the file menu, the positions file (“.pos”) can be found in the same directory as the rules files.

The panel below the main drop down menu is an information bar about what is happening in the game, including whose turn it is, the current square selected, the last scores rolled by each player, who won the last comparison of scores, the moves left in the current players turn and the number of turns left in the game.

The bar at the bottom of the window is the control bar.  This allows a human player to interact with the game, moving defined numbers of men and making attacking and defensive withdrawals.

If one of the two players is a human player, squares can be selected by left clicking inside them.  When a square is selected, the thickness of the square border is doubled.  When a legal move is chosen both boxes are given a white border inside the black border of the square, then a number of men can be entered into the text box in the bottom panel and the “move” button clicked, this moves the number of men between the two squares selected.  The user needs to click on the “continue” button until the move is complete (i.e. any battle has finished).  If the user is playing against an AI player he/she can click on the “do computer move” button every time it is the AI player turns, like before the user must click on the “continue” button until the move is over. 

The design of the GUI is slightly different when a two AI player game is being played.  Firstly as there is no need to be able to select squares as no moves can be performed, the main green panel’s mouse listener has been turned off.  As no decision on moves or withdrawals needs to be made the control toolbar at the bottom of the game window has also been changed, as shown in figure 2.
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Figure 2

As can be seen from figure 2, the toolbar is completely different to the standard control toolbar, this is because this toolbar is designed to control the thread that runs the two AI player game.  There is a combo box to control the speed of the game; this basically works by calling the method.

When a game is finished either the limited number of moves is up or one player has been eliminated a box appears displaying the results from the game.  This box shows who has won the game and the points scored, squares occupied and men left for each player.  Once this window is closed another game can be loaded using the file menu.

Command Line Execution

The purpose of command line execution is to allow statistics to be generated quickly and to use reinforcement learning to generate new AI player files.  The program can therefore be loaded from the command line using the following arguments: 

java CustomPanelTest <no of games> <rules file> 
<positions file> <stats output file> <tournament file> 

<reinforcement-learning file>

The “reinforcement-learning file” is the AI player file that will have its games monitored and then its heuristics modified to hopefully make it a more successful player.  An example of the command line could be as follows:


java CustomPanelTest 9 rules.rg standard.pos stats1.txt 

tourn1.trn aiPlayer9.aip

If no arguments are parsed at the command line then the program loads in GUI mode, only when all six arguments are parsed will the program run in statistics mode.  The only significant difference with statistics mode is that a statistics file is generated and the programs main panel is not repainted continuously as this would slow down the rate that each game could be executed.  Once the command line is sent, the user needs no further interaction with the program, which can potentially run hundreds of games between numbers of different AI players.  The last two arguments for the tournament file and reinforcement-learning file do not need to be parsed, but instead “null” placeholders must be parsed in their place.  If a “null” is parsed for the tournament file then only a single match between the two players specified in the game rules file is played.  If a “null” is parsed for the reinforcement-learning file, then no AI player file has its heuristics modified through reinforcement learning.
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