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ABSTRACT
Approval-based committee (ABC) voting rules elect a fixed size

subset of the candidates, a so-called committee, based on the vot-

ers’ approval ballots over the candidates. While these rules have

recently attracted significant attention, axiomatic characterizations

are largelymissing so far.We address this problem by characterizing

ABC voting rules within the broad and intuitive class of sequen-

tial valuation rules. These rules compute the winning committees

by sequentially adding candidates that increase the score of the

chosen committee the most. In more detail, we first characterize

almost the full class of sequential valuation rules based on mild

standard conditions and a new axiom called consistent committee

monotonicity. This axiom postulates that the winning committees

of size 𝑘 can be derived from those of size 𝑘 − 1 by only adding

candidates and that these new candidates are chosen consistently.

By requiring additional conditions, we derive from this result also

a characterization of the prominent class of sequential Thiele rules.

Finally, we refine our results to characterize three well-known

ABC voting rules, namely sequential approval voting, sequential

proportional approval voting, and sequential Chamberlin-Courant

approval voting.

KEYWORDS
Approval-Based Committee Elections; Sequential Valuation Rules;

Sequential Thiele Rules; Committee Monotonicity; Consistency

ACM Reference Format:
Chris Dong and Patrick Lederer. 2023. Characterizations of Sequential Val-

uation Rules. In Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom,
May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Whether it is choosing dishes for a shared lunch, shortlisting candi-

dates for interviews, or electing a parliament of a country—all these

problems require us to elect a fixed size subset of the available can-

didates based on the voters’ preferences. This problem, commonly

studied under the term approval-based committee (ABC) voting, has
recently attracted significant attention within the field of social

choice theory because of its versatile applications [11, 12, 19]. In

more detail, the study objects for this problem are ABC voting

rules which choose a subset of the candidates of predefined size,

a so-called committee, based on the voters’ approval ballots, i.e.,

each voter reports the set of candidates she finds acceptable.

Due to the large amount of work on ABC voting, there is a

wide variety of ABC voting rules, e.g., Thiele methods, sequential

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Thiele methods, Phragmen’s rules, the method of equal shares,

and many more (we refer to [19] for an overview of these rules).

For deciding which rule to use in a given situation, social choice

theorists commonly reason about their properties: if a voting rule

satisfies desirable properties, it seems to be a good choice for the

election at hand. However, such reasoning does not rule out the

existence of an even more attractive voting rule satisfying the

required properties. For narrowing down the choice to a single

ABC voting rule, a characterization of this rule is required, i.e., one

needs to show that the rule is the unique method that satisfies a

set of properties. Unfortunately, such characterizations are largely

missing in the literature on ABC voting rules and it is therefore an

important open problem to derive such results (see, e.g., [19, Q1]).

The goal of this paper thus is to provide such characterizations

for ABC voting rules within the new but broad and intuitive class of

sequential valuation rules. For computing the winning committees,

these rules rely on a valuation function which assigns a score to

each pair of ballot and committee. A simple example of such a

function is 𝑣 (𝐴𝑖 ,𝑊 ) = |𝐴𝑖 ∩𝑊 |, where 𝐴𝑖 is an arbitrary ballot

and𝑊 is a committee. Based on a valuation function, a sequential

valuation rule proceeds in rounds and, in each round, it extends the

previously chosen committees with the candidates that increase the

total score by the most. Clearly, the prominent class of sequential

Thiele rules, which only rely on the size of the intersection of the

given ballot and committee to compute the score, forms a subset of

the class of sequential valuation rules. However, our class is much

more general as it contains, for instance, step-dependent sequential

scoring rules, whose valuation functions depend on the sizes of the

ballot, the committee, and the intersection of these two.

Our Contribution. As our main contribution, we characterize

the class of sequential valuation rules that satisfy mild standard

conditions based on a new axiom called consistent committee mono-

tonicity. This property combines the well-known notions of com-

mittee monotonicity [e.g., 2, 11, 15] and consistency [e.g., 13, 18, 27].

Roughly, committee monotonicity requires that the winning com-

mittees of size 𝑘 + 1 can be derived from those of size 𝑘 by simply

adding candidates. On the other hand, the idea of consistency is that

whenever two disjoint electorates separately elect the same candi-

dates, these candidates should be the winners when we consider

both electorates simultaneously. Consistent committee monotonic-

ity combines these two axioms by requiring that the candidates that

extend the committees of size 𝑘 are chosen consistently: if some

common candidates extend a committee𝑊 in two disjoint elections,

these candidates should also extend𝑊 in the combined election.

Or, to put it more simply, consistent committee monotonicity re-

stricts committee monotonicity by requiring that the newly added

candidates are chosen in a reasonable way.

Based on this axiom, we characterize the class of sequential val-

uation rules that satisfy anonymity, neutrality, non-imposition, and
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Figure 1: Overview of our results. An arrow from class 𝑋 to
class 𝑌 with label 𝑍 means an ABC voting rule in the class 𝑋
is in the class 𝑌 if and only if it satisfies property 𝑍 .

continuity (Theorem 1). These four conditions are mild standard

axioms that are satisfied by almost all ABC voting rules considered

in the literature and we henceforth summarize them by the term

proper. In more detail, we first show that every proper sequential

valuation rule is a step-dependent sequential scoring rule, i.e., its

valuation function only depends on the sizes of the ballots, the com-

mittees, and the intersections of these two. As second step, we then

characterize step-dependent sequential scoring rules as the only

proper and consistently committee monotone ABC voting rules.

Or, put differently, when the winning committees should be com-

puted sequentially and the newly added candidates are chosen in a

consistent way, we naturally arrive at the class of step-dependent

sequential scoring rules.

Based on this characterization, we also infer characterizations

of more restricted classes of voting rules by requiring additional

axioms. In particular, we present such results for step-dependent

sequential Thiele rules (whose valuation functions only depend

on the size of the committee and the size of the intersection of

the ballot and the committee) and sequential Thiele rules (whose

valuation functions only depend on the size of the intersection

of the ballot and the committee). Hence, we derive a hierarchy

of characterizations based on our first theorem and, in particular,

provide a full characterization of the prominent class of sequential

Thiele rules. Finally, we leverage these results to characterize three

commonly studied ABC voting rules, namely sequential approval

voting, sequential proportional approval voting, and sequential

Chamberlin-Courant approval voting, by investigating how they

treat clones. An overview of our results can also be found in Figure 1.

Related Work. The study of committee monotone ABC voting

rules has a long tradition as already Thiele [26] suggested the class

of functions nowadays known as sequential Thiele rules. In par-

ticular, for a number of applications such as choosing finalists

for a competition or shortlisting candidates for an interview, it is

frequently reasoned that committee monotonicity is a desirable

property [2, 11, 15]. More generally, Faliszewski et al. [12] view

committee monotonicity as the fundamental property when choos-

ing candidates only based on their quality because in such settings,

there is no reason why a candidate that is elected for a committee

of size 𝑘 should not be elected for a committee of size 𝑘 + 1.

Another important advantage of such sequential ABC voting

rules is that they are easy to compute, whereas rules that directly

optimize the score (e.g., Thiele rules) are usually NP-hard to com-

pute [24]. Indeed, sequential ABC voting rules have even been

interpreted as approximation algorithms for these optimizing rules

[20, 24]. On the other hand, committee monotonicity conflicts with

other desirable properties. For instance, Barberà and Coelho [2]

show that this axiom is incompatible with a variant of Condorcet-

consistency when voters report strict rankings over the candidates,

and it has been repeatedly observed that committee monotone ABC

voting rules are less proportional than other rules [11, 19, 25].

Even more work has focused on specific committee monotone

ABC voting rules [e.g., 1, 8, 9, 17]. For instance, Delemazure et al. [9]

show that all sequential Thiele rules but sequential approval voting

fail strategyproofness, and Brill et al. [8] investigate these rules

with respect to proportionality axioms. An interesting observation

in this context is that Phragmen’s sequential rule is committee

monotone and satisfies strong proportionality conditions [7, 23];

unfortunately, this rule fails our consistency criterion.

From a conceptual standpoint our results are also related to theo-

rems for different models as consistency led to numerous important

characterizations. In particular, based on this axiom, Young [27]

characterizes scoring rules for single winner elections, Fishburn

[13] characterizes approval voting for single winner elections with

dichotomous preferences, Young and Levenglick [28] characterize

a method called Kemeny’s rule in a model where the outcome is a

set of rankings over the candidates, and Brandl et al. [4] character-

ize a voting rule called maximal lotteries in a randomized setting.

Furthermore, Freeman et al. [14] characterize runoff scoring rules

for single winner elections based on a consistency notion similar to

ours. More recently, Lackner and Skowron [18] characterized ABC

scoring rules based on a consistency condition for committees in-

stead of single candidates in a model where the output is a ranking

over committees. To the best of our knowledge, this result is the

only full characterization in the realm of ABC voting.

2 THE MODEL
Let N = {1, 2, 3, . . . } denote an infinite set of voters and let C =

{𝑎1, . . . , 𝑎𝑚} denote a fixed set of𝑚 candidates. We define F (N) as
the set of finite and non-empty subsets of N. Intuitively, an element

𝑁 ∈ F (N) represents a concrete electorate, whereas N is the set of

all possible voters. Given an electorate 𝑁 ∈ F (N), we assume that

every voter 𝑖 ∈ 𝑁 has dichotomous preferences over the candidates,

i.e., she partitions the candidates into approved and disapproved

ones. Thus, voters report approval ballots 𝐴𝑖 which are non-empty

subsets of C. Let A denote the set of all possible approval ballots.

An approval profile 𝐴 for an electorate 𝑁 is an element of A𝑁
, i.e.,

a function that maps every voter 𝑖 ∈ 𝑁 to her approval ballot 𝐴𝑖 .

We define A∗ =
⋃

𝑁 ∈F(N) A𝑁
as the set of all possible approval

profiles. Given a profile𝐴 ∈ A∗
, we let 𝑁𝐴 indicate the set of voters
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who report a ballot in the profile 𝐴 and we say that two profiles

𝐴,𝐴′
are disjoint if𝑁𝐴∩𝑁𝐴′ = ∅. Moreover, for two disjoint profiles

𝐴 and 𝐴′
, we define 𝐴 +𝐴′

as the profile with 𝑁𝐴+𝐴′ = 𝑁𝐴 ∪ 𝑁𝐴′ ,

(𝐴 +𝐴′)𝑖 = 𝐴𝑖 for all 𝑖 ∈ 𝑁𝐴 , (𝐴 +𝐴′)𝑖 = 𝐴′
𝑖
for all 𝑖 ∈ 𝑁𝐴′ .

Given an approval profile, the goal is to choose a committee.

Formally, a committee is a subset of the candidates with a specific

size. We denote by W𝑘 the set of all committees of size 𝑘 and

by W =
⋃𝑚

𝑘=0
W𝑘 the set of all committees. For selecting the

winning committees for an approval profile 𝐴, we use approval-
based committee (ABC) voting rules. These rules are functions which
take an arbitrary approval profile 𝐴 ∈ A∗

and target committee

size 𝑘 ∈ {0, . . . ,𝑚} as input and return a non-empty subset of W𝑘 .

Intuitively, the chosen set contains the winning committees and

we allow for sets of committees as output to indicate that multiple

committees are tied for the win. Furthermore, note that ABC voting

rules are also defined for committees of size 0: 𝑓 (𝐴, 0) = {∅} for all
profiles 𝐴 since the empty set is the only committee of size 0. This

definition is only used for notational convenience.

In this paper, we will restrict our attention to proper ABC voting

rules which satisfy the following four conditions. Note that almost

all commonly studied ABC voting rules are proper voting rules as

the subsequent axioms are extremely mild.
1

• Anonymity: An ABC voting rule 𝑓 is anonymous if 𝑓 (𝐴,𝑘) =
𝑓 (𝜋 (𝐴), 𝑘) for all 𝐴 ∈ A∗

, 𝑘 ∈ {0, . . . ,𝑚}, and permutations

𝜋 : N → N. Here, 𝐴′ = 𝜋 (𝐴) denotes the profile such that

𝑁𝐴′ = 𝜋 (𝑁𝐴) and 𝐴′
𝜋 (𝑖 ) = 𝐴𝑖 for all 𝑖 ∈ 𝑁𝐴 .

• Neutrality: An ABC voting rule 𝑓 is neutral if 𝑓 (𝜏 (𝐴), 𝑘) =
{𝜏 (𝑊 ) : 𝑊 ∈ 𝑓 (𝐴,𝑘)} for all 𝐴 ∈ A∗

, 𝑘 ∈ {0, . . . ,𝑚}, and
permutations 𝜏 : C → C. 𝐴′ = 𝜏 (𝐴) denotes here the profile
such that 𝑁𝐴′ = 𝑁𝐴 and 𝐴′

𝑖
= 𝜏 (𝐴𝑖 ) for all 𝑖 ∈ 𝑁𝐴 .

• Continuity: An ABC voting rule 𝑓 is continuous if for all dis-
joint profiles𝐴,𝐴′ ∈ A∗

and committee sizes 𝑘 ∈ {0, . . . ,𝑚}
such that |𝑓 (𝐴,𝑘) | = 1, there is an integer 𝑗 ∈ N such that

𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) = 𝑓 (𝐴,𝑘). Here, 𝑗𝐴 denotes a profile consist-

ing of 𝑗 disjoint copies of 𝐴; the identities of the voters are

irrelevant for proper rules due to anonymity.

• Non-imposition: An ABC voting rule 𝑓 is non-imposing if

for every committee𝑊 ∈ W, there is a profile 𝐴 ∈ A∗
such

that 𝑓 (𝐴, |𝑊 |) = {𝑊 }.
Anonymity and neutrality are common fairness conditions

which require that voters and candidates, respectively, are treated

equally. Continuity, also known as overwhelming majority axiom

[22], requires that a sufficiently large group can force the voting

rule to choose their desired committee. Finally, non-imposition

states that each committee has a chance to be uniquely chosen.

Aside of these standard conditions, we will use two new axioms

in our analysis: independence of losers and committee separability.

The idea of independence of losers is that a chosen committee

𝑊 ∈ 𝑓 (𝐴,𝑘) should still be chosen if some voters change their

preferences by disapproving candidates 𝑐 ∉𝑊 because, intuitively,

this does not affect the quality of𝑊 . Formally, we say an ABC

voting rule 𝑓 is independent of losers if 𝑊 ∈ 𝑓 (𝐴, |𝑊 |) implies

1
Indeed, we are only aware of a single studied voting rule that fails to be proper: the

minimax rule [3], which chooses the committees that minimize the maximal Hamming-

distance to a ballot. This rule fails continuity as it completely ignores how many voters

report a specific ballot. We view this rule as unreasonable in light of our axioms.

that𝑊 ∈ 𝑓 (𝐴′, |𝑊 |) for all profiles 𝐴,𝐴′ ∈ A∗
and committees

𝑊 ∈ W𝑘 with 𝑁𝐴 = 𝑁𝐴′ ,𝑊 ∩ 𝐴𝑖 = 𝑊 ∩ 𝐴′
𝑖
, and 𝐴′

𝑖
⊆ 𝐴𝑖 for

all 𝑖 ∈ 𝑁𝐴 . Note that this axiom is well-known in single winner

voting and choice theory [e.g., 5, 6]. While this axiom has not been

considered for ABC elections before, we find it intuitive and it is

satisfied by all commonly considered ABC voting rules which do

not depend on the ballot size (e.g., Thiele rules, sequential Thiele

rules, Phragmen’s rule). On the other hand, satisfaction approval

voting fails independence of losers as it depends on the sizes of the

voters’ approval ballots (see [19] for definitions of these rules).

Our second non-standard axiom is committee separability. The

rough intuition of this axiom is that if there are two disjoint profiles

𝐴 and 𝐵 such that no voters 𝑖 ∈ 𝑁𝐴 , 𝑗 ∈ 𝑁𝐵 approve a common

candidate, we can decompose every chosen committee𝑊 into two

subcommittees which are chosen for 𝐴 and 𝐵 separately. For for-

mally defining this axiom, let 𝐶𝐴 =
⋃

𝑖∈𝑁𝐴
𝐴𝑖 denote the set of

candidates that are approved by the voters in a profile 𝐴. Then, an

ABC voting rule 𝑓 is committee separable if𝑊 ∈ 𝑓 (𝐴 + 𝐵, |𝑊 |) im-

plies that𝑊 ∩𝐶𝐴 ∈ 𝑓 (𝐴, |𝑊 ∩𝐶𝐴 |) and𝑊 ∩𝐶𝐵 ∈ 𝑓 (𝐵, |𝑊 ∩𝐶𝐵 |)
for all disjoint profiles 𝐴, 𝐵 with 𝐶𝐵 = C \ 𝐶𝐴 and committees

𝑊 ∈ W. Indeed, since 𝐶𝐴 ∩𝐶𝐵 = ∅, it seems reasonable that the

choice of candidates from𝐶𝐴 (resp.𝐶𝐵 ) only depends on𝐴 (resp. 𝐵).

All proper rules named in this paper satisfy committee separability.

2.1 Consistent Committee Monotonicity
The key axiom for our results is consistent committee monotonicity,

which is a strengthening of the well-known axiom of committee

monotonicity. The idea of the latter property is that the winning

committees of size 𝑘 are derived by adding candidates to those of

size 𝑘 − 1. While this is straightforward to define for ABC voting

rules that always choose a single winning committee, it becomes

less clear how to formalize committee monotonicity when allowing

for multiple tied winning committees. We use the definition of

Elkind et al. [11] in this paper which requires that every winning

committee of size 𝑘 is derived from a winning committee of size

𝑘 − 1 and every winning committee of size 𝑘 − 1 is extended to a

winning committee of size 𝑘 .

Definition 1. An ABC voting rule 𝑓 is committee monotone if for
every profile 𝐴 ∈ A∗

and 𝑘 ∈ {1, . . . ,𝑚}, it holds that:
(1) 𝑊 ∈ 𝑓 (𝐴,𝑘) implies that there is𝑊 ′ ∈ 𝑓 (𝐴,𝑘−1) with𝑊 ′ ⊆𝑊 .

(2) 𝑊 ∈ 𝑓 (𝐴,𝑘−1) implies that there is𝑊 ′ ∈ 𝑓 (𝐴,𝑘) with𝑊 ⊆𝑊 ′
.

Committee monotone ABC voting rules are closely connected to

generator functions 𝑔, which take a profile𝐴 and a committee𝑊 ≠ C
as input and output a possibly empty subset 𝑔(𝐴,𝑊 ) of C \𝑊 . In

particular, generator functions induce committee monotone ABC

voting rules in a natural way: a generator function 𝑔 generates an
ABC voting rule 𝑓 if𝑊 ∈ 𝑓 (𝐴,𝑘 − 1) implies 𝑔(𝐴,𝑊 ) ≠ ∅ and

𝑓 (𝐴,𝑘) = {𝑊 ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all 𝑘 ∈
{1, . . . ,𝑚} and 𝐴 ∈ A∗

. Since 𝑓 (𝐴, 0) = {∅}, this recursion is well-

defined. As we show next, committee monotonicity is equivalent

to the existence of a generator function.

Proposition 1. An ABC voting rule 𝑓 is committee monotone if and
only if it is generated by a generator function 𝑔.

Proof. Consider an arbitrary ABC voting rule 𝑓 and first as-

sume that 𝑓 is generated by a generator function 𝑔, i.e., 𝑓 (𝐴,𝑘) =
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{𝑊 ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all profiles 𝐴 and

committee sizes 𝑘 . Now, fix a profile 𝐴 ∈ A∗
and a committee

size 𝑘 ∈ {1, . . . ,𝑚}. If𝑊 ∈ 𝑓 (𝐴,𝑘), then there is𝑊 ′ ∈ 𝑓 (𝐴,𝑘 − 1)
and 𝑥 ∈ 𝑔(𝐴,𝑊 ′) such that𝑊 =𝑊 ′ ∪ {𝑥} because 𝑔 generates 𝑓 .

Conversely, if𝑊 ′ ∈ 𝑓 (𝐴,𝑘 − 1), then 𝑔(𝐴,𝑊 ′) cannot be empty

and there is a candidate 𝑥 ∈ C \𝑊 ′
such that𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘).

This shows that 𝑓 is committee monotone.

Next, suppose that 𝑓 is committee monotone. We define the

generator function of𝑔 as follows: if𝑊 ∉ 𝑓 (𝐴, |𝑊 |), then𝑔(𝐴,𝑊 ) =
∅. On the other hand, if𝑊 ∈ 𝑓 (𝐴, |𝑊 |) and𝑊 ≠ C, there is a

committee𝑊 ′ ∈ 𝑓 (𝐴, |𝑊 | + 1) with𝑊 ⊆𝑊 ′
due to the committee

monotonicity of 𝑓 . We thus define𝑔(𝐴,𝑊 ) = {𝑥 ∈ C\𝑊 :𝑊∪{𝑥} ∈
𝑓 (𝐴, |𝑊 | + 1)} if𝑊 ∈ 𝑓 (𝐴, |𝑊 |) and let 𝑓𝑔 denote the ABC voting

rule defined by 𝑓𝑔 (𝐴, 0) = {∅} and 𝑓𝑔 (𝐴,𝑘) = {𝑊 ∪ {𝑥} : 𝑊 ∈
𝑓𝑔 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all 𝑘 > 0. We prove inductively that

𝑓𝑔 (𝐴,𝑘) = 𝑓 (𝐴,𝑘) for all profiles 𝐴 and 𝑘 ∈ {0, . . . ,𝑚}, which
implies that 𝑓𝑔 is well-defined and that 𝑔 generates 𝑓 . The induction

basis 𝑘 = 0 is true since 𝑓𝑔 (𝐴, 0) = {∅} = 𝑓 (𝐴, 0) for all profiles
𝐴. Hence, consider a fixed 𝑘 ∈ {0, . . . ,𝑚 − 1} and 𝐴 ∈ A∗

and

suppose that 𝑓𝑔 (𝐴,𝑘) = 𝑓 (𝐴,𝑘). First, let𝑊 ∈ 𝑓 (𝐴,𝑘 + 1). Due to
committee monotonicity, there is𝑊 ′ ∈ W𝑘 and 𝑥 ∈𝑊 \𝑊 ′

such

that𝑊 ′ ∈ 𝑓 (𝐴,𝑘) = 𝑓𝑔 (𝐴,𝑘) and𝑊 ′ ∪ {𝑥} =𝑊 . This implies that

𝑥 ∈ 𝑔(𝐴,𝑊 ′) and hence𝑊 ∈ 𝑓𝑔 (𝐴,𝑘 + 1). For the other direction,
let𝑊 ∈ 𝑓𝑔 (𝐴,𝑘 + 1), which means that there are𝑊 ′ ∈ 𝑓𝑔 (𝐴,𝑘) =
𝑓 (𝐴,𝑘) and 𝑥 ∈ 𝑔(𝐴,𝑊 ′) such that𝑊 =𝑊 ′ ∪ {𝑥}. Hence, 𝑓 (𝐴,𝑘 +
1) = 𝑓𝑔 (𝐴,𝑘 + 1) and we infer inductively that 𝑔 generates 𝑓 . □

Since a generator function completely describes its generated

ABC voting rule, we can expect that a well-behaved generator func-

tion yields an attractive committee monotone ABC voting rule.

Consequently, we now introduce axioms for generator functions.

Our main condition on these functions is consistency, which is con-

cerned with the behavior of the generator function when combining

two disjoint profiles. In more detail, suppose that the choice of the

generator 𝑔 intersects for two disjoint profiles 𝐴 and 𝐴′
and a com-

mittee𝑊 . Intuitively, the best candidates in the combined profile

𝐴 +𝐴′
should be exactly those in the intersection as they are win-

ning for the individual electorates. Hence, consistency requires for

such situations that, if 𝑔(𝐴+𝐴′,𝑊 ) ≠ ∅, it contains precisely the el-
ements in the intersection of 𝑔(𝐴,𝑊 ) and 𝑔(𝐴′,𝑊 ). Note that such
consistency axioms have already led to several prominent results

[e.g., 4, 13, 18, 27]. Subsequently, we formally define consistency

and introduce the notion of consistent committee monotonicity.

The latter axiom strengthens committee monotonicity by requiring

that the voting rule is generated by a consistent generator function.

Definition 2. A generator function 𝑔 is consistent if 𝑔(𝐴,𝑊 ) ∩
𝑔(𝐴′,𝑊 ) ≠ ∅ and 𝑔(𝐴 + 𝐴′,𝑊 ) ≠ ∅ imply that 𝑔(𝐴 + 𝐴′,𝑊 ) =

𝑔(𝐴,𝑊 ) ∩𝑔(𝐴′,𝑊 ) for all disjoint profiles 𝐴,𝐴′ ∈ A∗
and commit-

tees𝑊 ∈ W \ {C}. An ABC voting rule 𝑓 is consistently committee
monotone if it is generated by a consistent generator function.

Furthermore, analogous to ABC voting rules, we call a generator

function 𝑔 proper if it satisfies the following conditions:

• anonymous: 𝑔(𝐴,𝑊 ) = 𝑔(𝜋 (𝐴),𝑊 ) for all 𝐴 ∈ A∗
,𝑊 ∈

W \ {C}, and permutations 𝜋 : N→ N,
• neutral: 𝑔(𝜏 (𝐴), 𝜏 (𝑊 )) = 𝜏 (𝑔(𝐴,𝑊 )) for all 𝐴 ∈ A∗

,𝑊 ∈
W \ {C}, and permutations 𝜏 : C → C,

• continuous: for all 𝐴,𝐴′ ∈ A∗
and 𝑊 ∈ W \ {C} with

|𝑔(𝐴,𝑊 ) | = 1 and 𝑔(𝐴′,𝑊 ) ≠ ∅, there is 𝑗 ∈ N such that

𝑔( 𝑗𝐴 +𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ), and
• non-imposing: for every𝑊 ∈ W \ {C} and 𝑥 ∈ C \𝑊 , there

is 𝐴 ∈ A∗
such that 𝑔(𝐴,𝑊 ) = {𝑥}.

Just as for ABC voting rules, all these axioms are very mild.

Finally, we say that a generator function𝑔 is complete if𝑔(𝐴,𝑊 ) ≠ ∅
for all profiles 𝐴 ∈ A∗

and committees𝑊 ∈ W.

2.2 Sequential Valuation Rules
The main goal of this paper is to characterize the class of sequential

valuation rules. These rules rely on valuation functions 𝑣 , which are

mappings of the type 𝑣 : A ×W → R, to compute the outcome.

Less formally, a valuation function specifies for every ballot 𝐴𝑖

and committee𝑊 the number of points that a voter with ballot 𝐴𝑖

assigns to the committee𝑊 . The score of a committee𝑊 in a pro-

file 𝐴 is defined as 𝑠𝑣 (𝐴,𝑊 ) = ∑
𝑖∈𝑁𝐴

𝑣 (𝐴𝑖 ,𝑊 ). Now, a sequential
valuation function 𝑓 works as follows: 𝑓 (𝐴, 0) = {∅} and for 𝑘 ≥ 1,

𝑓 (𝐴,𝑘) = {𝑊∪{𝑥} :𝑊 ∈ 𝑓 (𝐴,𝑘−1)∧∀𝑦 ∈ C\𝑊 : 𝑠𝑣 (𝐴,𝑊∪{𝑥}) ≥
𝑠𝑣 (𝐴,𝑊 ∪ {𝑦})}, i.e., 𝑓 extends in each step the currently chosen

committees with the candidates that increase the score by themost.
2

Note that our definition of sequential valuation functions is so

general that it includes even non-proper ABC voting rules. For in-

stance, if 𝑣 is constant, the corresponding sequential valuation rule

always chooses all committees of the given size and thus fails non-

imposition. Nevertheless, we will focus only on proper sequential

valuation rules and in particular on the following three subclasses.

• Sequential Thiele rules rely on a Thiele counting function

to compute the outcome. A Thiele counting function is a

mapping ℎ(𝑥) : {0, . . . ,𝑚} → R which is non-negative, non-

decreasing, and satisfies ℎ(1) > ℎ(0). Then, the valuation
function of a sequential Thiele rule is 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖∩𝑊𝑖 |).
In other words, every voter values a committee only based

on how many of its members she approves.
3

• Step-dependent sequential Thiele rules use a step-dependent
Thiele counting function as valuation function. A step-

dependent Thiele counting function is a mapping ℎ(𝑥,𝑦) :
{0, . . . ,𝑚} × {1, . . . ,𝑚} → R which is non-negative, non-

decreasing in 𝑥 , and satisfies for each 𝑦 ∈ {1, . . . ,𝑚 − 1}
that there is 𝑥 ∈ {1, . . . , 𝑦} with ℎ(𝑥,𝑦) > ℎ(𝑥 − 1, 𝑦). The
valuation function of a step-dependent sequential Thiele rule

is then 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |). Intuitively, these rules
can use in every step a different Thiele counting function.

• Step-dependent sequential scoring rules compute the win-

ner based on a step-dependent counting function. A step-

dependent counting function is a mapping ℎ(𝑥,𝑦, 𝑧) :

{0, . . . ,𝑚} × {1, . . . ,𝑚} × {1, . . . ,𝑚} → R such that for

every 𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ∈ {1, . . . , 𝑦} and

𝑧 ∈ {𝑥, . . . ,𝑚 − 1 − (𝑦 − 𝑥)} with ℎ(𝑥,𝑦, 𝑧) ≠ ℎ(𝑥 − 1, 𝑦, 𝑧).
Then, the valuation function of a step-dependent sequential

scoring rule is 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |).
2
It is also possible to choose the committees that maximize the score for a given

valuation function. These rules are proper and satisfy a consistency property for

chosen committees (see [18]). However, they fail consistent committee monotonicity

and it is not clear why they should be more desirable than their sequential variants.

3
There are multiple different definitions of Thiele counting functions in the literature

(e.g., [9, 19]). Our definition agrees with the one of Aziz et al. [1].
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The class of sequential Thiele rules contains many prominent ABC

voting rules, such as sequential approval voting4 (seqAV) defined
by ℎ(𝑥) = 𝑥 , sequential proportional approval voting (seqPAV) de-
fined by ℎ(0) = 0 and ℎ(𝑥) =

∑𝑥
𝑖=1

1

𝑖 for 𝑥 > 0, and sequential
Chamberlin-Courant approval voting (seqCCAV) defined by ℎ(0) = 0

and ℎ(𝑥) = 1 for 𝑥 > 0. An example of a step-dependent sequential

Thiele rule can be constructed by switching between seqAV and

seqCCAV in the different steps. Finally, sequential satisfaction ap-

proval voting (seqSAV), defined by ℎ(𝑥,𝑦, 𝑧) = 𝑥
𝑧 , is an example of

a step-dependent sequential scoring rule.

It is easy to see that every sequential valuation function 𝑓 is con-

sistently committee monotone as it can be verified that its generator

function 𝑔(𝐴,𝑊 ) = {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 : 𝑠𝑣 (𝐴,𝑊 ∪ {𝑥}) ≥
𝑠𝑣 (𝐴,𝑊 ∪ {𝑦}} is consistent (here, 𝑣 denotes the valuation function

of 𝑓 ). Furthermore, all step-dependent sequential scoring rules are

proper ABC voting rules. In particular, the technical condition on ℎ

is necessary to ensure that step-dependent sequential scoring rules

are non-imposing. Finally, note that every sequential Thiele rule

is a step-dependent sequential Thiele rule, which are in turn step-

dependent sequential scoring rules. Consequently, all three classes

of sequential valuation rules only contain proper ABC voting rules.

We can even make the relation between these different types of

rules precise as shown in the next proposition.

Proposition 2. The following equivalences hold:

(1) A sequential valuation rule is a step-dependent sequential scoring
rule if and only if it is proper.

(2) A step-dependent sequential scoring rule is a step-dependent se-
quential Thiele rule if and only if it is independent of losers.

(3) A step-dependent sequential Thiele rule is a sequential Thiele rule
if and only if it is committee separable.

Proof Sketch. The "only if" part of the claims is always easy to

prove as it is, e.g., straightforward to see that every step-dependent

sequential scoring rule is a proper sequential valuation rule. Hence,

we focus on the "if" part. The key insight for (1) is that the valu-

ation function 𝑣 of a proper sequential valuation rule is neutral,

i.e., 𝑣 (𝐴𝑖 ,𝑊 ) = 𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )) for all ballots 𝐴𝑖 , committees𝑊 ,

and permutations 𝜏 : C → C. Since |𝐴𝑖 | = |𝜏 (𝐴𝑖 ) |, |𝑊 | = |𝜏 (𝑊 ) |,
and |𝐴𝑖 ∩𝑊 | = |𝜏 (𝐴𝑖 ∩𝑊 ) |, for all ballots 𝐴𝑖 , committees𝑊 , and

permutations 𝜏 , the corresponding sequential valuation rule is a

step-dependent sequential scoring rule. For (2), the "if" part intu-

itively holds because independence of losers excludes the possibility

that the step-dependent Thiele counting function ℎ depends on the

size of the ballot. By formalizing this insight, we can construct a

step-dependent Thiele counting function that induces 𝑓 , which

proves (2). Finally, the "if" part of (3) follows since committee sepa-

rability relates the different steps of the rule. In more detail, we can

construct two disjoint profiles𝐴, 𝐵 such that 𝑓 (𝐴+𝐵, |𝐶𝐴 |) = {𝐶𝐴}
and then, committee separability shows that all following steps

must be equal to the choice for 𝐵. Formalizing this argument rules

out that ℎ depends on |𝑊 | and we thus end up with a sequential

Thiele rule. □

4
Sequential approval voting is often called approval voting since the sequential and

the optimizing variant coincide. For consistency in the names of our rules, we prefer

to call it sequential approval voting.

3 CHARACTERIZATIONS OF SEQUENTIAL
VALUATION RULES

We are now ready to discuss our main result, a characterization of

step-dependent sequential scoring rules: an ABC voting rule is a

step-dependent sequential scoring rule if and only if it is proper and

consistently committee monotone. Combined with Proposition 2,

we infer as corollary also characterizations of step-dependent se-

quential Thiele rules and sequential Thiele rules. Moreover, this

proposition also emphasizes the generality of our result since char-

acterizing step-dependent sequential scoring rules is equivalent to

characterizing all proper sequential valuation rules. Due to space

constraints, we defer the proofs of all auxiliary propositions to the

full version [10] and discuss here proof sketches instead.

While it is quite easy to show that every step-dependent sequen-

tial scoring rule is proper and consistently committeemonotone, the

converse claim is much more involved. Our main idea for proving

this direction is to investigate the generator function of consistently

committee monotone and proper ABC voting rules. Hence, we first

verify the conjecture that attractive committee monotone ABC

voting rules are generated by well-behaved generator functions.

Proposition 3. An ABC voting rule is proper and consistently com-
mittee monotone if and only if it is generated by a proper, consistent,
and complete generator function.

Proof Sketch. If 𝑓 is generated by a proper, consistent, and

complete generator function, it is fairly straightforward that it is

consistently committee monotone and proper. We thus focus on the

inverse direction and suppose that 𝑓 is a proper and consistently

committee monotone ABC voting rule. The key insight for this

direction is that non-imposition and continuity can be generalized

to sequences of committees𝑊1, . . . ,𝑊ℓ with |𝑊𝑘 | = 𝑘 and𝑊𝑘−1 ⊆
𝑊𝑘 for all 𝑘 ∈ {1, . . . , ℓ} (we assume subsequently that𝑊0 = ∅):
(1) If ℓ < 𝑚, there is a profile 𝐴 such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all

𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }.
(2) For any two profiles 𝐴,𝐴′

such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈
{1, . . . , ℓ}, there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴 +𝐴′, 𝑘) = {𝑊𝑘 }
for all 𝑘 ∈ {1, . . . , ℓ}.
For instance, we prove (1) by an induction on the length of the

sequence: by non-imposition, there is a profile 𝐴1
for every com-

mittee𝑊ℓ+1 ∈ Wℓ+1 such that 𝑓 (𝐴1, ℓ + 1) = {𝑊ℓ+1}. Committee

monotonicity implies then that there is a sequence of committees

𝑊1, . . . ,𝑊ℓ such that𝑊𝑘 ∈ 𝑓 (𝐴1, 𝑘) and𝑊𝑘+1 \𝑊𝑘 ⊆ 𝑔(𝐴,𝑊𝑘 )
for all 𝑘 ∈ {1, . . . , ℓ}, where 𝑔 is a consistent generator func-

tion of 𝑓 . By the induction hypothesis, there is a profile 𝐴2
such

that 𝑓 (𝐴2, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴2, ℓ + 1) =

{𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. We can now use the consistency of 𝑔 to

infer that 𝑓 (𝐴1 + 𝐴2, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ + 1}. Finally,
we can further modify the profile to ensure that𝑊ℓ+1 is extended
by all remaining candidates due to anonymity and neutrality.

Now, we will extend the consistent generator function 𝑔 of 𝑓

to make it complete. Consider for this a sequence of committees

𝑊1, . . . ,𝑊ℓ with |𝑊𝑘 | = 𝑘 and𝑊𝑘−1 ⊆ 𝑊𝑘 for all 𝑘 ∈ {1, . . . , ℓ}.
Due to (1), there is a profile 𝐴𝑊ℓ

with 𝑓 (𝐴𝑊ℓ , 𝑘) = {𝑊𝑘 } for all
𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴𝑊ℓ , ℓ+1) = {𝑊ℓ∪{𝑥} : 𝑥 ∈ C\𝑊ℓ }. We define

the function 𝑔(𝐴,𝑊ℓ ) = 𝑔(𝐴 + 𝑗𝐴𝑊ℓ ,𝑊ℓ ), where 𝑗 is the smallest

Session 5C: Voting I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1701



integer such that 𝑓 (𝐴+ 𝑗𝐴𝑊ℓ , 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}; such
an integer exists because of (2). First, note that 𝑔 generates 𝑓 since

𝑔(𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ) for all𝐴 ∈ A∗
and𝑊 ∈ 𝑓 (𝐴, |𝑊 |). This follows

from consistent committee monotonicity as 𝑔( 𝑗𝐴𝑊 ,𝑊 ) = C \𝑊 ,

𝑔(𝐴,𝑊 ) ≠ ∅, and 𝑔(𝐴+ 𝑗𝐴𝑊 ,𝑊 ) ≠ ∅. Finally, 𝑔 satisfies anonymity,

neutrality, non-imposition, and continuity as it generates 𝑓 and 𝑓

would fail these properties otherwise. □

As second step, we characterize the class of proper, consistent,

and complete generator functions. In particular, we show that for

every committee𝑊 ≠ C, 𝑔(𝐴,𝑊 ) can be described by a weighted

variant of single winner approval voting. For making this formal, let

𝑣 (𝑥,𝑦) : {0, . . . ,𝑚} × {1, . . . ,𝑚} → R be a weight function. Then,

𝑣-weighted approval voting is defined as the generator function

AV 𝑣 (𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩
𝐴𝑖 |, |𝐴𝑖 |) ≥

∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |)}.

Proposition 4. Let 𝑔 denote a proper, consistent, and complete gener-
ator function. For every committee𝑊 ≠ C, there is a weight function
𝑣𝑊 such that 𝑔(𝐴,𝑊 ) = AV 𝑣𝑊 (𝐴,𝑊 ) for all profiles 𝐴 ∈ A∗.

Proof Sketch. Let 𝑔 denote a proper, consistent, and complete

generator function and fix a committee𝑊 ≠ C. We show the propo-

sition by applying a separating hyperplane argument analogous to

how Young [27] derives his characterization of scoring rules.

For doing so, we first transform the domain of 𝑔(·,𝑊 ) from
preference profiles to a numerical space and we show thus that

𝑔(·,𝑊 ) can be computed only based on the values 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ) =
|{𝑖 ∈ 𝑁 : 𝑐 ∈ 𝐴𝑖 ∧ |𝐴𝑖 ∩𝑊 | = 𝑘 ∧ |𝐴𝑖 | = ℓ}| for 𝑐 ∈ C \𝑊 ,

𝑘 ∈ {0, . . . , |𝑊 |}, and ℓ ∈ {𝑘 + 1, . . . ,𝑚 − 1 − |𝑊 | + 𝑘}. For proving
this, we first show that if 𝐴𝑖 ∩𝑊 = 𝐴 𝑗 ∩𝑊 and |𝐴𝑖 | = |𝐴 𝑗 | for all
𝑖, 𝑗 ∈ 𝑁𝐴 and all candidates 𝑥 ∈ C \𝑊 are approved by the same

number of voters, then 𝑔(𝐴,𝑊 ) = C \𝑊 . Once this restricted claim

is proven, we can use our axioms to generalize it; e.g., consistency,

neutrality, and anonymity then entail that 𝑔(𝐴𝑘,ℓ ,𝑊 ) = C \𝑊 for

all 𝑘, ℓ and profiles 𝐴𝑘,ℓ
in which |𝐴𝑘,ℓ

𝑖
∩𝑊 | = 𝑘 and |𝐴𝑘,ℓ

𝑖
| = ℓ for

all 𝑖 ∈ 𝑁𝐴 . Finally, this means that if there are constants 𝑐𝑘,ℓ such

that 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) = 𝑐𝑘,ℓ for all candidates 𝑐 ∈ C \𝑊 and indices 𝑘

and ℓ , then𝑔(𝐴,𝑊 ) = C\𝑊 as we can decompose𝐴with respect to

𝑘 and ℓ into these profiles𝐴𝑘,ℓ
. Together with consistency, we infer

from this observation that𝑔(·,𝑊 ) can indeed be computed based on

on the matrix 𝑁 (𝐴,𝑊 ) that contains all the values 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ).
As next step, we use standard constructions to extend the domain

of 𝑔 further from integer matrices 𝑁 (𝐴,𝑊 ) to rational matrices.

To this end, let 𝑄2 be the matrix that corresponds to the profile in

which each ballot is reported once and note that 𝑔(𝑄2,𝑊 ) = C \𝑊
due to anonymity and neutrality. Based on this matrix, we extend

𝑔 to negative numbers by defining 𝑔(𝑄1,𝑊 ) = 𝑔(𝑄1 + 𝑗𝑄2,𝑊 )
(where 𝑗 ∈ N is a scalar such that 𝑄1 + 𝑗𝑄2 contains only positive

integers) and as second step to 𝑔 to rational numbers by defining

𝑔(𝑄1,𝑊 ) = 𝑔( 𝑗𝑄1,𝑊 ) (where 𝑗 is the smallest integer such that

𝑗𝑄1 only contains integers). For both steps, consistency ensures

that 𝑔 remains well-defined. Moreover, the extension of 𝑔(·,𝑊 ) to
rational numbers preserves all desirable properties of 𝑔.

Finally, we partition the feasible input matrices 𝑄 into sets 𝑅𝑐 =

{𝑄 : 𝑐 ∈ 𝑔(𝑄,𝑊 )} for 𝑐 ∈ C\𝑊 . These sets are convex (with respect

to Q) and symmetric since 𝑔 is consistent, anonymous, and neutral.

Moreover, the interior of 𝑅𝑐 and 𝑅𝑑 is disjoint for 𝑐, 𝑑 ∈ C \𝑊 with

𝑐 ≠ 𝑑 andwe can thus derive a separating hyperplane between these

sets (see, e.g., [21]). As last step, we infer from these hyperplanes

the weight function 𝑣𝑊 . □

Based on Proposition 4, we finally prove our main result.

Theorem 1. An ABC voting rule is a step-dependent sequential
scoring if and only if it is proper and consistently committee monotone.

Proof. We show in Proposition 2 that every step-dependent se-

quential scoring rule 𝑓 is proper. For proving that 𝑓 is consistently

committee monotone, letℎ denote its step-dependent counting func-

tion. Moreover, let𝑊 𝑥 =𝑊 ∪{𝑥} for every committee𝑊 and candi-

date 𝑥 ∈ C \𝑊 . By definition, 𝑓 (𝐴, 0) = ∅ and 𝑓 (𝐴,𝑘) = {𝑊 𝑐
:𝑊 ∈

𝑓 (𝐴,𝑘−1), 𝑐 ∈ C\𝑊 : ∀𝑑 ∈ C\𝑊 : 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 )}. Thus,
𝑔(𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 : 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 )} is
complete and generates 𝑓 . Moreover, 𝑔 is consistent since the scores

are additive, i.e., 𝑠ℎ (𝐴 +𝐴′,𝑊 ) = 𝑠ℎ (𝐴,𝑊 ) + 𝑠ℎ (𝐴′,𝑊 ) for all pro-
files𝐴,𝐴′

and committees𝑊 . Hence, if 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ) and
𝑠ℎ (𝐴′,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴′,𝑊 𝑑 ), then 𝑠ℎ (𝐴 + 𝐴′,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴 + 𝐴′,𝑊 𝑑 ).
Moreover, if one of the inequalities is strict for 𝐴 or 𝐴’, so it is

for 𝐴 +𝐴′
. Thus, 𝑔(𝐴 +𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) if 𝑔(𝐴,𝑊 ) ∩

𝑔(𝐴′,𝑊 ) ≠ ∅, which proves that 𝑔 is consistent.

For the other direction, consider a proper and consistently com-

mittee monotone ABC voting rule 𝑓 . By Proposition 3, 𝑓 is gen-

erated by a proper, consistent, and complete generator function 𝑔.

Furthermore, by Proposition 4, there is for every committee𝑊 ≠ C
a weight function 𝑣𝑊 such that 𝑔(𝐴,𝑊 ) = AV 𝑣𝑊 (𝐴,𝑊 ) for all
𝐴 ∈ A∗

. Now, consider two committees𝑊 and𝑊 ′
with |𝑊 | =

|𝑊 ′ | < 𝑚 and let 𝑣𝑊 and 𝑣𝑊
′
denote the corresponding weight

functions. We first show that AV 𝑣𝑊 (𝐴′,𝑊 ′) = AV 𝑣𝑊
′ (𝐴′,𝑊 ′)

for every profile 𝐴′
. For this, let 𝑐′ ∈ AV 𝑣𝑊

′ (𝐴′,𝑊 ′) which

is the case if and only if

∑
𝑖∈𝑁𝐴′ : 𝑐′∈𝐴′

𝑖
𝑣𝑊

′ ( |𝑊 ′ ∩ 𝐴′
𝑖
|, |𝐴′

𝑖
|) ≥∑

𝑖∈𝑁𝐴′ : 𝑑 ′∈𝐴′
𝑖
𝑣𝑊

′ ( |𝑊 ′ ∩𝐴′
𝑖
|, |𝐴′

𝑖
|) for all 𝑑′ ∈ C \𝑊 ′

. Next, let 𝜏 :

C → C denote a permutation such that 𝜏 (𝑊 ) =𝑊 ′
, and let𝐴 ∈ A∗

and 𝑐 ∈ C such that 𝜏 (𝐴) = 𝐴′
and 𝜏 (𝑐) = 𝑐′. Because of 𝑔(𝐴,𝑊 ) =

AV 𝑣𝑊 (𝐴,𝑊 ), 𝑔(𝐴′,𝑊 ′) = AV 𝑣𝑊
′ (𝐴′,𝑊 ′), and the neutrality of 𝑔,

it holds that 𝑐′ ∈ AV 𝑣𝑊
′ (𝐴′,𝑊 ′) if and only if 𝑐 ∈ AV 𝑣𝑊 (𝐴,𝑊 ).

By the definition of AV 𝑣𝑊 , the last claim is true if and only if∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |) ≥
∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |)
for all 𝑑 ∈ C \𝑊 . Finally, observe that 𝑥 ∈ 𝐴𝑖 if and only if

𝜏 (𝑥) ∈ 𝐴′
𝑖
, |𝐴𝑖 | = |𝐴′

𝑖
|, and |𝑊 ∩ 𝐴𝑖 | = |𝑊 ′ ∩ 𝐴′

𝑖
| for all can-

didates 𝑥 ∈ C \ 𝑊 and voters 𝑖 ∈ 𝑁𝐴 . Hence, we conclude

that

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩ 𝐴𝑖 |, |𝐴𝑖 |) ≥ ∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩
𝐴𝑖 |, |𝐴𝑖 |) if and only if

∑
𝑖∈𝑁𝐴 : 𝑐′∈𝐴′

𝑖
𝑣𝑊 ( |𝑊 ′ ∩ 𝐴′

𝑖
|, |𝐴′

𝑖
|) ≥∑

𝑖∈𝑁𝐴 : 𝜏 (𝑑 ) ∈𝐴′
𝑖
𝑣𝑊 ( |𝑊 ′ ∩ 𝐴′

𝑖
|, |𝐴′

𝑖
|) for all 𝑑 ∈ C \𝑊 . So, 𝑐′ ob-

tains the maximal score in 𝐴′
with respect to 𝑣𝑊

′
if and only if the

same holds with respect to 𝑣𝑊 . This proves that AV 𝑣𝑊 (𝐴′,𝑊 ′) =
AV 𝑣𝑊

′ (𝐴′,𝑊 ′) for all profiles 𝐴′
and committees 𝑊,𝑊 ′

with

|𝑊 | = |𝑊 ′ | < 𝑚.

Next, let𝑊0, . . . ,𝑊𝑚−1 denote committees such that |𝑊𝑖 | = 𝑖

and let 𝑣𝑖 = 𝑣𝑊𝑖
. We define the function 𝑣 (𝑥,𝑦, 𝑧) : {0, . . . ,𝑚} ×

{0, . . . ,𝑚 − 1} × {1, . . . ,𝑚} → R by 𝑣 (𝑥,𝑦, 𝑧) = 𝑣𝑦 (𝑥, 𝑧). By
our previous reasoning, it holds that 𝑔(𝐴,𝑊 ) = AV 𝑣 |𝑊 | (𝐴,𝑊 ) =

{𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |) ≥∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝐴𝑖 ∩ 𝑊 |, |𝑊 |, |𝐴𝑖 |)}. Our next goal is to derive

a valuation function from 𝑣 . For doing so, define the function
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ℎ(𝑥,𝑦, 𝑧) : {0, . . . ,𝑚} × {1, . . . ,𝑚} × {1, . . . ,𝑚} → R as fol-

lows: ℎ(0, 𝑦, 𝑧) = 0 for all 𝑦, 𝑧 ∈ {1, . . . ,𝑚} and ℎ(𝑥,𝑦, 𝑧) =

ℎ(𝑥 − 1, 𝑦, 𝑧) + 𝑣 (𝑥 − 1, 𝑦 − 1, 𝑧) for all 𝑥,𝑦, 𝑧 ∈ {1, . . . ,𝑚}. We

claim that 𝑓 is the sequential valuation rule induced by the val-

uation function 𝑤 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |). For this, let
𝑔𝑤 (𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴

𝑤 (𝐴𝑖 ,𝑊 ∪ {𝑐}) ≥∑
𝑖∈𝑁𝐴

𝑤 (𝐴𝑖 ,𝑊 ∪ {𝑑})}. We will show that 𝑔𝑤 (𝐴,𝑊 ) = 𝑔(𝐴,𝑊 )
for all profiles 𝐴 ∈ A∗

and committees𝑊 ≠ C. Note for this that
for all profiles 𝐴, committees𝑊 , and candidates 𝑐 ∈ C \𝑊 , the

following equation holds:∑︁
𝑖∈𝑁𝐴

ℎ( |𝑊 𝑐 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

=
∑︁

𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

ℎ( |𝑊 ∩𝐴𝑖 | + 1, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

+
∑︁

𝑖∈𝑁𝐴 : 𝑐∉𝐴𝑖

ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

=
∑︁

𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |).

Now, define 𝐶 (𝐴,𝑊 ) = ∑
𝑖∈𝑁𝐴

ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 | + 1, |𝐴𝑖 |). Then,
the above equation shows that 𝑠𝑤 (𝐴,𝑊 𝑐 ) ≥ 𝑠𝑤 (𝐴,𝑊 𝑑 ) if and
only if 𝑠𝑤 (𝐴,𝑊 𝑐 ) − 𝐶 (𝐴,𝑊 ) ≥ 𝑠𝑤 (𝐴,𝑊 𝑑 ) − 𝐶 (𝐴,𝑊 ) if and

only if

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩ 𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |) ≥ ∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝑊 ∩
𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |). Hence, 𝑔𝑤 (𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ) for all profiles 𝐴 and

committees𝑊 and 𝑓 is the sequential valuation rule generated

by 𝑔. Finally, since 𝑓 is proper, Proposition 2 shows that it is a

step-dependent sequential valuation rule. □

Due to Proposition 2, Theorem 1 entails also characterizations of

step-dependent sequential Thiele rules and sequential Thiele rules.

Corollary 1. The following statements hold:

(1) An ABC voting rule is a step-dependent sequential Thiele rule if
and only if it is consistently committee monotone, independent of
losers, and proper.

(2) An ABC voting rule is a sequential Thiele rule if and only if it is
consistently committee monotone, independent of losers, commit-
tee separable, and proper.

Remark 1. All axioms are required for Theorem 1 as there are

ABC voting rules other than step-dependent sequential scoring

rules that satisfy all but one condition. If we omit anonymity, we

can use seqAV but count the vote of voter 1 twice. When omitting

neutrality, we can use seqAV but count the votes for candidate 𝑎

twice. When omitting non-imposition, the rule that always returns

all committees of the given size satisfies all remaining conditions.

The rule that refines the generator of seqAV by breaking ties based

on the Chamberlin-Courant score only fails continuity. Finally,

when omitting consistent committee monotonicity, Thiele rules

satisfy all remaining conditions. We can also not weaken consistent

committee monotonicity to committee monotonicity as reverse

sequential Thiele rules then satisfy all given conditions.

Remark 2. Our hierarchy of sequential valuation rules misses the

class of sequential scoring rules, which are defined by a valuation

function of the form 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝐴𝑖 |). These rules

form a subclass of step-dependent sequential scoring rules, but

committee separability does not characterize them within the class

of step-dependent sequential scoring rules.

Remark 3. A natural follow-up question to Theorem 1 is whether

sequential valuation rules can be characterized by consistent com-

mittee monotonicity, anonymity, and continuity since they satisfy

these three axioms. Unfortunately, this is not the case as we can

still treat candidates differently (see Remark 1). On the other hand,

it might be possible to characterize the rules that satisfy anonymity,

neutrality, continuity, and consistent committee monotonicity.

4 CHARACTERIZATIONS OF SPECIFIC ABC
VOTING RULES

Finally, we leverage our results to derive characterizations of spe-

cific voting rules. First, we note that our characterizations can be

combined with known results that single out rules within the class

of, e.g., sequential Thiele rules, to derive full characterizations [e.g.,

16, 18]. Nevertheless, we prefer to present our own characteriza-

tions for seqCCAV, seqAV, and seqPAV to highlight new aspects of

these rules. We state our results restricted to the class of sequential

Thiele rules; Corollary 1 turns them into full characterizations by

adding the necessary axioms. Moreover, we focus on the case𝑚 ≥ 3

since every sequential Thiele rule coincides with seqAV if𝑚 = 2.

The main idea for our characterizations is to study how ABC

voting rules treat clones. To this end, we say that two candidates 𝑐, 𝑑

are clones in a profile 𝐴 if 𝑐 ∈ 𝐴𝑖 if and only if 𝑑 ∈ 𝐴𝑖 for all voters

𝑖 ∈ 𝑁𝐴 . Depending on the goal of the election, clones should be

treated differently. For instance, if our goal is to choose a committee

that is as diverse as possible, there is no point in choosing both

clones. We formalize this new condition as follows: an ABC voting

rule 𝑓 is clone-rejecting if 𝑓 (𝐴, |𝑊 |) = {𝑊 } implies that {𝑐, 𝑑} ⊈𝑊
for all profiles 𝐴 with clones 𝑐, 𝑑 and committees 𝑊 ≠ C. The
requirement that a single committee is chosen is necessary since, for

instance, in the profile where all voters approve all candidates, we

need to choose clones but we will also choose multiple committees.

As our next result shows, this axiom characterizes seqCCAV.

Theorem 2. seqCCAV is the only sequential Thiele rule that satisfies
clone-rejection if𝑚 ≥ 3.

Proof. Since seqCCAV clearly satisfies clone-rejection, we focus

on the inverse direction. Hence, consider a sequential Thiele rule 𝑓

other than seqCCAV and let ℎ denote its Thiele counting function.

Since sequential Thiele functions are invariant under scaling and

shifting ℎ, we can suppose that ℎ(0) = 0 and ℎ(1) = 1. Moreover,

because 𝑓 is not seqCCAV, there is an integer 𝑥 ∈ {2, . . . ,𝑚 − 1}
such that ℎ(𝑥) > 1 and ℎ(𝑥 ′) = 1 for all 𝑥 ′ ∈ {1, . . . , 𝑥 − 1}. Now,
let Δ = ℎ(𝑥) − 1 and ℓ ∈ N such that ℓΔ > 1. We consider the

following profile 𝐴 to show that 𝑓 fails clone-rejection: there are

ℓ voters who approve the candidates 𝑐1, . . . , 𝑐𝑥 , 𝑥 voters who ap-

prove 𝑐1 and 𝑐2, and for each 𝑖 ∈ {3, . . . , 𝑥 + 1} there are 𝑥 + 2 − 𝑖

voters who approve only 𝑐𝑖 . Now, due to the minimality of 𝑥 , 𝑓

agrees in the first 𝑥 − 1 rounds with seqCCAV and we thus have

that 𝑓 (𝐴, 𝑥 − 1) = {{𝑐1, 𝑐3, . . . , 𝑐𝑥 }, {𝑐2, 𝑐3, . . . , 𝑐𝑥 }}. On the other

hand, it holds that 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑥 }) ≥ 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) +
ℓΔ > 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) + 1 and 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 , 𝑐𝑥+1}) =

𝑠ℎ (𝐴, {𝑐2, 𝑐3, . . . , 𝑐𝑥 , 𝑐𝑥+1}) = 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) + 1. Thus,
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𝑓 (𝐴, 𝑥) = {{𝑐1, . . . , 𝑐𝑥 }}. However, this committee contains the

clones 𝑐1 and 𝑐2 which proves that 𝑓 fails clone-rejection. □

The polar opposite to diverse committees are quality-based ones,

where the goal is to find the 𝑘 best candidates regardless of howwell

they represent the voters. In such a setting, clones should be treated

as equal as possible and we thus propose the following notion: an

ABC voting rule 𝑓 is clone-accepting if for all profiles 𝐴 with clones

𝑐, 𝑑 and committees𝑊 ⊆ C\{𝑐, 𝑑}, it holds that𝑊 ∪{𝑐} ∈ 𝑓 (𝐴, |𝑊 ∪
{𝑐}|) implies that𝑊 ∪ {𝑐, 𝑑} ∈ 𝑓 (𝐴, |𝑊 ∪ {𝑐, 𝑑}|). Or, in words, the

only reason that a winning committee does not contain both clones

is if this conflicts with the committee size. Perhaps surprisingly,

clone-acceptance does not characterize seqAV as, e.g., the sequential
Thiele rule defined by ℎ(0) = 0, ℎ(1) = 1, and ℎ(𝑥) = 2𝑥 + 1 for

𝑥 ≥ 2 satisfies this axiom, too. However, this rule prefers to choose

candidates that are approved by voters who already approve a

chosen candidate. This behavior can be interpreted as trust in a

voter’s recommendation and can be reasonable for quality-based

elections. Nevertheless, to single out seqAV, we use a mild condition

prohibiting this behavior: an ABC voting rule 𝑓 is distrusting if for

all profiles 𝐴, committees 𝑊 ≠ C with 𝑓 (𝐴, |𝑊 |) = {𝑊 }, and
candidates 𝑏, 𝑐 , it holds that 𝑏 ∈𝑊 implies 𝑐 ∈𝑊 if more voters in

𝐴 report the ballot {𝑐} than there are voters who approve 𝑏. Based

on these two axioms, we derive the following theorem.

Theorem 3. seqAV is the only sequential Thiele rule that is clone-
accepting and distrusting if𝑚 ≥ 3.

Proof Sketch. We focus on the direction from right to left and

thus consider a sequential Thiele rule 𝑓 other than seqAV. Moreover,

let ℎ denote the corresponding Thiele counting function and sup-

pose again that ℎ(0) = 0 and ℎ(1) = 1. Since 𝑓 is not seqAV, there
is a integer 𝑥 ∈ {2, . . . ,𝑚 − 1} such that ℎ(𝑥) ≠ 𝑥 but ℎ(𝑥 ′) = 𝑥 ′

for 𝑥 ′ ∈ {1, . . . , 𝑥 − 1}. Now, let Δ = |ℎ(𝑥) − 𝑥 | and ℓ ∈ N such

that ℓΔ > 1. If ℎ(𝑥) > 𝑥 , 𝑓 fails distrust in the following profile 𝐴,

where𝑊 is a committee of size 𝑥 − 1 ≤ 𝑚 − 2 and 𝑐, 𝑑 ∈ C \𝑊 :

ℓ voters approve𝑊 ∪ {𝑐}, ℓ + 1 voters approve 𝑑 , and two voters

approve𝑊 . Indeed, it can be checked that 𝑓 (𝐴, 𝑥) = {𝑊 ∪ {𝑐}}
but distrust requires that 𝑑 is not chosen after 𝑐 . On the other

hand, if ℎ(𝑥) < 𝑥 , 𝑓 fails clone-acceptance in the following pro-

file 𝐴, where 𝑊 is a committee 𝑊 with |𝑊 | = 𝑥 − 2 ≤ 𝑚 − 3

and 𝑏, 𝑐, 𝑑 ∈ C \𝑊 : ℓ voters report 𝑊 ∪ {𝑐, 𝑑} and ℓ − 1 vot-

ers report 𝑏. Indeed, 𝑓 (𝐴, 𝑥 − 1) = {𝑊 ∪ {𝑐},𝑊 ∪ {𝑑}} but

𝑓 (𝐴, 𝑥) = {𝑊 ∪ {𝑏, 𝑐},𝑊 ∪ {𝑏, 𝑑}}. Thus, seqAV is the only dis-

trusting and clone-accepting sequential Thiele rule. □

Finally, a large stream of research on ABC voting rules tries to

find proportional committees, i.e., the chosen committee should pro-

portionally reflect the voters’ preferences. For defining this concept,

we rely on heavily restricted profiles 𝐴 in which 𝑛1 voters report

the same ballot 𝐴1 and 𝑛2 voters approve a single candidate 𝑐 ∉ 𝐴1.

In such a profile, each clone 𝑑 ∈ 𝐴1 that is in the elected committee

𝑊 represents on average
𝑛1

|𝐴1∩𝑊 | voters, whereas the candidate

𝑐 represents 𝑛2 voters. Following the idea of proportionality, we

should choose a subset of 𝐴1 for a committee size 𝑘 if
𝑛1

𝑘
> 𝑛2 as

every candidate 𝑑 ∈ 𝐴1 represents on average more voters than

𝑐 . Conversely, if
𝑛1

𝑘
< 𝑛2, the chosen committee should contain 𝑐 .

Thus, we say an ABC voting rule is clone-proportional if for all such

profiles 𝐴, committee sizes 𝑘 ≤ |𝐴1 |, and committees𝑊 ∈ 𝑓 (𝐴,𝑘),
it holds that 𝑐 ∉ 𝑊 if

𝑛1

𝑘
> 𝑛2 and 𝑐 ∈ 𝑊 if

𝑛1

𝑘
< 𝑛2. Note that

clone-proportionality is closely related to D’Hondt proportionality

[8, 18]. Next, we show that this axiom characterizes seqPAV.

Theorem 4. seqPAV is the only sequential Thiele rule that satisfies
clone-proportionality if𝑚 ≥ 3.

Proof Sketch. We only show that no other sequential Thiele

rule 𝑓 but seqPAV satisfies clone-proportionality. For this, let ℎ

denote the Thiele counting function of 𝑓 and normalize ℎ such that

ℎ(0) = 0 and ℎ(1) = 1. Since 𝑓 is not seqPAV, there is a minimal

integer 𝑥 ∈ {2, . . . ,𝑚−1} such that ℎ(𝑥) ≠ ∑𝑥
𝑖=1

1

𝑖 . As in the proofs

of Theorems 2 and 3, we can now construct a profile in which

𝑓 fails clone-proportionality. For instance, if ℎ(𝑥) >
∑𝑥
𝑖=1

1

𝑖 , let

Δ = ℎ(𝑥) −∑𝑥
𝑖=1

1

𝑖 and ℓ ∈ N such that ℓ𝑥 · Δ > 1 and consider the

following profile 𝐴: ℓ𝑥 voters report {𝑐1, . . . , 𝑐𝑥 } and ℓ + 1 voters

approve a single candidate 𝑐 ∉ {𝑐1, . . . , 𝑐𝑥 }. It can be checked that

𝑓 (𝐴, 𝑥) = {{𝑐1, . . . , 𝑐𝑥 }} but clone-proportionality requires that

𝑐 ∈ 𝑊 for𝑊 ∈ 𝑓 (𝐴, 𝑥) as ℓ + 1 > ℓ𝑥
𝑥 . A similar counter example

can be constructed if ℎ(𝑥) < ∑𝑥
𝑖=1

1

𝑖 and thus, seqPAV is the only
sequential Thiele rule that satisfies this axiom. □

Remark 4. Notably, clone-acceptance characterizes seqAV within
the class of sequential Thiele rules with non-increasing partial sums

ℎ( 𝑗) − ℎ( 𝑗 − 1). In the literature, the definition of sequential Thiele

rules often includes this condition.

5 CONCLUSION
In this paper, we provide axiomatic characterizations for the new

class of sequential valuation rules. These rules are based on valua-

tion functions, which assign each pair of ballot and committee a

score and compute the winning committees greedily by extending

the current winning committees with the candidates that increase

the score by the most. Clearly, sequential valuation rules general-

ize the prominent class of sequential Thiele rules whose valuation

function only depends on the size of the intersection between the

given ballot and committee. Our main result characterizes the class

of proper (=anonymous, neutral, continuous, and non-imposing)

sequential valuation rules based on a new axiom called consistent

committee monotonicity. This axiom combines the well-known

notions of committee monotonicity and consistency by requiring

that the winning committees of size 𝑘 are derived from those of size

𝑘 − 1 by only adding new candidates, and that these newly added

candidates are chosen in a consistent way across the profiles. By

adding additional conditions, we also derive characterizations of

important subclasses such as sequential Thiele rules and of promi-

nent ABC voting rules such as sequential proportional approval

voting. For a full overview of our results, we refer to Figure 1.

Our theorems address one of the major open problems in the

field of ABC voting: while there is an enormous number of different

voting rules, there are almost no characterizations. Such characteri-

zations are crucial for reasoning about which rule to use because

without a characterization, there is always the possibility that a

more attractive rule exists. Moreover, many ideas of our results

seem rather universal and it might be possible to reuse them to

characterize other rules such as Phragmen’s rule or Thiele rules.
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