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ABSTRACT
We present a collection of 7582 real-world elections divided into
25 datasets from various sources ranging from sports competitions
over music charts to survey- and indicator-based rankings. We
provide evidence that the collected elections complement other
publicly available data from the PrefLib database [47]. Using the
map of elections framework [66], we divide the datasets into three
categories and conduct an analysis of the nature of our elections. To
evaluate the practical applicability of previous theoretical research
on (parameterized) algorithms and to gain further insights into
the collected elections, we analyze different structural properties
of our elections including the level of agreement between voters
and election’s distances from restricted domains such as single-
peakedness. Lastly, we use our diverse set of collected elections to
shed some further light on several traditional questions from social
choice, for instance, on the number of occurrences of the Condorcet
paradox and on the consensus among different voting rules.
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1 INTRODUCTION
The area of computational social choice is concerned with the al-
gorithmic and axiomatic analysis of collective decision-making
problems, where given a set of agents with preferences over some
alternatives the task is to select a “compromise” alternative [13].
One important part of computational social choice is the study
of algorithmic aspects of election-related problems such as the
computation and manipulation of voting rules [17, 19, 33, 43, 73].
While in the early years of the field the main focus lay on the study
of the theoretical worst-case computational complexity of these
problems, in recent years the focus has at least partially shifted
towards the practical applicability of theoretical research (see e.g.,
[6, 34, 37, 41, 66, 68]). Two classical social choice questions which
have been studied from an empirical perspective are the number of
occurrences of voting paradoxes [14, 18, 35, 57] and the consensus
among voting rules [18, 21, 35, 46, 58, 60, 61]. Nevertheless, there
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are still many subareas that lack empirical research. For instance,
there are numerous theoretical papers designing parameterized
algorithms for elections that are close to being single-peaked1 (see
e.g. [20, 30, 50, 64, 70–72]) with only Sui et al. [65] measuring
the distance of real-world elections from being single-peaked and
detecting that most elections are far away. Thus, the practical ap-
plicability of the developed algorithms is largely unclear.

One reason for the general rarity of experimental works in voting
validating the applicability of theoretical research might be the
lack of data. To tackle this issue, in 2013, Mattei and Walsh [47,
48] started the very useful PrefLib platform, a database for real-
world election data. Many community members have contributed
to this popular platform over the past years and before adding our
data to it, PrefLib contained 701 real-world elections dived into 36
datasets (see Boehmer et al. [7, Table 5] for a recent overview of
the datasets). Many elections from PrefLib are based on humans
expressing opinions over alternatives, e.g., over candidates in an
election, over movies, or types of sushi. However, due to this nature
of these elections, most of them either have few candidates or voters
express only partial preferences which can include many ties. In
fact, as observed by Boehmer et al. [7, Table 5], there are only 165
elections from 8 sources on PrefLib with 10 or more candidates
where votes include not too many ties. The goal of this paper is
to contribute to the rise of experimental works in computational
social choice by executing the following four steps:

Step 1: Collecting Data. In Section 3, we present our collection
of 7582 real-world elections divided into 25 datasets. We prepro-
cess the data by deleting candidates and voters until each voter
ranks all candidates. Subsequently, to be able to better compare the
properties of our elections, for each dataset we create 500 elections
containing 30 voters over 15 candidates. Our real-world elections
differ from most of the already publicly available ones in three
aspects: First, they contain virtually no ties and are of various sizes
(the average number of candidates varies from around 20 to above
800, while the average number of voters ranges from around 12
to over 1400). Moreover, even after deleting voters and candidates
until all voters rank all candidates, most elections are still of at least
medium size. As a majority of algorithms are designed for such
so-called complete elections, this is a very important step to ensure
the usefulness of our data for experimental works. In the past, elec-
tions have been often completed by appending missing candidates
in random order or based on the preference of other voters [7, 22].
Our approach offers the clear advantage that preferences in the
final election are not distorted in any way: Each pairwise ordering

1An election is single-peaked if there exists a societal order of the candidates and each
voter ranks candidates that are closer to its top-choice according to the societal order
above those which are further away.
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of a voter represents its true opinion. Second, unlike a majority
of elections on PrefLib, our datasets are not based on humans ex-
plicitly expressing preferences over alternatives. Traditionally, this
might be considered as a drawback of our data as political elections
are still often thought of as the prime application of social choice
theory. However, we want to remark that this is no longer true, as
voting is also relevant and already used in many other contexts, e.g.,
in multi-agent and recommender systems (as witnessed by social
choice being an AAMAS area), or in sports, when aggregating the
results of multiple competitions into a final ranking. Third, around
half of our datasets arise from time-based preferences, i.e., capture
in one form or another the changing preferences of agents over
time. Time-based elections might not directly match ones intuition
for an election; however, preferences obtained at different points in
time are also frequently collected in an election (for instance, when
deciding on the overall winner of multiple competitions). Notably,
while there are already some theoretical works dealing with such
time-evolving preferences [10, 16, 42, 56], as pointed out by Mattei
and Walsh [48], there are only very few such elections currently
publicly available.

Step 2: Classifying Data. In Section 4, we apply themap of elections
framework of Szufa et al. [66] and Boehmer et al. [8] to visualize
the collected elections as points on a map. Using this, we detect
that one of our datasets seems to fall into a so-far vacant part of the
“space of elections”. Moreover, based on their positions on the map,
we propose a classification of our datasets into three categories
and observe in the subsequent experiments that datasets from one
category typically have similar properties. This suggests that if one
wants to run experiments on our data, it should be sufficient to use
few datasets from each of the three categories.

Step 3: Analyzing Data. In Sections 5 and 6, we analyze various
structural properties of the collected elections. This analysis serves
three purposes: First, we aim for a better understanding of the
collected elections. Second, we want to gain some insights into
the relationship between the different properties. Third, we try to
contribute to putting the research on parameterized algorithms
for voting-related problems on an empirical basis by measuring
already used parameters. Unfortunately, we find that most of them
are typically quite large and thus that most algorithms developed
for these parameters are probably not really practically usable on
our data. Briefly put, in Section 5 we analyze the degree of similarity
between voters in an election, while in Section 6 we check which
of our elections are (close to) a restricted domain.

Step 4: Using Data. In Section 7, we use our collected elections to
address some classical and already empirically researched questions
from social choice, such as the frequency of Condorcet winners
and the consensus among voting rules. While we partly confirm
previous findings, for instance, that most elections have a Condorcet
winner and that voting rules often return the same winner, we find
contradicting evidence for others and also identify some datasets
showing a distinct behavior. This indicates that our datasets are
quite different from each other with some of them showing rarely
observable and non-standard behavior, making them collectively
well-suited for experimental research.

The full version of this paper containing additional discussions
and experiments is available at arxiv.org/pdf/2204.03589.pdf [11].
The collected datsets are available at github.com/n-boehmer and
preflib.org/BoSc22. We also collected some further datasets which
we do not include in our analysis for the sake of conciseness.

2 PRELIMINARIES
For a set S and an integer k ∈ N, we denote as

(S
k
)
the set of all

k-element subsets of S . For a set C of candidates, let L(C) denote
the set of all total orders over C . We refer to the elements of L(C)
as preference orders, votes, or voters. An election E is defined by
a set of C = {c1, . . . , cm } of m candidates and a collection V =
(v1, . . . ,vn ) of n voters with vi ∈ L(C) for each i ∈ [n]. For a voter
v ∈ V and two candidates a,b ∈ C , we write a ≻v b to denote
that v prefers a to b. We say that voter v ∈ V ranks candidate
c ∈ C in position i ∈ [m] if v prefers exactly i − 1 candidates from
C \ {c} to c . We refer to the candidate which a voter ranks in the
first position as its top-choice. For two votes v,v ′ ∈ L(C), their
Kendall tau distance KT(v,v ′) is defined as the number of candidate
pairs on which orderings v and v ′ disagree: |{c, c ′ ∈

(C
2
)
| (c ≻v

c ′ ∧ c ′ ≻v ′ c) ∨ (c ≻v ′ c ′ ∧ c ′ ≻v c)}|. Alternatively, KT(v,v ′)

can be interpreted as the minimum number of swaps of adjacent
candidates that need to be performed to transform v into v ′.

Next, we define three different restricted domains. In single-
peaked elections, there is an order of the candidates and each voter
prefers candidates that are closer to its top-choice with respect to
the order to those further away: Formally, an election E = (C,V )

is single-peaked [3] if there is a linear order ▷ over C , sometimes
called the societal order, such that for each three candidates a,b, c ∈

C with a ▷ b ▷ c , for each v ∈ V , if a ≻v b then b ≻v c . In
single-crossing elections, there is an order of voters such that going
through the voters according to the order, the ordering of each pair
of candidates changes at most once: Formally, an election E = (C,V )

is single-crossing [51, 62] if there is a linear order ▷ over V such
that for each two candidates c, c ′ ∈ C , there do not exist three
votes v,v ′,v ′′ ∈ V with v ▷ v ′ ▷ v ′′ such that c ≻v c ′, c ′ ≻v ′ c ,
and c ≻v ′′ c ′. Lastly, an election E = (C,V ) is group-separable
[38, 39] if each subset A ⊆ C of candidates with |A| ≥ 2 can be
partitioned into two sets A′ and A′′ such that each voter v ∈ V
prefers either all candidates from A′ to all candidates from A′′ or
the other way around.

3 COLLECTING REAL-WORLD ELECTIONS
In the following, we list the different data sources that we used to
create our elections, ranging from results of sports competitions
over music charts and expert assessments to survey- or indicator-
based rankings. For each data source, we describe how we created
elections from the data (if there happens to be a tie, we break it
arbitrarily); for some sources, we created two types of elections.

From a methodological perspective, our elections are of one
of two types: We say that an election is time-based if each vote
corresponds to an evaluation of the candidates at different points
in time. In contrast to this, we call an election criterion-based if
each vote corresponds to some, in principle, independent criterion
judging the candidates at the same point in time. In Table 1, we
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indicate for each dataset the type, the number of contained elections,
and their average size before and after the preprocessing.

Boxing/Tennis (World) Rankings. The boxing data (collected by
Jürisoo [40]) contains the Ultimate Fighting Championship rankings
of the top 16 fighters in twelve different weight classes in different
weeks between February 2013 and August 2021. The tennis data
(collected by Wang [69]) contains weekly rankings of the top 100
male tennis players published by the ATP between January 1990
and September 2019. For each year (and weight class), we created a
tennis top 100 (boxing top 16) election where each player (fighter) is
a candidate and each vote corresponds to the ranking of the players
(fighters) in one week.

American Football. The American football data (collected by
Massey [45]) contains weekly power rankings of college football
teams from different media outlets for each season between 1997
and 2021. We created two different types of elections with teams as
candidates: First, for each season and each media outlet, we created
a football season election where each vote corresponds to the power
ranking of the teams in one week according to the media outlet.
Second, for each week in one of the seasons, we created a football
week election where each vote corresponds to the power ranking
of the teams in this week according to one of the media outlets.

Formula 1. The Formula 1 data (collected by Rao [59]) contains
the finishing times of each driver in each lap of a race between
1950 and 2020. From this we created two types of elections with
drivers as candidates: First, for each year, we created a Formula 1
season election where each vote corresponds to a race in this year
and ranks the drivers by their finishing time in this race. Second,
for each race, we created a Formula 1 race election where each vote
corresponds to a lap in the race and ranks the drivers by the time
they spend in this lap.

Spotify. For each day between the 1st of January 2017 and 9th
January 2018, the Spotify data (collected by Oliveira [53]) contains
a daily ranking of the 200 most listened songs in one of 53 countries.
We created two types of elections with songs as candidates: First, for
each month and each country, we created a Spotify month election
where each vote corresponds to the ranking of the songs on one
day of the month in the country. Second, for each day, we created
a Spotify day election where each vote corresponds to the ranking
of the songs on this day in one of the 53 countries.

Tour de France. For each edition of the Tour de France between
1903 and 2021, the data contains the completion times of all riders
for each stage. The dataset was crawled by us from the website
procyclingstats.com. For each edition, we created one Tour de France
election in which the riders are the candidates and each vote corre-
sponds to a stage and ranks the riders by their completion time.

City Rankings. The city data (collected by Blitzer [4]) contains
twelve quantitative indicators for the life quality in 216 different
cities determined by movehub.com. We created a single city ranking
election where each city is a candidate and each vote corresponds
to the ranking of the cities with respect to one of the indicators.

Country Rankings. For each year between 2005 and 2016, the
country ranking data (based on the popular world happiness report
and collected by Oxa [55]) contains different quantitative indicators

name type raw relevant complete

#Elec. Avg.
#Voters

Avg.
#Cand. #Elec. Avg.

#Voters
Avg.
#Cand.

boxing top 16 time 99 31.9 19.76 31 17.45 15.32
football season time 2746 12.28 152.36 2422 12.6 156.71
Formula 1 race time 454 61.3 20.46 396 47.2 17.93

Formula 1 season time 71 14.58 43.97 42 13.38 21.57
Spotify month time 645 29.78 306.64 632 29.91 109.28
tennis top 100 time 29 50.48 140 29 49.9 62.31
Tour de France time 97 21.14 175.69 95 19.7 82.64
city ranking crit. 1 12 216 1 12 216

country ranking crit. 12 17.25 119.17 12 14.25 95.58
football week crit. 415 83.28 219.67 415 77.35 98.45
Spotify day crit. 362 53.06 247.74 375 49.06 20.73

university ranking crit. 4 18.5 832.5 4 18.5 123.25

Table 1: Information about our election datasets.

for the happiness of citizens from over 100 countries. For each year,
we created a country ranking election where the countries are the
candidates and each vote ranks them according to one indicator.

University Rankings. For each year between 2012 and 2015, the
university ranking data (collected byO’Neill [54]) contains rankings
of universities according to different criteria provided by three
systems. For each year, we created a university ranking election
where the universities are the candidates and each vote ranks them
according to one criterion used by one of the three systems.

From Raw to Normalized Elections
In our experiments, we do not use the raw elections created as
described above but instead apply some postprocessing. As a first
step, by deleting voters and candidates, we converted each created
election into a complete election, i.e., an election where every voter
ranks all candidates (see our full version for more details [11]). As
in our experiments we are interested in elections with at least 15
candidates2, we call each election with 15 or more candidates (and
an arbitrary number of voters) relevant. We display information
about the number and size of the relevant complete elections from
each dataset in Table 1.

Next, similarly as done by Boehmer et al. [8], to be able to mean-
ingfully compare the results of our experiments within datasets
and between datasets, we created normalized elections. For each
dataset, we created 500 elections with 15 candidates and 30 voters as
follows. To create an election E = (C,V ), we uniformly at random
selected one relevant complete election F = (D,W ) from the respec-
tive dataset. Subsequently, we sampled a subset of 15 candidates C
uniformly at random from D. After that, to createV , we sampled 30
times a vote uniformly at random fromW with replacement. This
means that a vote fromW can occur potentially multiple times in
V and that different normalized elections might be based on F . In
all our experiments presented in the following sections we only
use normalized elections and will no longer explicitly specify this.
We refer to the dataset containing all normalized elections from all
datasets as the aggregated dataset.

2We chose this number to be as large as possible while still being able to include most
of our elections.
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4 DRAWING A MAP OF OUR ELECTIONS
To get a feeling for the type of our elections and to be able to better
relate the datasets to each other, we apply the “map of elections”
framework. In this framework, which has been developed by Szufa
et al. [66] and Boehmer et al. [8] (see also [5, 9]), we take a set
of elections and compute for each pair their so-called “position-
wise” distance.3 Afterward, using the embedding algorithm from
Fruchterman and Reingold [36], we draw a map of our elections
where each election is represented by a dot with the Euclidean dis-
tance between two dots being as similar as possible to the distance
between the respective two elections. Note that the position of an
election on the map thus naturally depends on the set of depicted
elections.

To give a meaning to the absolute position of an election on the
map, Boehmer et al. [8] introduced what they call a compass con-
sisting of four types of “extreme” elections capturing different kinds
of (dis)agreement between voters and their convex combinations:
Identity All voters have the same preference order.
Uniformity Each possible preference order appears exactly once.
Antagonism Half of the voters rank the candidates in the same

order, while the other half ranks them in the opposite order.
Stratification There is a partitioning of the candidates into two

sets A and B of equal size and all possible preference orders
where all candidates from A are ranked before those from B
appear once.

Setup. We created two maps of elections (Figure 1) where each
election is represented by a point whose shape and color indicate
the dataset to which it belongs. To make the created maps not too
crowded, we created a separate map for time-based (Figure 1a) and
criterion-based (Figure 1b) elections. For each map, we included
30 elections sampled uniformly at random from each normalized
dataset and the compass elections introduced by Boehmer et al. [8]
together with their convex combinations appearing as “paths”.

Classifying Datasets. Examining Figure 1, it is possible to divide
our datasets into three groups: The first group of datasets (boxing
top 16, football season, Spotify month, tennis top 100, and football
week) drawn as squares all contain elections somewhat close to
identity. Notably, except for football week4, these are all time-based
datasets. For all of them except Spotify month, the ranking at a
certain point in time partly depends on information on candidates
that also already influenced previous votes. As a result, in some
sense, votes are “by design” not independent here.5 In contrast to
this, in time-based elections from the other datasets (Formula 1
race, Formula 1 season, and Tour de France), which do not belong
to this group and are further away from identity, one vote only

3The positionwise distance is based on the notion of frequency matrices. In the fre-
quency matrix of an election, each column corresponds to a candidate and each row to
a position and an entry captures the fraction of voters ranking the respective candidate
in the respective position. The distance between two elections then corresponds to
the summed earth mover’s distance between the columns of their frequency matrices
with columns being rearranged to minimize this distance (see [8, 66] for details).
4Recalling that in football week elections the strength of college football teams at
one point are judged by different systems (votes), it is also quite intuitive that these
elections are close to identity, as one could argue that there exists a “ground truth”.
5For Spotify month this is not really the case “by design”. However, also here similar
effects are present. E.g. users often listen to playlists that only change slowly over
time, implying that what users listened to on one day in some sense “predicts” what
they will listen to on the next day.

(a) Time-based elections

(b) Criterion-based elections

Figure 1: Visualization of our elections as map of elections.

depends on the performance of a candidate at some point in time
(and not on previous performances).

The second group of datasets (Formula 1 race, Formula 1 sea-
son, Tour de France, Spotify day, and university rankings) drawn
as circles constitute the “middle” part of our maps: This is also
reflected in them being roughly at the same distance from identity
and uniformity (while all are clearly closer to stratification than
to antagonism). What is particularly striking here is that despite
the fact that these elections are seemingly not all simply close to a
canonical extreme election like identity, there are surprising simi-
larities between the datasets: In particular, university, Formula 1
race, and Spotify day elections all fall in exactly the same area of
the space of elections (the average distance of two elections from
one of these datasets is very close to the average distance of two
elections picked from two different of these datasets). The same
also holds for Tour de France and Formula 1 season elections. Re-
markably, Tour de France and Formula 1 season elections are also
by design of a very similar nature in the sense that in both datasets
players compete in a similar task on different days. The similarity
of these datasets indicates that whether players drive in cars or ride
bicycles seems to be not so crucial for the resulting election (similar
observations apply to boxing top 16 and tennis top 100, and city
rankings and country rankings).

The third group of datasets consists of city and country rankings
and is drawn as triangles. Both are clearly different from the rest as
they are significantly closer to uniformity than identity. Remarkably,
the city ranking dataset is the only one of our datasets and the first
known dataset which is significantly closer to antagonism (distance
29) than stratification (distance 43). Considering the underlying data
which provides ratings of cities according to different indicators,
the “closeness” to antagonism is quite plausible, as some of the
studied indicators seem to capture in some sense contradicting
objectives, e.g., big cities where inhabitants typically have access
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to a variety of healthcare facilities (being one of the indicators) are
typically also quite polluted (being another indicator).

Captured Part of the Space of Elections. It seems that our datasets
contain elections of a different nature than those available on Pre-
fLib: Boehmer et al. [8, Figure 2b] drew a map of elections including
representatives of all PrefLib datasets with at least 10 candidates,
10 votes, and not too many ties. They observed that most elections
are closer to uniformity than identity and closer to stratification
than antagonism, thereby ending up in the bottom left quadrant
of the map. In contrast to this, our elections are mostly located
in the bottom right quadrant. Nevertheless, we can confirm the
observation of Boehmer et al. [8] that real-world elections typically
end up closer to stratification than antagonism (we also do not
provide any elections that are in the top right quadrant).

5 SIMILARITY MEASURES AND THEIR
CORRELATION

In addition to our analysis from the previous section based on
the map of elections, in this section, we focus on one structural
property of our elections, i.e., the similarity of different votes in one
election, and compare four measures capturing different facets of
similarity. Notably, similarity measures are a potentially attractive
parameter to develop parameterized algorithms because they can
be understood as a “distance from triviality” parameterization, as
most computational problems are easy if all votes are the same.
We evaluate the practicability of parameterized algorithms from
Betzler et al. [1] on our data.

Setup. We consider four measures for each election (C,V ):
Maximum KT-distance The maximum KT-distance among all

pairs of votes: maxv,v ′∈(V2 )
KT(v,v ′).

Average KT-distance The average KT-distance among all pairs
of votes:

∑
v,v′∈(V2 )

KT(v,v ′)/|(V2 ) |.
Disagreeing pairs The number of candidate pairs for which not

all votes agree on their ordering: |
{
{c, c ′} ∈

(C
2
)
| ∃v,v ′ ∈

V : c ≻v c ′ ∧ c ′ ≻v ′ c
}
|.

Kemeny score The minimum summed KT-distance of a central
order to all votes: minv∗∈L(C)

∑
v ∈V KT(v,v∗).

Note that the number of disagreeing pairs is always at least as large
as the maximum KT-distance, which in turn is at least as large as
the average KT-distance (all three values range from 0 to |

(C
2
)
| so

from 0 to 105 in our case).

Values of Similarity Measures. In Figure 2, for all four measures,
we depict for each dataset the value of the similarity measure aver-
aged over all 500 elections from the dataset. Concerning the results
on the aggregated dataset, what stands out is that the maximum KT-
distance and the number of disagreeing pairs is quite high and in
particular much higher than the average KT-distance (and compar-
ing normalized values also than the Kemeny score). However, this
is also quite intuitive in the sense that both the maximum distance
and the number of disagreeing pairs might in the end only depend
on two voters and are thus very sensitive to “outliers” (as soon as
there are two voters with reversed preferences orders in an election,
both values are at the maximum). Considering the results on the
different datasets, especially the average number of disagreeing

max. dist. average dist. disagr. pairs Kemeny score

boxing top 16
football season
formula 1 race

formula 1 season
spotify month country

tennis top 100
tour de france

city ranking
country ranking

football week
spotify day world

university ranking
aggregated

10.39 4.40 11.43 97.20
24.94 11.78 34.84 251.37
71.61 32.76 99.45 698.09
62.69 36.59 96.45 814.77
20.94 8.86 27.72 187.46
32.68 15.41 43.87 336.30
65.91 37.78 96.44 855.50
92.69 49.17 104.93 1203.46
85.00 43.82 104.73 1004.67
32.98 14.42 50.69 298.41
61.08 32.05 89.80 703.80
66.25 32.27 95.25 691.09
52.26 26.61 71.30 595.18

Figure 2: Average values for four different similarity mea-
sures. Colors encode the values normalized by the theoreti-
cally possible maximum value.

pairs clearly divides them (in line with our groups proposed in Sec-
tion 4): Unsurprisingly, the datasets close to identity have a “low”
average number of disagreeing pairs (always below 50). The num-
ber is the lowest for boxing top 16 and Spotify month with 11.43
and 27.72, respectively. This is quite remarkable as it means that
all voters agree on the ordering of 89.1% and 73.6% of all candidate
pairs, respectively. For the “middle” datasets, the average number
of disagreeing pairs is much higher and lies between 89.8 and 99.45
(this means that the voters only agree on the ordering of between
5.4% and 14.4% of all candidate pairs). For the two “outliers”, city
and country ranking, the average number of disagreeing pairs is
very close to the maximum possible value of 105 with 104.93, re-
spectively, 104.73. As already discussed in Section 4 one reason for
this might be that in the two “outlier” datasets votes correspond to
sometimes contradicting and opposing indicators, which can lead
to two close-to-reversed votes.
Similarity Measures for Parameterized Algorithms. Betzler et al. [1]
developed different parameterized algorithms for computing the
central order minimizing the Kemeny score: One algorithm running
in O∗(2m ), wherem is the number of candidates. Another algorithm
running in O∗(1.53k ) where k is the Kemeny score, and an algo-
rithm running in O∗(16d ) where d is the average KT-distance (they
also considered the maximum KT-distance between two votes as
a parameter for a related problem). Considering the average val-
ues on the aggregated dataset, the exponential part of the running
time of these algorithms evaluate as follows. 2m is 32768, 1.53k is
7.79 × 10109, and 16d is 1.1 × 1032. Even on boxing top 16, where
votes are most similar to each other, the number of candidates still
leads to the best results (2m is 32768, 1.53k is 8.2 × 1017, 16d is
198668), partly questioning the practical usefulness of the algo-
rithms for the two similarity parameterizations. Overall, it seems
that the number of candidates is nearly always the best of the
considered parameters to use. Considering the different similarity
measures, the average KT-distance is clearly the smallest, which is
also theoretically guaranteed; however, the gap to the other param-
eters might be seen as unexpectedly large.
Further Considerations. In our full version [11], we discuss that on
the aggregated dataset all pairs of similarity measures are strongly
correlated. In particular, on each dataset, the NP-hard to compute
Kemeny score is very strongly correlated with the average KT-
distance. Further, we analyze whether the top part (positions 1 to 8),
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middle part (positions 5 to 12) or bottom part (positions 8 to 15) of
different votes are more similar to each other. Our two main obser-
vations are: First, voters typically agree more on which candidates
should be considered as high-quality or low-quality candidates than
who should be considered as medium-quality candidates. Second,
voters tend to rank candidates at the top more consistently in the
same ordering than candidates at the bottom. We also take a closer
look at time-based elections and analyze the similarity of successive
votes in those elections.

6 RESTRICTED DOMAINS
In this section, we analyze which of our elections are part of a re-
stricted domain. There are numerous papers analyzing the compu-
tational complexity of various problems on elections from different
types of restricted domains (see e.g., [2, 12, 28, 31, 32, 44, 64, 67]
and Elkind et al. [25, 26, 27] for surveys). Possible motivations for
these works are typically that restricted domains allow for nice
combinatorial algorithms and the belief that they capture (close-to)
realistic situations. We focus on the three arguably most popular
restricted domains of single-peaked [3], single-crossing [51, 62],
and group-separable elections [38, 39].

We check here which of our elections fall into one of these
domains and afterwards consider the candidate deletion and voter
deletion distance of all elections from them.

Members in Restricted Domains. Overall, only very few of our
elections fall into a restricted domain. That is, for the 500 box-
ing top 16 elections, where votes are very similar to each other,
the number of single-peaked/singe-crossing/group-separable elec-
tions is 77/138/101. Moreover, we have one single-peaked elec-
tion in the football season dataset and one in the Spotify month
dataset. So overall, only 1.3%, 2.3%, 1.6% of our elections are single-
peaked, single-crossing, and group-separable, respectively. Some
other works have also analyzed the occurrences of elections from
restricted domains and found even less evidence: Regenwetter et al.
[61] analyzed five-candidate American Psychological Association
(APA) presidential elections and found no evidence of restricted
domains. Mattei [46] considered three- and four-candidate elec-
tions based on a Netflix price competition and found that 0.03% of
elections are single-peaked.

Distance to a Restricted Domain. Given that only a few of our
elections fall into a restricted domain, our goal now is to check
whether more are at least close to one. In particular, we consider
the voter deletion and candidate deletion distance, i.e., the mini-
mum number of voters/candidates that need to be deleted such that
the resulting election falls into the restricted domain. Notably, there
are also many more distance measures (see, e.g., [20, 23, 29]). Moti-
vated by the many polynomial-time results on restricted domains,
there are several papers developing parameterized algorithms for
election-related problems for different distance measures to re-
stricted domains (see [30, 50, 52] for algorithms parameterized by
the voter and candidate deletion distance and [20, 64, 70–72] for
examples for other distance measures).

For each of our elections, we computed the voter and candi-
date deletion distance from single-peakedness, single-crossingness,
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Figure 3: For different datasets, fraction of elections within
a given candidate deletion (solid) or voter deletion distance
(dashed) from single-peakedness (blue), single-crossingness
(orange), and group-separability (green).

and group-separability.6 In Figure 3a, we show the results on the
aggregated dataset as a cumulative distribution function. For the
candidate deletion distance, the picture is very similar for all three
restricted domains: There are around 15% of elections within dis-
tance 4, around 28% within distance 6, around 56% within distance
10, and around 99% within distance 12. Considering that we have
seen in the previous part that there are considerably more single-
crossing elections than single-peaked or group-separable elections,
the similarity between the domains here is partly unexpected.

For voter deletion, there is some difference between the restricted
domains: For all three restricted domains, 15% of elections are
within distance 14 and are more or less uniformly distributed within
this distance. For single-peakedness and group-separability, 25% of
all elections are within a distance of 18, 50% within a distance of 23,
and 99% within a distance of 27. For single-crossingness, distances
are typically one smaller, as 25% of all elections fall within distance
17 and 50% within distance 20. This slight difference might be be-
cause in contrast to the other two domains, for single-crossingness
an ordering of the voters is needed which might be easier to con-
struct if we can choose which voters to delete (however, for single-
peakedness the same is true for candidate deletion, yet no such
effect is visible). Comparing the normalized voter deletion distance
to the normalized candidate deletion distance it seems that the
latter is typically slightly smaller. Nevertheless, there is a strong
linear correlation between the candidate deletion and voter deletion
distance of an election.

Examining the results on the dataset level, there are significant
differences: The general trend here is that the higher the average
Kemeny score of a dataset is the further is the dataset on average
from a restricted domain. One dataset from our close to identity
group which contains many elections with a low Kemeny score
are Spotify month election, and in Figure 3b we depict the cumu-
lative distribution for this dataset. Notably, for all three restricted
domains, 50% of the Spotify month elections have a candidate dele-
tion distance of 5 and smaller. In contrast to this, in Figure 3c we
show the plot for Spotify day elections which belong to the middle
datasets and have higher Kemeny scores. Here for all elections, at

6For single-peaked candidate deletion we used the polynomial-time algorithm from
Erdélyi et al. [29] and for single-crossing voter deletion the polynomial-time algo-
rithm from Bredereck et al. [15]. For single-peaked voter deletion and single-crossing
candidate deletion distance and for voter and candidate deletion distance to group
separability, we used the fixed-parameter tractable algorithms based on conversions
to hitting set by Elkind and Lackner [24].
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least 9 candidates or at least 21 voters need to be deleted to make
it fall into one of our three restricted domains, indicating that this
dataset is far away from a restricted domain. Given that one can see
the whole Spotify data as one huge election, the opposite behavior
of Spotify day and Spotify month elections highlights the natural
fact that depending on which votes from a large election are taken
into account very different elections arise. To sum up, we have
found only little evidence of elections from restricted domains and
also only a few elections at a small distance (recall that 5 candidates
are not really a small number here, as this corresponds to 33% of
candidates). Thus, both the voter and candidate deletion distance
are probably too large on many real-world elections for the usage
of parameterized algorithms.

Further Considerations. In our full version [11], we check the over-
lap between elections from different restricted domains. We find
that the different restricted domains and their closer environment
heavily overlap and that it is, for instance, possible to apply algo-
rithms for (close to) single-peaked or single-crossing elections to
an overwhelming majority of (close to) group-separable elections.
Further, we analyze the properties of elections that are (close to)
being single-peaked or single-crossing and observe that they are
typically quite degenerate, meaning that they have a low Kemeny
score and that they fall into a small part of the space of all elec-
tions from the respective restricted domain. Moreover, we find that
value-restricted elections [63] occur quite frequently and that in
the characterization of single-peaked, single-crossing, and group-
separable elections via forbidden configurations one of the two
configurations is redundant on our data.

7 CASE STUDY: HOW DIFFERENT ARE
DIFFERENT VOTING RULES?

We now use our datasets to shed some further light on traditional
questions from social choice. While there is already quite some
empirical research on the considered questions, nearly all of these
works considered elections with 3 to 5 candidates coming from a sin-
gle data source. Thus, our rich data allows us to take a broader look.

One popular question arises around the notion of a Condorcet
winner. A candidate c is a strong (weak) Condorcet winner if for
each other candidate d more than (at least) half of the voters prefer
c to d . Previous research has found that strong Condorcet winners
nearly always exist, i.e., the so-called Condorcet paradox occurs
rarely, and that the strong Condorcet efficiency, i.e., how often the
strong Condorcet winner is selected as a winner, of all rules is high
[18, 21, 46, 57, 58]. We investigate these issues in Section 7.1.

In Section 7.2, we analyze the level of agreement between differ-
ent voting rules.While from a theoretical and axiomatic perspective,
voting rules significantly differ from each other, various authors
provided evidence that most of them are very similar in practice
[18, 21, 35, 46, 49, 58, 60, 61].

Overall, while parts of our results in this section are in line with
previous studies, we also find evidence that suggests that the estab-
lished consensus in the literature according to which in practice all
voting rules are more or less the same should be relativized, as it
seems to only apply if we have elections with a Condorcet winner
and/or the number of voters divided by the number of candidates
is large. Notably, all our rules may return multiple tied winners.
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Figure 4: In the first column, fraction of elections admit-
ting a strong/weak Condorcet winner. In the other columns,
strong/weak Condorcet efficiency of different voting rules.

7.1 Condorcet Paradox and Condorcet
Efficiency

In line with the literature, we first focus on strong Condorcet win-
ners. In Figure 4a, in the first column, we depict for each of our
datasets the fraction of elections admitting a strong Condorcet win-
ner. While for all datasets from our first group of close to identity
datasets around 96% of elections admit a strong Condorcet winner,
for the other datasets this fraction is (considerably) below 100%.
The most extreme case are city ranking elections where only 37% of
the elections admit a strong Condorcet winner. Moreover, overall
“only” 86% of all our elections admit a strong Condorcet winner.
This is in contrast to previous works. For instance, Popov et al. [58]
reported that in one of their studied datasets 93.3% of elections
admit a strong Condorcet winner, while for all others this value is
above 99.7%.

Concerning the strong Condorcet efficiency of the different vot-
ing rules, results again significantly depend on the considered
dataset. For close to identity datasets all voting rules have a very
high Condorcet efficiency of 0.95 and above (note that Copeland’s
voting rule is guaranteed to select a strong Condorcet winner if one
exists). Mattei [46] and Popov et al. [58] also reported a Condorcet
efficiency of 0.95 and above for different rules. However, on our
other datasets, the Condorcet efficiency can be much lower: For Plu-
rality, Plurality with Runoff, and Hare, their Condorcet efficiency
is the lowest on the city ranking dataset with 0.46, 0.59, and 0.6,
respectively. For Borda, the minimum Condorcet efficiency is 0.77
on Formula 1 race and Formula 1 season elections. Interestingly, the
other voting rules achieve a much higher efficiency on these two
sets. Considering the results on the aggregated dataset, Hare and
Plurality with Runoff have the highest Condorcet efficiency with
0.94 and 0.93 respectively, while Plurality and Borda both have a
Condorcet efficiency of 0.88. Given that Borda takes much more
information into account than Plurality, it is slightly unexpected
that both perform so similarly here.
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Figure 5: For pairs of voting rules, fraction of elections where rules return same winner after lexicographic tie-breaking.

In Figure 4b, we depict the same statistics for the notion of weak
Condorcet winners: A substantial fraction of our elections, i.e., 8%
of all elections, 15% of Tour de France, and 28% of city ranking elec-
tions, admit a weak but no strong Condorcet winner. This is quite
remarkable given that the distinction between a weak and a strong
Condorcet winner is about tie-breaking. The Condorcet efficiency
of our rules slightly decreases when moving from strong to weak
Condorcet winners. This is something to be expected because weak
Condorcet winners, which are now also taken into account, have
in general a slightly weaker general standing in the election than
strong Condorcet winners.

7.2 Consensus among Voting Rules
We analyze the consensus among winners returned by different
voting rules. In Figure 5a, we depict the average lexicographic agree-
ment of each pair of rules. The average lexicographic agreement of
some pair of rules is the fraction of all elections where the winner
returned by the two rules is the same if we apply lexicographic
tie-breaking during the execution of both rules. In general, the
consensus among the different voting rules is quite high, ranging
from 0.96 for the only two iterative rules, Hare and Plurality with
runoff, to 0.74 for Borda and Plurality. However, the reason for this
generally high agreement between voting rules might be connected
to our observation from Section 7.1 that most of our elections have
a strong Condorcet winner and that in case a strong Condorcet
winner exists, most of the time rules return it as a winner. To verify
this, in Figure 5b, we depict the average lexicographic agreement
of pairs of voting rules on all elections without a strong Condorcet
winner (we also excluded elections from the city ranking dataset,
since, as argued later, they consistue outliers). Indeed, the consen-
sus among voting rules is significantly lower in this case: For all
pairs of rules except for Hare and Plurality with runoff, whose
average lexicographic agreement is still 0.83, the average lexico-
graphic agreement drops by between 0.33 and 0.41 when moving
from the full election dataset to elections without strong Condorcet
winner. Figure 5b further suggests that there exist two groups of
voting rules: Plurality, Plurality with Runoff, and Hare on the one
hand, and Borda and Copeland on the other hand. This partition is
also quite intuitive, as all rules from the first group use Plurality
scores in some way or the other, while Copeland and Borda in some
sense always take into account the full election. Overall, our results

indicate that a main reason why voting rules seem to typically
exhibit a high consensus on real-world elections is because they all
favor strong Condorcet winners which often exist. This could also
explain why previous research [18, 21, 35, 58, 60, 61] has found a
higher consensus among rules than what we have observed: On
their data strong Condorcet winners exist more often than on ours.

On the dataset level, results are again very different and correlate
with our grouping: On the one hand, on close to identity datasets
the consensus of voting rules is very high, while, on the other hand,
on city rankings it is lowest. In Figures 5c and 5d, we display the
average lexicographic agreement on all city ranking elections and
on all city ranking elections without strong Condorcet winners.
Both Figures 5c and 5d look quite similar (as many city ranking
elections do not admit a strong Condorcet winner). Again, we can
find the already observed partitioning of the rules into groups. Here,
both the consensus between Plurality with Runoff and Hare and
the consensus between Borda and Copeland is particularly high.

8 CONCLUSION
We have collected, classified, analyzed, and used a diverse collection
of real-world elections and provided various evidence hinting at
their usefulness for experimental research. To the best of our knowl-
edge, this is the first work that systematically compares elections
from numerous different sources.

For future work, it would be interesting to analyze the relation-
ship of the collected elections to elections drawn from various
statistical cultures. Moreover, also performing our experiments on
such synthetic elections could be useful to get a better understand-
ing of their properties. In addition, examining the collected elections
(even) more carefully would be of great use: While we have been
able to provide intuitive explanations for some phenomena we ob-
served, the reasons for others remain unclear. Furthermore, as we
have found only little evidence to support the large-scale practi-
cal applicability of already developed parameterized algorithms,
identifying new properties that are shared by many elections and
that allow for the development of tractable algorithms would be
extremely valuable. Finally, the main purpose of this project is to
provide a helpful source of real-world election datasets. In light
of our empirical and structural results, we recommend to use city
ranking, football week, Spotify day, and Tour de France elections
as a smaller, yet still diverse dataset for testing.
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