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ABSTRACT

We study the complexity of constructive bribery in the context of

structured multiwinner approval elections. Given such an election,

we ask whether a certain candidate can join the winning commit-

tee by adding, deleting, or swapping approvals, where each such

action comes at a cost and we are limited by a budget. We assume

our elections to either have the candidate interval or the voter

interval property, and we require the property to hold also after

the bribery. While structured elections usually make manipulative

attacks significantly easier, our work also shows examples of the

opposite behavior. We conclude by presenting preliminary insights

regarding the destructive variant of our problem.
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1 INTRODUCTION

We study the complexity of bribery under the multiwinner approval

rule, in the case where the voters’ preferences are structured. Specif-

ically, we use the bribery model of Faliszewski, Skowron, and Tal-

mon [16], where one can either add, delete, or swap approvals, and

we consider candidate interval and voter interval preferences [10].

In multiwinner elections, the voters express their preferences

over the available candidates and use this information to select a

winning committee (i.e., a fixed-size subset of candidates). We focus

on one of the simplest and most common scenarios, where each

voter specifies the approved candidates, and those with the highest

numbers of approvals form the committee. Such elections are used,

e.g., to choose city councils, boards of trustees, or to shortlist job

candidates. Naturally, there are many other rules and scenarios, but
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they do not appear in practice as often as this simplest one. For

more details on multiwinner voting, we point the readers to the

overviews of Faliszewski et al. [15] and Lackner and Skowron [20].

In our scenario, we are given an election, including the contents

of all the votes, and, depending on the variant, we can either add,

delete, or swap approvals, but each such action comes at a cost. Our

goal is to find a cheapest set of actions that ensure that a given candi-

date joins the winning committee. Such problems, where we modify

the votes to ensure a certain outcome, are known under the umbrella

name of bribery, and were first studied by Faliszewski, Hemaspaan-

dra and Hemaspaandra [12], whereas our specific variant is due

to Faliszewski, Skowron, and Talmon [16]. Historically, bribery

problems indeed aimed to model vote buying, but currently more

benign interpretations prevail. For example, Faliszewski, Skowron,

and Talmon [16] suggest using the cost of bribery as a measure

of a candidate’s success: A candidate who did not win, but can be

put into the committee at a low cost, certainly did better than one

whose bribery is expensive. In particular, since our problem is used

for post-election analysis, it is natural to assume that we know all

the votes. For other similar interpretations, we point, e.g., to the

works of Xia [30], Shiryaev, Yu, and Elkind [28], Bredereck et al. [7],

Boehmer et al. [4], or Baumeister and Hogrebe [1]. Faliszewski and

Rothe [14] give a more general overview of bribery problems.

We assume that our elections either satisfy the candidate interval

(CI) or the voter interval (VI) property [10], which correspond to the

classic notions of single-peakedness [3] and single-crossingness [23,

26] from the world of ordinal elections. Briefly put, the CI property

means that the candidates are ordered and each voter approves

some interval of them, whereas the VI property requires that the

voters are ordered and each candidate is approved by some interval

of voters. For example, the CI assumption can be used to model

political elections, where the candidates appear on the left-to-right

spectrum of opinions and the voters approve those, whose opinions

are close enough to their own. Importantly, we require our elections

to have the CI/VI property also after the bribery; this approach

is standard in bribery problems with structured elections [6, 9,

22], as well as in other problems related to manipulating election

results [13, 17, 29] (these references are examples only).

Example 1. Let us consider a hotel in a holiday resort. The hotel

has its base staff, but each month it also hires some additional help.
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For the coming month, the expectation is to hire extra staff for 𝑘 days.

Naturally, they would be hired for the days when the hotel is most

busy (the decision to request additional help is made a day ahead,

based on the observed load; the 𝑘 days do not need to be consecutive).

Since hotel bookings are typically made in advance, one knows which

days are expected to be most busy. However, some people will extend

their stays, some will leave early, and some will have to shift their

stays. Thus the hotel managers would like to know which days are

likely to become the busiest ones after such changes: Then they could

inform the extra staff as to when they are expected to be needed,

and what changes in this preliminary schedule might happen. Our

bribery problem (for the CI setting) captures exactly the problem

that the managers want to solve: The days are the candidates, 𝑘 is

the committee size, and the bookings are the approval votes (note

that each booking must regard a consecutive set of days). Prices of

adding, deleting, and moving approvals correspond to the likelihood

that a particular change actually happens (the managers usually

know which changes are more or less likely). Since the bookings must

be consecutive, the election has to have the CI property also after the

bribery. The managers can solve such bribery problem for each of the

days and see which ones can most easily be among the 𝑘 busiest ones.

Note that the value of 𝑘 can be estimated from previous experience,

be limited by the budget for the salaries for the additional workers,

depend on the predicted workload, be subject to the availability of

the additional workers, and the like. The managers may even want to

solve several instances of the problem, with different values of 𝑘 .

Example 2. For the VI setting, let us consider a related scenario.

There is a team of archaeologists who booked a set of excavation sites,

each for some consecutive number of days (they work on several sites

in parallel). The team may want to add some extra staff to those sites

that require most working days. However, as in the previous example,

the bookings might get extended or shortened. The team’s manager

may use bribery to evaluate how likely it is that each of the sites

becomes one of the most work-demanding ones. In this case, the days

are the voters, and the sites are the candidates.

There are two main reasons why structured elections are stud-

ied. Foremost, as in the above examples, sometimes they simply

capture the exact problem at hand. Second, many problems that

are intractable in general, become polynomial-time solvable if the

elections are structured. Indeed, this is the case for many NP-hard

winner-determination problems [2, 10, 24] and for various prob-

lems where the goal is to make some candidate a winner [13, 21],

including some bribery problems [6, 9]. There are also some prob-

lems that stay intractable even for structured elections [27, 31]
1
as

well as examples of complexity reversals, where assuming struc-

tured preferences turns a polynomial-time solvable problem into

an intractable one. However, such reversals are rare and, to the

best of our knowledge, so far were only observed by Menon and

Larson [22], for the case of weighted elections with three candidates

(but see also the work of Fitzsimmons and Hemaspaandra [17], who

find complexity reversals that stem from replacing total ordinal

votes with ones that include ties).

Our Contribution. We provide an almost complete picture of

the complexity of bribery by either adding, deleting, or swapping

1
These references are not complete and are meant as examples.

approvals under the multiwinner approval voting rule, for the case

of CI and VI elections, assuming either that each bribery action

has identical unit price or that they can be priced individually (see

Table 1). By comparing our results to those for the unrestricted

setting, provided by Faliszewski, Skowron, and Talmon [16], we

find that any combination of tractability and intractability in the

structured and unrestricted setting is possible. For example:

(1) Bribery by adding approvals is solvable in polynomial time

irrespective if the elections are unrestricted or have the CI

or VI properties.

(2) Bribery by deleting approvals (where each deleting action

is individually priced) is solvable in polynomial time in the

unrestricted setting, but becomes NP-hard for CI elections

(for VI ones it is still in P).

(3) Bribery by swapping approvals only to the designated can-

didate (with individually priced actions) is NP-hard in the

unrestricted setting, but becomes polynomial-time solvable

both for CI and VI elections.

(4) Bribery by swapping approvals (where each action is indi-

vidually priced and we are not required to swap approvals

to the designated candidate only) is NP-hard in each of the

considered settings.

We largely focus on the constructive setting, where the goal is to

ensure that some candidate belongs to at least one winning com-

mittee (indeed, all the results above are for this setting). However,

we also give a glimpse of what happens in the destructive setting,

where we want to ensure that a given candidate does not belong to

any winning committees. In a certain sense, in this case we also ob-

serve a form of “reversal.” Typically, destructive variants of bribery

(and related) problems are at least as easy to work with as their

constructive counterparts, and lead to more positive results. In our

case—albeit this is mostly an intuitive feeling—the situation for CI

elections is the opposite. Obtaining the results for the destructive

setting seems more challenging and leads to less satisfying theo-

rem statements (e.g., we need less appealing prices) than in the

constructive setting.

We omit some proofs due to limited space, but include them in

the full version of the paper (https://arxiv.org/abs/2209.00368).

Possibility of Complexity Reversals. So far, most of the prob-

lems studied for structured elections were subproblems of the un-

restricted ones. For example, a winner determination algorithm

that works for all elections, clearly also works for the structured

ones and complexity reversal is impossible. The case of bribery is

different because, by assuming structured elections, not only do we

restrict the set of possible inputs, but also we constrain the possible

actions. Yet, scenarios where bribery is tractable are rare, and only

a handful of papers considered bribery in structured domains (we

mention those of Brandt et al. [6], Fitzsimmons and Hemaspaan-

dra [17], Menon and Larson [22], Elkind et al. [9]), so opportunities

for observing complexity reversals were, so far, very limited. We

show several such reversals, obtained for very natural settings.

2 PRELIMINARIES

For a positive integer 𝑡 , we write [𝑡] to mean the set {1, . . . , 𝑡}. By
writing [𝑡]0 we mean the set [𝑡] ∪ {0}.
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Unrestricted Candidate Interval (CI) Voter Interval (VI)

(prices) (unit) (any) (unit) (any) (unit) (any)

AddApprovals P P P P P P

Faliszewski et al. [2017a] [Thm. 2] [Thm. 2] [Thm. 1] [Thm. 1]

DelApprovals P P

?

NP-com. P P

Faliszewski et al. [2017a] [Thm. 4] [Thm. 3] [Thm. 3]

SwapApprovals P NP-com. P P P P

to p Faliszewski et al. [2017a] [Thm. 5] [Thm. 5] [Thm. 6] [Thm. 6]

SwapApprovals P NP-com. NP-com. NP-com.

?

NP-com.

Faliszewski et al. [2017a] [Thm. 7] [Thm. 7] [Thm. 8]

Table 1: Our results for the CI and VI domains, together with

those of Faliszewski, Skowron, andTalmon [16] for the unre-

stricted setting. SwapApprovals to p refers to the problem

where each action has to move an approval to the preferred

candidate.

Approval Elections. An approval election 𝐸 = (𝐶,𝑉 ) consists
of a set of candidates 𝐶 = {𝑐1, . . . , 𝑐𝑚} and a collection of voters

𝑉 = {𝑣1, . . . , 𝑣𝑛}. Each voter 𝑣𝑖 ∈ 𝑉 has an approval ballot (or,

equivalently, an approval set) which contains the candidates that 𝑣𝑖
approves. We write 𝑣𝑖 to refer both to the voter and to his or her

approval ballot; the meaning will always be clear from the context.

A multiwinner voting rule is a function 𝑓 that given an election

𝐸 = (𝐶,𝑉 ) and a committee size 𝑘 ∈ [|𝐶 |] outputs a nonempty

family of winning committees (where each committee is a size-𝑘

subset of 𝐶). We disregard the issue of tie-breaking and assume

all winning committees to be equally worthy, i.e., we adopt the

nonunique winner model.

Given an election 𝐸 = (𝐶,𝑉 ), we let the approval score of a

candidate 𝑐 ∈ 𝐶 be the number of voters that approve 𝑐 , and we

denote it as score𝐸 (𝑐). The approval score of a committee 𝑆 ⊆ 𝐶 is

score𝐸 (𝑆) =
∑
𝑐∈𝑆 score𝐸 (𝑐). Given an election 𝐸 and a committee

size 𝑘 , the multiwinner approval voting rule, denoted AV, outputs

all size-𝑘 committees with the highest approval score. Occasionally

we also consider the single-winner approval rule, which is defined in

the same way as its multiwinner variant, except that the committee

size is fixed to be one. For simplicity, in this case we assume that

the rule returns a set of tied winners (rather than a set of tied size-1

winning committees).

Structured Elections. We focus on elections where the approval

ballots satisfy either the candidate interval (CI) or the voter interval

(VI) properties [10]:

(1) An election has the CI property (is a CI election) if there is

an ordering of the candidates (called the societal axis) such

that each approval ballot forms an interval with respect to

this ordering.

(2) An election has the VI property (is a VI election) if there is an

ordering of the voters such that each candidate is approved

by an interval of the voters (for this ordering).

Given a CI election, we say that the voters have CI ballots or, equiva-

lently, CI preferences; we use analogous conventions for the VI case.

As observed by Elkind and Lackner [10], there are polynomial-time

algorithms that test if a given election is CI or VI and, if so, provide

appropriate orders of the candidates or voters; these algorithms are

based on solving the consecutive ones problem [5].

Notation for CI Elections. Let us consider a candidate set 𝐶 =

{𝑐1, . . . , 𝑐𝑚} and a societal axis ▷ = 𝑐1𝑐2 · · · 𝑐𝑚 . Given two candi-

dates 𝑐𝑖 , 𝑐 𝑗 , where 𝑖 ≤ 𝑗 , we write [𝑐𝑖 , 𝑐 𝑗 ] to denote the approval

set {𝑐𝑖 , 𝑐𝑖+1, . . . , 𝑐 𝑗 }.
Bribery Problems. We focus on the variants of bribery in multi-

winner approval elections defined by Faliszewski, Skowron, and

Talmon [16]. Let 𝑓 be a multiwinner voting rule and letOp be one of

AddApprovals, DelApprovals, and SwapApprovals operations

(in our case 𝑓 will either be AV or its single-winner variant). In the

𝑓 -Op-Bribery problem we are given an election 𝐸 = (𝐶,𝑉 ), a com-

mittee size 𝑘 , a preferred candidate 𝑝 , and a nonnegative integer

𝐵 (the budget). We ask if it is possible to perform at most 𝐵 unit

operations of type Op, so that 𝑝 belongs to at least one winning

committee (this is the constructive variant of the problem; requiring

only minor adaptions in proofs, all our results for this variant also

hold if we require that 𝑝 belongs to all winning committees):

(1) For AddApprovals, a unit operation adds a given candidate

to a given voter’s ballot.

(2) For DelApprovals, a unit operation removes a given candi-

date from a given voter’s ballot.

(3) For SwapApprovals, a unit operation replaces a given can-

didate with another one in a given voter’s ballot.

Like Faliszewski, Skowron, and Talmon [16], we also study the

variants of AddApprovals and SwapApprovals problems where

each unit operation must involve the preferred candidate.

We are also interested in the priced variants of the above prob-

lems, where each unit operation comes at a cost that may depend

both on the voter and the particular affected candidates; we ask if

we can achieve our goal by performing operations of total cost at

most 𝐵. We distinguish the priced variants by putting a dollar sign

in front of the operation type. For example, $AddApprovalsmeans

a variant where adding each candidate to each approval ballot has

an individual cost.

Bribery in Structured Elections. We focus on the bribery prob-

lems where the elections have either the CI or the VI property.

For example, in the AV-$AddApprovals-CI-Bribery problem the

input election has the CI property (under a given societal axis) and

we ask if it is possible to add approvals with up to a given cost

so that (a) the resulting election has the CI property for the same

societal axis, and (b) the preferred candidate belongs to at least one

winning committee. The VI variants are defined analogously (in

particular, the voters’ order witnessing the VI property is given

and the election must still have the VI property with respect to

this order after the bribery). The convention that the election must

have the same structural property before and after the bribery, and

the fact that the order witnessing this property is part of the input,

is standard in the literature; see, e.g., the works of Faliszewski et

al. [13], Brandt et al. [6], Menon and Larson [22], and Elkind et

al. [9]. Further, it also follows naturally from some applications (as

in the scenarios from Examples 1 and 2).

Computational Problems. For a graph 𝐺 , by 𝑉 (𝐺) we mean

its set of vertices and by 𝐸 (𝐺) we mean its set of edges. A graph

is cubic if each of its vertices is connected to exactly three other

ones. Our NP-hardness proofs rely on reductions from variants

of the Independent Set and X3C problems, both known to be

NP-complete [18, 19].
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Definition 1. In the Cubic Independent Set problem we are given

a cubic graph 𝐺 and an integer ℎ; we ask if 𝐺 has an independent

set of size ℎ (i.e., a set of ℎ vertices such that no two of them are

connected).

Definition 2. In the Restricted Exact Cover by 3-Sets problem

(RX3C) we are given a universe 𝑋 of 3𝑛 elements and a family S of

3𝑛 size-3 subsets of 𝑋 . Each element from 𝑋 appears in exactly three

sets from S. We ask if it is possible to choose 𝑛 sets from S whose

union is 𝑋 .

3 ADDING APPROVALS

For the case of adding approvals, all our bribery problems (priced

and unpriced, both for the CI and VI domains) remain solvable

in polynomial time. Yet, compared to the unrestricted setting, our

algorithms require more care. For example, in the unrestricted case

it suffices to simply add approvals for the preferred candidate [16]

(choosing the voters where they are added in the order of increasing

costs for the priced variant); a similar approach works for the VI

case, but with a different ordering of the voters.

Theorem 1. AV-$AddApprovals-VI-Bribery ∈ P.

The CI case introduces a different complication. Now, adding an

approval for the preferred candidate in a given vote also requires

adding approvals for all those between him or her and the original

approval set. Thus, in addition to bounding the bribery’s cost, we

also need to track the candidates whose scores increase.

Theorem 2. AV-$AddApprovals-CI-Bribery ∈ P.

Proof. Our input consists of an election 𝐸 = (𝐶,𝑉 ), committee

size 𝑘 , preferred candidate 𝑝 ∈ 𝐶 , budget 𝐵, and the information

about the costs of all the possible operations (i.e., for each voter

and each candidate that he or she does not approve, we have the

price for adding this candidate to the voter’s ballot). Without loss

of generality, we assume that 𝐶 = {ℓ𝑚′, . . . , ℓ1, 𝑝, 𝑟1, . . . , 𝑟𝑚′′}, 𝑉 =

{𝑣1, . . . , 𝑣𝑛}, each voter approves at least one candidate,
2
and the

election is CI with respect to the order:

▷ = ℓ𝑚′ · · · ℓ2 ℓ1 𝑝 𝑟1 𝑟2 · · · 𝑟𝑚′′ .

We start with a few observations. First, if a voter already approves 𝑝

then there is no point in adding any approvals to his or her ballot.

Second, if some voter does not approve 𝑝 , then we should either

not add any approvals to his or her ballot, or add exactly those

approvals that are necessary to ensure that 𝑝 gets one. For example,

if some voter has approval ballot {𝑟3, 𝑟4, 𝑟5} then we may either

choose to leave it intact or to extend it to {𝑝, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. We let

𝐿 = {ℓ𝑚′, . . . , ℓ1} and 𝑅 = {𝑟1, . . . , 𝑟𝑚′′}, and we partition the voters

into three groups, 𝑉ℓ , 𝑉𝑝 , and 𝑉𝑟 , as follows:

(1) 𝑉𝑝 contains all the voters who approve 𝑝 ,

(2) 𝑉ℓ contains the voters who approve members of 𝐿 only,

(3) 𝑉𝑟 contains the voters who approve members of 𝑅 only.

Our algorithm proceeds as follows (by guessing we mean iteratively

trying all possibilities; Steps 3 and 4 will be described later):

2
Without this assumption we could still make our algorithm work. We would guess

the number of voters who do not approve any candidates to approve 𝑝 alone (we

would choose these voters to minimize the cost of adding these approvals). Then we

would continue as in the proof, but knowing that none of the voters in the group can

be bribed further.

(1) Guess the numbers 𝑥ℓ and 𝑥𝑟 of voters from𝑉ℓ and𝑉𝑟 whose

approval ballots will be extended to approve 𝑝 .

(2) Guess the numbers 𝑡ℓ and 𝑡𝑟 of candidates from 𝐿 and 𝑅 that

will end up with higher approval scores than 𝑝 (we must

have 𝑡ℓ + 𝑡𝑟 < 𝑘 for 𝑝 to join a winning committee).

(3) Compute the lowest cost of extending exactly 𝑥ℓ votes from

𝑉ℓ to approve 𝑝 , such that at most 𝑡ℓ candidates from 𝐿 end

up with more than score𝐸 (𝑝) +𝑥ℓ +𝑥𝑟 points (i.e., with score

higher than 𝑝); denote this cost as 𝐵ℓ .

(4) Repeat the above step for the 𝑥𝑟 voters from𝑉𝑟 , with at most

𝑡𝑟 candidates obtaining more than score𝐸 (𝑝) +𝑥ℓ +𝑥𝑟 points;
denote the cost of this operation as 𝐵𝑟 .

(5) If 𝐵ℓ + 𝐵𝑟 ≤ 𝐵 then accept (reject if no choice of 𝑥ℓ , 𝑥𝑟 , 𝑡ℓ ,

and 𝑡𝑟 leads to acceptance).

One can verify that this algorithm is correct (assuming we know

how to perform Steps 3 and 4).

Next we describe how to perform Step 3 in polynomial time

(Step 4 is handled analogously). We will need some additional no-

tation. For each 𝑖 ∈ [𝑚′], let 𝑉ℓ (𝑖) consist exactly of those voters

from 𝑉ℓ whose approval ballots include candidate ℓ𝑖 but do not

include ℓ𝑖−1 (in other words, voters in 𝑉ℓ (𝑖) have approval bal-

lots of the form [ℓ𝑗 , ℓ𝑖 ], where 𝑗 ≥ 𝑖). Further, for each 𝑖 ∈ [𝑚′]
and each 𝑒 ∈ [|𝑉ℓ (𝑖) |]0 let cost(𝑖, 𝑒) be the lowest cost of extend-
ing 𝑒 votes from 𝑉ℓ (𝑖) to approve 𝑝 (and, as a consequence, to

also approve candidates ℓ𝑖−1, . . . , ℓ1). If 𝑉ℓ (𝑖) contains fewer than
𝑒 voters then cost(𝑖, 𝑒) = +∞. For each 𝑒 ∈ [𝑥ℓ ]0, we define

𝑆 (𝑒) = score𝐸 (𝑝) + 𝑒 + 𝑥𝑟 . Finally, for each 𝑖 ∈ [𝑚′], 𝑒 ∈ [𝑥ℓ ]0,
and 𝑡 ∈ [𝑡ℓ ]0 we define function 𝑓 (𝑖, 𝑒, 𝑡) so that:

𝑓 (𝑖, 𝑒, 𝑡) = the lowest cost of extending exactly 𝑒 votes from

𝑉ℓ (1) ∪ · · · ∪ 𝑉ℓ (𝑖) (to approve 𝑝) such that at most 𝑡 can-

didates among ℓ1, . . . , ℓ𝑖 end up with more than 𝑆 (𝑒) points
(function 𝑓 takes value +∞ if doing so is impossible).

Our goal in Step 3 of the main algorithm is to compute 𝑓 (𝑚′, 𝑥ℓ , 𝑡ℓ ),
which we do via dynamic programming. To this end, we observe

that the following recursive equation holds (let 𝜒 (𝑖, 𝑒) be 1 if

score𝐸 (ℓ𝑖 ) > 𝑆 (𝑒) and let 𝜒 (𝑖, 𝑒) be 0 otherwise; we explain the

idea of the equation below):

𝑓 (𝑖, 𝑒, 𝑡)= min

𝑒′∈[𝑒 ]0

(
cost(𝑖, 𝑒 ′) + 𝑓 (𝑖 − 1, 𝑒 − 𝑒 ′, 𝑡 − 𝜒 (𝑖, 𝑒))

)
.

The intuition behind this equation is as follows. We consider each

possible number 𝑒 ′ ∈ [𝑒]0 of votes from 𝑉ℓ (𝑖) that can be extended

to approve 𝑝 . The lowest cost of extending the votes of 𝑒 ′ voters
from𝑉ℓ (𝑖) is, by definition, cost(𝑖, 𝑒 ′). Next, we still need to extend

𝑒 − 𝑒 ′ votes from 𝑉ℓ (𝑖 − 1), . . . ,𝑉ℓ (1) and, while doing so, we need

to ensure that at most 𝑡 candidates end up with at most 𝑆 (𝑒) points.
Candidate ℓ𝑖 cannot get any additional approvals from voters𝑉ℓ (𝑖 −
1), . . . ,𝑉ℓ (1), so he or she exceeds this value exactly if score𝐸 (ℓ𝑖 ) >
𝑆 (𝑒) or, equivalently, if 𝜒 (𝑖, 𝑒) = 1. This means that we have to

ensure that at most 𝑡 − 𝜒 (𝑖, 𝑒) candidates among ℓ𝑖−1, . . . , ℓ1 end
up with at most 𝑆 (𝑒) points. However, since we extend 𝑒 ′ votes
from 𝑉ℓ (𝑖), we know that candidates ℓ𝑖−1, . . . , ℓ1 certainly obtain 𝑒 ′

additional points (as compared to the input election). Thus we need

to ensure that at most 𝑡 − 𝜒 (𝑖, 𝑒) of them end up with score at most

𝑆 (𝑒−𝑒 ′) after extending the votes from𝑉ℓ (1)∪ . . .∪𝑉ℓ (𝑖−1). This is
ensured by the 𝑓 (𝑖 − 1, 𝑒 −𝑒 ′, 𝑡 − 𝜒 (𝑖, 𝑒)) component in the equation

(which also provides the lowest cost of the respective operations).
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Using the above formula, the fact that 𝑓 (1, 𝑒, 𝑡) can be computed

easily for all values of 𝑒 and 𝑡 , and standard dynamic programming

techniques, we can compute 𝑓 (𝑚′, 𝑥ℓ , 𝑡ℓ ) in polynomial time. This

suffices for completing Step 3 of the main algorithm and we han-

dle Step 4 analogously. Since all the steps of can be performed in

polynomial time, the proof is complete. □

Both above theorems also apply to the cases where we can only

add approvals for the preferred candidate. The algorithm from

Theorem 1 is designed to do just that, and for the algorithm from

Theorem 2 we can set the price of adding other approvals to be +∞.

4 DELETING APPROVALS

The case of deleting approvals is more intriguing. Roughly speaking,

in the unrestricted setting it suffices to delete approvals from suffi-

ciently many candidates that have higher scores than 𝑝 , for whom

doing so is least expensive [16]. The same general strategy works

for the VI case because we still can delete approvals for different

candidates independently.

Theorem 3. AV-$DelApprovals-VI-Bribery ∈ P.

Proof. Let our input consist of an election 𝐸 = (𝐶,𝑉 ), preferred
candidate 𝑝 ∈ 𝐶 , committee size 𝑘 , and budget 𝐵. We assume that

𝑉 = {𝑣1, . . . , 𝑣𝑛} and the election is VI with respect to ordering

the voters by their indices. Let 𝑠 = score𝐸 (𝑝) be the score of 𝑝

prior to any bribery. We refer to the candidates with score greater

than 𝑠 as superior. Since it is impossible to increase the score of 𝑝 by

deleting approvals, we need to ensure that the number of superior

candidates drops to at most 𝑘 − 1.

For each superior candidate 𝑐 , we compute the lowest cost for

reducing his or her score to exactly 𝑠 . Specifically, for each such

candidate 𝑐 we act as follows. Let 𝑡 = score𝐸 (𝑐) − 𝑠 be the number

of 𝑐’s approvals that we need to delete and let 𝑣𝑎, 𝑣𝑎+1, . . . , 𝑣𝑏 be

the interval of voters that approve 𝑐 . For each 𝑖 ∈ [𝑡]0 we compute

the cost of deleting 𝑐’s approvals among the first 𝑖 and the last 𝑡 − 𝑖

voters in the interval (these are the only operations that achieve

our goal and maintain the VI property of the election); we store the

lowest of these costs as “the cost of 𝑐 .”

Let 𝑆 be the number of superior candidates (prior to any bribery).

We choose 𝑆 − (𝑘 − 1) of them with the lowest costs. If the sum of

these costs is at most 𝐵 thenwe accept and, otherwise, we reject. □

For the CI case, our problem turns out to be NP-complete. In-

tuitively, the reason for this is that in the CI domain deleting an

approval for a given candidate requires either deleting all the ap-

provals to the left or all the approvals to the right on the societal

axis. Indeed, our main trick is to introduce approvals that must

be deleted (at zero cost), but doing so requires choosing whether

to delete their left or their right neighbors (at nonzero cost). This

result is our first example of a complexity reversal.

Theorem 4. AV-$DelApprovals-CI-Bribery is NP-complete.

Proof. We give a reduction from RX3C. Let 𝐼 = (𝑋,S) be the
input instance, where 𝑋 = {𝑥1, . . . , 𝑥3𝑛} is the universe and S =

{𝑆1, . . . , 𝑆3𝑛} is a family of size-3 subsets of 𝑋 . By definition, each

element of 𝑋 belongs to exactly three sets from S. We form an

instance of AV-$DelApprovals-CI-Bribery as follows.

We have the preferred candidate 𝑝 , for each universe ele-

ment 𝑥𝑖 ∈ 𝑋 we have corresponding universe candidate 𝑥𝑖 , for

each set 𝑆 𝑗 ∈ S we have set candidate 𝑠 𝑗 , and we have set 𝐷

of 2𝑛 dummy candidates (where each individual one is denoted

by ⋄). Let 𝐶 be the set of just-described 8𝑛 + 1 candidates and let

𝑆 = {𝑠1, . . . , 𝑠3𝑛} contain the set candidates. We fix the societal axis

to be:

▷ =

3𝑛︷    ︸︸    ︷
𝑠1 · · · 𝑠3𝑛

2𝑛︷︸︸︷
⋄ · · · ⋄

3𝑛︷     ︸︸     ︷
𝑥1 · · · 𝑥3𝑛 𝑝︸                             ︷︷                             ︸

8𝑛+1

Next, we form the voter collection 𝑉 :

(1) For each candidate in 𝑆 ∪ 𝐷 ∪ {𝑝}, we have two voters that

approve exactly this candidate. We refer to them as the fixed

voters and we set the price for deleting their approvals to

be +∞. We refer to their approvals as fixed.

(2) For each set 𝑆 𝑗 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 }, we form three solution

voters, 𝑣 (𝑠 𝑗 , 𝑥𝑎), 𝑣 (𝑠 𝑗 , 𝑥𝑏 ), and 𝑣 (𝑠 𝑗 , 𝑥𝑐 ), with approval sets

[𝑠 𝑗 , 𝑥𝑎], [𝑠 𝑗 , 𝑥𝑏 ], and [𝑠 𝑗 , 𝑥𝑐 ], respectively. For a solution

voter 𝑣 (𝑠𝑖 , 𝑥𝑑 ), we refer to the approvals that 𝑠𝑖 and 𝑥𝑑 re-

ceive as exterior, and to all the other ones as interior. The

cost for deleting each exterior approval is one, whereas the

cost for deleting the interior approvals is zero. Altogether,

there are 9𝑛 solution voters.

To finish the construction, we set the committee size 𝑘 = 𝑛 + 1 and

the budget 𝐵 = 9𝑛. Below, we list the approval scores prior to any

bribery (later we will see that in successful briberies one always

deletes all the interior approvals):

(1) 𝑝 has 2 fixed approvals,

(2) each universe candidate has 3 exterior approvals (plus some

number of interior ones),

(3) each set candidate has 3 exterior approvals and 2 fixed ones

(plus some number of interior ones), and

(4) each dummy candidate has 2 fixed approvals (and 9𝑛 interior

ones).

We claim that there is a bribery of cost at most 𝐵 that ensures

that 𝑝 belongs to some winning committee if and only if 𝐼 is a yes-

instance of RX3C. For the first direction, let us assume that 𝐼 is a

yes-instance and let T be a size-𝑛 subset of S such that

⋃
𝑆𝑖 ∈T 𝑆𝑖 =

𝑋 (i.e., T is the desired exact cover). We perform the following

bribery: First, for each solution voter we delete all his or her interior

approvals. Next, tomaintain the CI property (and to lower the scores

of some candidates), for each solution voter we delete one exterior

approval. Specifically, for each set 𝑆 𝑗 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 }, if 𝑆 𝑗 belongs
to the cover (i.e., if 𝑆𝑖 ∈ T ) then we delete the approvals for 𝑥𝑎 , 𝑥𝑏 ,

and 𝑥𝑐 in 𝑣 (𝑠 𝑗 , 𝑥𝑎), 𝑣 (𝑠 𝑗 , 𝑥𝑏 ), and 𝑣 (𝑠 𝑗 , 𝑥𝑐 ), respectively; otherwise,
i.e., if 𝑆 𝑗 ∉ T , we delete the approvals for 𝑠 𝑗 in these votes. As a

consequence, all the universe candidates end up with two exterior

approvals each, the 𝑛 set candidates corresponding to the cover

end up with three approvals each (two fixed ones and one exterior),

the 2𝑛 remaining set candidates and all the dummy candidates end

up with two fixed approvals each. Since 𝑝 has two approvals, the

committee size is 𝑛 + 1, and only 𝑛 candidates have score higher

than 𝑝 , 𝑝 belongs to some winning committee (and the cost of the

bribery is 𝐵).
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For the other direction, let us assume that there is a bribery

with cost at most 𝐵 that ensures that 𝑝 belongs to some winning

committee. It must be the case that this bribery deletes exactly one

exterior approval from each solution voter. Otherwise, since there

are 9𝑛 solution voters and the budget is also 9𝑛, some solution voter

would keep both his or her exterior approvals, as well as all the

interior ones. This means that after the bribery there would be at

least 2𝑛 dummy candidates with at least three points each. Then, 𝑝

would not belong to any winning committee. Thus, each solution

voter deletes exactly one exterior approval, and we may assume

that he or she also deletes all the interior ones (this comes at zero

cost and does not decrease the score of 𝑝).

By the above discussion, we know that all the dummy candidates

end up with two fixed approvals, i.e., with the same score as 𝑝 . Thus,

for 𝑝 to belong to some winning committee, at least 5𝑛 candidates

among the set and universe ones also must end up with at most

two approvals (at most 𝑛 candidates can have score higher than 𝑝).

Let 𝑥 be the number of set candidates whose approval score drops

to at most two, and let 𝑦 be the number of such universe candidates.

We have that:

0 ≤ 𝑥 ≤ 3𝑛, 0 ≤ 𝑦 ≤ 3𝑛, and 𝑥 + 𝑦 ≥ 5𝑛. (1)

Prior to the bribery, each set candidate has five non-interior ap-

provals (including three exterior approvals) so bringing his or her

score to at most two costs three units of budget. Doing the same

for a universe candidate costs only one unit of budget, as universe

candidates originally have only three non-interior approvals. Since

our total budget is 9𝑛, we have:

3𝑥 + 𝑦 ≤ 9𝑛. (2)

Together, inequalities (1) and (2) imply that 𝑥 = 2𝑛 and𝑦 = 3𝑛. That

is, for each universe candidate 𝑥𝑖 there is a solution voter 𝑣 (𝑠 𝑗 , 𝑥𝑑 )
who is bribed to delete the approval for 𝑥𝑑 (and, as a consequence

of our previous discussion, who is not bribed to delete the approval

for 𝑠 𝑗 ). We call such solution voters active and we define a family:

T = {𝑆 𝑗 | 𝑠 𝑗 is approved by some active solution voter}.

We claim that T is an exact cover for the RX3C instance 𝐼 . Indeed,

by definition of active solution voters we have that

⋃
𝑆𝑖 ∈T 𝑆𝑖 = 𝑋 .

Further, it must be the case that |T | = 𝑛. This follows from the

observation that if some solution voter is active then his or her

corresponding set candidate 𝑠 𝑗 has at least three approvals after

the bribery (each set candidate receives exterior approvals from

exactly three solution voters and these approvals must be deleted

if the candidate is to end up with score two; this is possible only

if all the three solution voters are not active). Since exactly 2𝑛 set

candidates must have their scores reduced to two, it must be that

3𝑛 − |T | = 2𝑛, so |T | = 𝑛. This completes the proof. □

The above proof strongly relies on using 0/1/+∞ prices. The case

of unit prices remains open and we believe that resolving it might

be quite challenging.

5 SWAPPING APPROVALS

In some sense, bribery by swapping approvals is our most inter-

esting scenario because there are cases where a given problem has

the same complexity both in the unrestricted setting and for some

structured domain (and this happens both for tractability and NP-

completeness), as well as cases where the unrestricted variant is

tractable but the structured one is not or the other way round.

5.1 Approval Swaps to the Preferred Candidate

Let us first consider a variant of AV-SwapApprovals-Bribery

where each unit operation moves an approval from some candi-

date to the preferred one. We call operations of this form SwapAp-

provals to p. In the unrestricted setting, this problem is in P for

unit prices but is NP-complete if the prices are arbitrary. For the

CI and VI domains, the problem can be solved in polynomial time

for both types of prices. While for the CI domain this is not so

surprising—indeed, in this case possible unit operations are very

limited—the VI case requires quite some care.

Theorem 5. AV-$SwapApprovals to p-CI-Bribery ∈ P.

Our algorithm for the VI case is based on dynamic programming

(expressed as searching for a shortest path in a certain graph) and

relies on the fact that due to the VI property we avoid performing

the same unit operations twice.

Theorem 6. AV-$SwapApprovals to p-VI-Bribery ∈ P.

5.2 Arbitrary Swaps

Next, we consider the full variant of bribery by swapping approvals.

For the unrestricted domain, the problem isNP-complete for general

prices, but admits a polynomial-time algorithm for unit ones [16].

For the CI domain, NP-completeness holds even for the latter.

Remark 1. The model of unit prices, applied directly to the case of

SwapApprovals-CI-Bribery, is somewhat unintuitive. For example,

consider societal axis 𝑐1▷𝑐2▷· · ·▷𝑐10 and an approval set [𝑐3, 𝑐5]. The
costs of swap operations that transform it into, respectively, [𝑐4, 𝑐6],
[𝑐5, 𝑐7], and [𝑐6, 𝑐8] are 1, 2, and 3, as one would naturally expect. Yet,
the cost of transforming it into, e.g., [𝑐8, 𝑐10] would also be 3 (move

an approval from 𝑐3 to 𝑐8, from 𝑐4 to 𝑐9, and from 𝑐5 to 𝑐10), which is

not intuitive. Instead, it would be natural to define this cost to be 5

(move the interval by 5 positions to the right). Our proof of Theorem 7

works without change for both these interpretations of unit prices.

Theorem 7. AV-SwapApprovals-CI-Bribery is NP-complete.

Proof. We give a reduction from Cubic Independent Set. Let

𝐺 be our input graph, where 𝑉 (𝐺) = {𝑐1, . . . , 𝑐𝑛} and 𝐸 (𝐺) =

{𝑒1, . . . , 𝑒𝐿}, and let ℎ be the size of the desired independent set.

We construct the corresponding AV-SwapApprovals-CI-Bribery

instance as follows.

Let 𝐵 = 3ℎ be our budget and let 𝑡 = 𝐵 + 1 be a certain parame-

ter (which we interpret as “more than the budget”). We form the

candidate set 𝐶 = 𝑉 (𝐺) ∪ {𝑝} ∪ 𝐹 ∪ 𝐷 , where 𝑝 is the preferred

candidate, 𝐹 is a set of 𝑡 (𝑛 + 1) filler candidates, and 𝐷 is a set of 𝑡

dummy candidates. Altogether, there are 𝑡 (𝑛 + 2) +𝑛 + 1 candidates.
We denote individual filler candidates by ⋄ and individual dummy

candidates by •; we fix the societal axis to be:

▷ =

𝑡︷︸︸︷
⋄ · · · ⋄𝑐1

𝑡︷︸︸︷
⋄ · · · ⋄𝑐2 ⋄ · · · ⋄ 𝑐𝑛−1

𝑡︷︸︸︷
⋄ · · · ⋄𝑐𝑛

𝑡︷︸︸︷
⋄ · · · ⋄

𝑡︷︸︸︷
• · · · •𝑝︸                                                                 ︷︷                                                                 ︸

𝑡 (𝑛+2)+𝑛+1
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For each positive integer 𝑖 and each candidate 𝑐 , we write prec𝑖 (𝑐)
to mean the 𝑖-th candidate preceding 𝑐 in ▷. Similarly, we write

succ𝑖 (𝑐) to denote the 𝑖-th candidate after 𝑐 . We introduce the

following voters:

(1) For each edge 𝑒𝑖 = {𝑐𝑎, 𝑐𝑏 } we add an edge voter 𝑣𝑎,𝑏 with

approval set [𝑐𝑎, 𝑐𝑏 ]. For each vertex 𝑐𝑖 ∈ 𝑉 (𝐺), we write
𝑉 (𝑐𝑖 ) to denote the set of the three edge voters corresponding
to the edges incident to 𝑐𝑖 .

(2) Recall that 𝐿 = |𝐸 (𝐺) |. For each vertex candidate 𝑐𝑖 ∈
𝑉 (𝐺), we add sufficiently many voters with approval set

[prec𝑡 (𝑐𝑖 ), succ𝑡 (𝑐𝑖 )], so that, together with the score from

the edge voters, 𝑐𝑖 ends up with 𝐿 approvals.

(3) We add 𝐿 − 3 voters that approve 𝑝 .

(4) For each group of 𝑡 consecutive filler candidates, we add

𝐿 + 4𝑡 filler voters, each approving all the candidates in the

group.

Altogether, 𝑝 has score 𝐿 − 3, all vertex candidates have score 𝐿,

the filler candidates have at least 𝐿 + 4𝑡 approvals each, and the

dummy candidates have score 0. We set the committee size to be

𝑘 = 𝑡 (𝑛 + 1) + (𝑛 − ℎ) + 1. Prior to any bribery, each winning

committee consists of 𝑡 (𝑛+1) filler candidates and (𝑛−ℎ) +1 vertex
ones (chosen arbitrarily). This completes our construction.

Let us assume that 𝐺 has a size-ℎ independent set and denote it

with 𝑆 . For each 𝑐𝑖 ∈ 𝑆 and each edge 𝑒𝑡 = {𝑐𝑖 , 𝑐 𝑗 }, we bribe edge
voter 𝑣𝑖, 𝑗 to move an approval from 𝑐𝑖 to a filler candidate right

next to 𝑐 𝑗 . This is possible for each of the three edges incident to 𝑐𝑖
because 𝑆 is an independent set. As a consequence, each vertex from

𝑆 ends up with 𝐿 − 3 approvals. Thus only 𝑛 − ℎ vertex candidates

have score higher than 𝑝 and, so, there is a winning committee that

includes 𝑝 .

For the other direction, let us assume that it is possible to ensure

that 𝑝 belongs to some winning committee via a bribery of cost

at most 𝐵. Let us consider the election after some such bribery

was executed. First, we note that all the filler candidates still have

scores higher than 𝐿+3𝑡 (this is so because decreasing a candidate’s
score always has at least unit cost and 𝐵 < 𝑡 ). Similarly, 𝑝 still

has score 𝐿 − 3 because increasing his or her score, even by one,

costs at least 𝑡 (indeed, 𝑝 is separated from the other candidates by

𝑡 dummy candidates). Since 𝑝 belongs to some winning committee,

this means that at least ℎ vertex voters must have ended up with

score at most 𝐿 − 3. In fact, since our budget is 𝐵 = 3ℎ, a simple

counting argument shows that exactly ℎ of them have score exactly

𝐿 − 3, and all the other ones still have score 𝐿. Let 𝑆 be the set of

vertex candidates with score 𝐿 − 3. The only way to decrease the

score of a vertex candidate 𝑐𝑖 from 𝐿 to 𝐿 − 3 by spending three

units of the budget is to bribe each of the three edge voters from

𝑉 (𝑐𝑖 ) to move an approval from 𝑐𝑖 to a filler candidate. However,

if we bribe some edge voter 𝑣𝑖, 𝑗 to move an approval from 𝑐𝑖 to a

filler candidate, then we cannot bribe that same voter to also move

an approval away from 𝑐 𝑗 (this would either cost more than 𝑡 units

of budget or would break the CI condition). Thus it must be the

case that the candidates in 𝑆 correspond to a size-ℎ independent

set for 𝐺 . □

For the VI domain, the complexity of our problem for unit

prices remains open, but for arbitrary prices we show that it is

𝑣0
𝑣𝑎 = 𝑣1

𝑣𝑏

𝑣𝑐

𝑣3𝑛
𝑣3𝑛+1

𝑣7𝑛

𝑝 𝑑 𝑠𝑖 𝑠′
𝑖
𝑠′′
𝑖

Figure 1: Illustration of the election from the proof of The-

orem 8, for the case where 𝑺𝒊 = {𝒙𝒂 , 𝒙𝒃 , 𝒙𝒄 }, where 𝒂 = 1 <
𝒃 < 𝒄 . Each row corresponds to a voter and each column cor-

responds to a candidate. Solid boxes show approvals prior

bribery and dotted ones show approval moves.

NP-complete. Our proof works even for the single-winner setting.

In the unrestricted domain, the single-winner variant is in P [11].

Theorem 8. AV-$SwapApprovals-VI-Bribery is NP-complete,

even for the single-winner case (i.e., for committees of size one).

Proof. We give a reduction from RX3C. Let 𝐼 = (𝑋,S) be

an instance of RX3C, where 𝑋 = {𝑥1, . . . , 𝑥3𝑛} is a universe

and S = {𝑆1, . . . , 𝑆3𝑛} is a family of size-3 subsets of 𝑋 (recall

that each element from 𝑋 belongs to exactly three sets from S).
We form a single-winner approval election with 7𝑛 + 1 voters

𝑉 = {𝑣0, 𝑣1, . . . , 𝑣7𝑛} and the following candidates:

(1) We have the preferred candidate 𝑝 and the (to be defeated)

current winner 𝑑 .

(2) For each set 𝑆𝑖 ∈ S we have candidates 𝑠𝑖 , 𝑠
′
𝑖
, and 𝑠 ′′

𝑖
.

The approvals for these candidates, and the costs of moving them,

are as follows (if we do not explicitly list the cost of moving some

approval from a given candidate to another, then it is +∞, i.e., this

swap is impossible; the construction is illustrated in Figure 1):

(1) Candidate 𝑝 is approved by 4𝑛 voters, 𝑣3𝑛+1, . . . , 𝑣7𝑛 .
(2) Candidate 𝑑 is approved by 7𝑛 voters, 𝑣1, . . . , 𝑣7𝑛 . For each

set 𝑆𝑖 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 }, where 𝑎 < 𝑏 < 𝑐 , the cost of moving

𝑣𝑎 ’s approval from 𝑑 to 𝑠𝑖 is 1, and the costs of moving 𝑣𝑏 ’s

and 𝑣𝑐 ’s approvals from 𝑑 to 𝑠𝑖 is 0.

(3) For each set 𝑆𝑖 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 }, where 𝑎 < 𝑏 < 𝑐 , we have

the following approvals. Candidate 𝑠𝑖 is approved by voter

𝑣𝑎−1, candidate 𝑠 ′𝑖 is approved by voters 𝑣𝑎+1, . . . , 𝑣𝑏−1, and
candidate 𝑠 ′′

𝑖
is approved by voters 𝑣𝑏+1, . . . , 𝑣𝑐−1. The cost

of moving the approvals from 𝑠 ′
𝑖
or from 𝑠 ′′

𝑖
to 𝑠𝑖 is 0.

One can verify that this election has the VI property for the natural

order of the voters (i.e., for 𝑣0 ▷ · · · ▷ 𝑣7𝑛). Candidate 𝑑 has 7𝑛

approvals, 𝑝 has 4𝑛 approvals, and every other candidate has at

most 3𝑛 + 1 approvals. We claim that it is possible to ensure that

𝑝 becomes a winner of this election by approval-moves of cost at

most 𝐵 = 𝑛 (such that the election still has the VI property after

these moves) if and only if 𝐼 is a yes-instance of RX3C.
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For the first direction, let us assume that 𝐼 is a yes-instance and

that 𝑅 ⊆ [3𝑛] is a size-𝑛 set such that

⋃
𝑖∈𝑅 𝑆𝑖 = 𝑋 (naturally, for

each 𝑡, ℓ ∈ 𝑅, sets 𝑆𝑡 and 𝑆ℓ are disjoint). It is possible to ensure

that 𝑝 becomes a winner by making, for each 𝑆𝑖 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 } such
that 𝑖 ∈ 𝑅 and 𝑎 < 𝑏 < 𝑐 , the following swaps:

(1) For each 𝑗 ∈ {𝑎, 𝑏, 𝑐}, we move 𝑣 𝑗 ’s approval from 𝑑 to 𝑠𝑖
(the cost of moving 𝑣𝑎 ’s approval is 1, the two other moves

have cost 0).

(2) For each 𝑗 ∈ {𝑎 + 1, . . . , 𝑏 − 1}, we move 𝑣 𝑗 ’s approval from

𝑠 ′
𝑖
to 𝑠𝑖 (at cost 0).

(3) For each 𝑗 ∈ {𝑏 + 1, . . . , 𝑐 − 1}, we move 𝑣 𝑗 ’s approval from

𝑠 ′′
𝑖
to 𝑠𝑖 (at cost 0).

In total, these moves cost 𝑛 and, since 𝑅 corresponds to a cover of𝑋 ,

we have that: (a) 𝑝 is approved by 4𝑛 voters, (b) 𝑑 is approved by 4𝑛

voters, and (c) every other candidate is approved by at most 3𝑛 + 1

voters. Consequently, 𝑝 is among tied winners of this election.

For the other direction, let us assume that there is a sequence of

approval moves that costs at most 𝑛 and ensures that 𝑝 is a winner.

Since all the moves of approvals from and to 𝑝 have cost +∞, this

means that every candidate ends up with at most 4𝑛 points. Thus 𝑑

loses at least 3𝑛 approvals. No matter what swaps we do, for each

𝑖 ∈ [3𝑛] each of 𝑠𝑖 , 𝑠
′
𝑖
and 𝑠 ′′

𝑖
ends up with at most 3𝑛 + 1 approvals

so we do not need to count their scores carefully (but we do need

to take the VI condition into account for these candidates).

Candidate 𝑑 can lose approvals only due to voters 𝑣1, . . . , 𝑣3𝑛
moving them to candidates in {𝑠1, . . . , 𝑠3𝑛}. Let us consider some

candidate 𝑠𝑖 such that some voter 𝑣 𝑗 moves an approval from 𝑑 to 𝑠𝑖
and let 𝑎 < 𝑏 < 𝑐 be such that 𝑆𝑖 = {𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 }. Due to the costs of

moving approvals, it must be that 𝑗 ∈ {𝑎, 𝑏, 𝑐}. In fact, we claim that

all three voters 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 move approvals to 𝑠𝑖 , voters 𝑣𝑎+1, . . . , 𝑣𝑏−1
move approvals from 𝑠 ′

𝑖
to 𝑠𝑖 , and voters 𝑣𝑏+1, . . . , 𝑣𝑐−1 move ap-

provals from 𝑠 ′′
𝑖
to 𝑠𝑖 . This is so, because if those voters 𝑣𝑎, . . . , 𝑣 𝑗

would not move their approvals, then—due to the fact that 𝑠𝑖 is

approved by voter 𝑣𝑎−1 (and this approval cannot move given our

budget)—the approvals for 𝑠𝑖 would not satisfy the VI property.

Further, voters 𝑣 𝑗+1, . . . , 𝑣𝑐 also need to move their approvals due

to a counting argument: The cost of moving 𝑣𝑎 ’s approval from 𝑑

to 𝑠𝑖 is 1. If we did not move 𝑣𝑐 ’s approvals from 𝑑 to 𝑠𝑖 , then it

would mean that (globally in our bribery) the average cost of mov-

ing an approval from 𝑑 to some candidate in {𝑠1, . . . , 𝑠3𝑛} would be

higher than 1/3. But since our budget is 𝑛 and we need to move 3𝑛

approvals from 𝑑 to these candidates, this is impossible.

Let𝑅 = {𝑖 ∈ [3𝑛] | some voter moves an approval from candidate

𝑑 to 𝑠𝑖 }. By the preceding paragraph, 𝑅 contains 𝑛 elements and for

each two 𝑖, 𝑗 ∈ 𝑅 it must be that sets 𝑆𝑖 and 𝑆 𝑗 are disjoint. Hence,

𝐼 is a yes-instance. □

6 DESTRUCTIVE BRIBERY

We conclude by considering destructive variants of our problems,

where the goal is to ensure that a given candidate, often denoted 𝑑 ,

does not belong to anywinning committee.We use the same bribery

actions, except that now we also consider a variant of swapping

approvals where we can only move approvals away from 𝑑 .

The destructive variant has been studied for the unrestricted

setting by Yang [32], for the unpriced cases of adding and deleting

approvals. Thus we first establish its complexity also for the priced

cases and for swapping approvals. The complexity stays the same

as for the constructive variants (the theorem below includes the

results of Yang [32] as special cases).

Theorem 9. For unit prices, all destructive variants of our bribery

problems for the unrestricted setting are in P. For arbitrary prices,

the cases of adding and deleting approvals are in P, but destruc-

tive variants AV-$SwapApprovalsAwayFromD-Bribery and AV-

$SwapApprovals-Bribery are NP-complete.

For the VI case, we also obtain (or, fail to obtain) almost the same

results as in the constructive case (for AV-$SwapApprovals-VI-

Bribery we use the same proof as in the constructive case, except

𝑑 is the distinguished candidate and 𝑝 has one extra approval).

Theorem 10. Destructive variants of AV-$AddApprovals-VI-

Bribery and AV-$DelApprovals-VI-Bribery are in P. Destructive

variant of AV-$SwapApprovals-VI-Bribery is NP-complete.

The case of CI preferences appears to be themost challenging one.

Not only do we obtain fewer results than in the constructive setting,

but those that we do obtain are less satisfying. Let us illustrate this

with AV-$AddApprovals-CI-Bribery. We show that the problem

is NP-complete, but to do so, we use a somewhat unappealing trick.

Namely, we include some voters who initially do not approve any

candidates and we set their price functions so that we can choose

one out of four candidates, possibly located far apart in the societal

axis, to whom these voters add an approval. Since we did not put

extra conditions on the price functions, this is formally correct, but

is intuitively unappealing. We also need similar tricks in two other

NP-completenss proofs in this section. For example, for the case of

swapping approvals away from 𝑑 we use voters that approve only

a single candidate, so we can move this approval arbitrarily (up

to constraints implemented with the price function). Interestingly,

if we required each voter to approve at least two candidates, the

problem would be in P.

Theorem 11. Destructive variants of AV-$AddApprovals-CI-

Bribery, AV-$SwapApprovalsAwayFromD-CI-Bribery, and AV-

$SwapApprovals-CI-Bribery are NP-complete. Destructive variant

of AV-SwapApprovalsAwayFromD-CI-Bribery is in P.

7 SUMMARY

We have studied bribery in multiwinner approval elections, for the

case of candidate interval (CI) and voter interval (VI) preferences.

Depending on the setting, our problem can either be easier, harder,

or equally difficult as in the unrestricted domain. It would be inter-

esting to extend our work by considering different voting rules (in

particular, the Approval-Based Chamberlin–Courant rule [2, 8, 25])

and by seeking parameterized complexity results.
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