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ABSTRACT
AI safety research has investigated the problem of negative side
effects – undesirable changes made by AI systems in pursuit of an
underspecified objective. However, the focus has been on physical
side effects, such as a robot breaking a vase while moving (when the
objective makes no mention of the vase). In this paper we introduce
the notion of epistemic side effects, which are side effects on the
knowledge or beliefs of agents. Epistemic side effects are most
pertinent in a (partially observable) multiagent setting. We show
that we can extend an existing approach to avoiding (physical) side
effects in reinforcement learning to also avoid some epistemic side
effects in certain cases. Nonetheless, avoiding negative epistemic
side effects remains an important challenge, and we identify some
key research problems.
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1 INTRODUCTION
You see me grab my car keys and infer that I’m going out with the car. I
eat the chocolate cake in the fridge, unbeknownst to you. You still think
you’re going to eat it after dinner. I change your password, and now
you don’t know how to access your account. These are all examples
of epistemic effects – action effects that modify the knowledge and
beliefs of agents, potentially resulting in updated true beliefs, false
beliefs or even in a state of ignorance.

An AI system, in optimizing for an underspecified objective, may
cause negative side effects – undesirable changes to the world that
are nonetheless allowed by the explicit objective. The difficulty of
fully specifying an objective and the threat of negative side effects
are recognized threats to AI safety [e.g., 2]. A number of approaches
to avoiding (some) side effects in reinforcement learning (RL) or
planning have been proposed [e.g., 1, 6, 11, 13, 14, 20, 24, 26, 31].
However, those largely focused on physical side effects, such as a
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robot breaking a vase while moving between locations (because its
objective had not been designed to account for a vase).

That actions can have both physical and epistemic effects is some-
thing that has long been recognized and studied in the broader AI
literature, in particular in the area of knowledge representation
(KR) (e.g., by Moore [15]). In this paper we consider epistemic side
effects, which are side effects on the knowledge or beliefs of agents
(which may be humans or machines). Epistemic side effects are
most pertinent in a multiagent setting. We argue that epistemic
side effects are a critical and largely unacknowledged threat to AI
safety. Indeed negative epistemic side effects may be more perilous,
and more challenging to avoid or mitigate than their physical coun-
terparts, because an agent’s beliefs – what’s inside an agent’s head
or its memory unit – are largely unobservable.

Epistemic side effects of future AI systems could impair the
ability of humans or other agents to choose appropriate actions,
conceivably leading to catastrophic outcomes. For example, a false
belief in a military context could cause the choice of a catastrophic
action for humanity; ignorance of the existence of a cyclist could
cause an autonomous (or human-operated) vehicle to hit and kill the
cyclist. An agent with theory of mind – the ability to attributemental
states to oneself and others [e.g., 18] – might be able to reason how
to avoid negative epistemic side effects (or cause positive ones).

In this paper, we first introduce epistemic side effects and catego-
rize them (Section 2). While prior work has focused on physical side
effects, we show that we can adapt an approach to avoiding physi-
cal side effects in reinforcement learning (RL) to also avoid some
epistemic side effects, and demonstrate it in preliminary experi-
ments (Section 3). After reviewing other related work (Section 4),
we identify research challenges towards better avoiding negative
epistemic side effects (Section 5).

2 (NEGATIVE) EPISTEMIC SIDE EFFECTS
We can informally define an epistemic effect of a sequence of ac-
tions as a change caused to the knowledge or beliefs of agents. We
distinguish between knowledge and belief by requiring knowledge
to be true (we will not here be concerned with other potential char-
acteristics of knowledge like justification [see, e.g., 19]). Note that
an agent’s knowledge might change even when its beliefs do not,
because whether those beliefs are true – in correspondence with
the world – may change as a result of alterations to the world. By
an epistemic side effect we just mean an epistemic effect that is also
a side effect – that is, that it is not explicitly specified as part of the
actor’s objective. We will not here try to give a formal characteriza-
tion of what an explicit specification is in general, but note that the
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standard reward functions that are most commonly used in MDPs
(Markov Decision Processes) and POMDPs (Partially Observable
MDPs) do not depend on beliefs but just the environment state.
Note that when we talk about side effects in the context of RL, we
are considering side effects resulting from a fully trained policy.
Avoiding undesirable behavior during training is another area of
AI safety research, safe exploration [e.g., 2].

Technically, epistemic side effects could be said to occur in fully
observable environments, in a trivial way (e.g., if there’s the phys-
ical side effect of the robot breaking a vase while trying to move,
then there’s also the epistemic side effect of everyone immediately
knowing the vase was broken). Some non-trivial epistemic side
effects can be considered in partially-observable single-agent set-
tings. For example, if a humanoid robot accomplishes the task of
clearing a table by throwing items over its shoulder, then it may
lose its knowledge of the exact locations of those items, which is an
epistemic side effect. However, the most natural context in which
to discuss epistemic side effects is both partially observable and
multi-agent. Particular epistemic side effects could be considered
negative because they’re viewed as intrinsically negative (e.g., the
creation of false beliefs) or because they lead to negative (possi-
bly physical) outcomes by influencing what actions are chosen by
agents. (In some cases, false beliefs could lead to better outcomes
and might be considered positive overall.) Below we consider some
examples of different types of epistemic side effects.

False beliefs: An AI system might create false beliefs through
directly communicatingmisinformation, by performing actions that
others observe and draw incorrect conclusions from, or by covertly
changing the world (making previously true beliefs outdated).

Ignorance: AI may also cause ignorance; e.g., a robot could
move objects to unknown locations.

True beliefs: The creation of true beliefs can sometimes be
negative. For example, suppose that Bob believes that the mall is
closed, but if it were open, it would be safe to go there. In reality, the
mall is both open and unsafe (there’s a pandemic). If Bob’s virtual
assistant tells him the mall is open, then he may choose to go there,
and get infected. Another case in which true beliefs may be viewed
as negative is when private information is revealed to others, such
as about a surprise birthday party. Bostrom [4] described a large
number of ways in which true information could be harmful.

Of course, the idea that human beliefs may be negatively changed
by AI systems has been discussed in a number of contexts. Wei-
dinger et al. [29] included information hazards and misinformation
harms in their taxonomy of risks posed by language models. Infor-
mation hazards involve private (true) information being revealed,
while misinformation harms result from the models making false
statements. Evans and Kasirzadeh [7] formalized a problem they
called user tampering, in which “an RL-based recommender system
may manipulate a media user’s opinions, preferences and beliefs
via its recommendations as part of a policy to increase long-term
user engagement.” Hendrycks and Mazeika [10] listed a number of
“speculative concerns about future AI systems,” including enfeeble-
ment, where human “know-how erodes by delegating increasingly
many important functions to machines,” eroded epistemics, in which
“humanity could have a reduction in rationality due to a deluge
of misinformation or highly persuasive, manipulative AI systems,”
and deception by AI.

3 AVOIDING SOME EPISTEMIC SIDE EFFECTS
One approach to addressing epistemic side effects is to treat them
much as we would physical side effects. In this section we propose
a simple way to avoid some epistemic side effects by adapting an
approach to avoiding negative (physical) side effects in MDPs with
RL, from our previous work [1]. Doing so illustrates some of the
subtleties of dealing with epistemic side effects.

The premise underlying the approach is that in learning a policy,
the RL agent (which we’ll call “the robot”) should contemplate the
impact of its actions on other agents’ future wellbeing and agency.
We consider a restricted setting in which the robot performs a
sequence of actions, after which other agent(s) can act. For ease
of presentation, let’s say there’s one other agent, which we’ll call
“the human.” The robot and human each have their own reward
functions. Unlike in our previous work, we allow the human to
have partial observability (for simplicity, we’ll still give the robot
full observability). So we can model the robot’s interactions with
the environment as an MDP, and the human’s interactions with the
environment as a POMDP with the same underlying state space. In
this setup, we can identify some side effects as being negative in
the sense that they decrease the expected return that the human
will get. We can incentivize the robot to avoid those side effects by
modifying its reward function to take into account the expected
return for the human. If the human has full observability, then
any decrease in the human’s expected return can be accounted
for by physical side effects. However, when the human has only
partial observability, another possible cause of a reduced return is
epistemic side effects.

What we want to do (as in our previous work) is to give the robot
an auxiliary reward when it reaches a terminal state, proportional to
the expected value of that state for the human. This will discourage
causing some negative side effects (both physical and epistemic).
However, there is a complication: in a POMDP a state-value function
𝑉 (𝑠) (giving the expected return from acting starting in state 𝑠) is
not well-defined, since an agent’s choice of actions depends on its
observation history and not the unobservable underlying state [3].
Fortunately, in a POMDP it’s possible to define a history-state value
function 𝑉 𝜋 (ℎ, 𝑠) that gives the expected return from following
policy 𝜋 (ℎ) starting in state 𝑠 , given the history (of observations
and actions) ℎ [3]. As Baisero and Amato [3] explain, “the history
ℎ determines the future behavior of the agent, while the state 𝑠
determines the future behavior of the environment.”

We therefore propose the following augmented reward function
for the robot, given its original reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and
a probability function 𝑃 (𝑉 ) giving the probability of the human
having history-state value function 𝑉 :

𝑟 ′ (𝑠0, 𝑎0, . . . , 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ={
𝛼1 · 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) if 𝑠𝑡+1 is not terminal
𝛼1 · 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛾 · 𝛼2 · E𝑉∼𝑃 [𝑉 (ℎ, 𝑠𝑡+1)] otherwise

where ℎ is the sequence of observations that the human makes
corresponding to the sequence of states and actions 𝑠0, 𝑎0, . . . , 𝑠𝑡+1
(that is why 𝑟 ′ needs all those arguments), 𝛾 is the discount factor,
and 𝛼1 and 𝛼2 are hyperparameters. In the special case where the
human observes nothing of what the robot does, ℎ = ⟨⟩ and 𝑟 ′ can
be written as depending only on the transition 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1.
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Our previous approach [1] was intended for fully observable
environments, and so used state-value functions instead of history-
state value functions. Below we discuss some other aspects of our
approach. Some related work is discussed in Section 4.

Positive side effects. As Alizadeh Alamdari et al. point out,
the augmented reward function may incentivize making changes
to the environment to help other agents (not just avoid harming
them). However, as they also describe, it’s possible to focus on just
avoiding negative side effects by adapting the approach of using a
“reference state” from Krakovna et al. [14]. For example, in the defi-
nition of 𝑟 ′ above we could replace the E𝑉∼𝑃 [𝑉 (ℎ, 𝑠𝑡+1)] term in
the auxiliary reward withmin

(
E𝑉∼𝑃 [𝑉 (ℎ, 𝑠𝑡+1)],E𝑉∼𝑃 [𝑉 (⟨⟩, 𝑠0)]

)
where E𝑉∼𝑃 [𝑉 (⟨⟩, 𝑠0)] is the expected value of the initial state 𝑠0
for the human (⟨⟩ is the empty history). That would be using the
initial state as a reference state, and would mean that the robot
could not get additional reward for making things better (in expec-
tation) for the human than they were initially.

Where does the distribution over value functions come
from? This is an important challenge. In future work, this might be
achieved with some variant of inverse reinforcement learning (IRL)
[16]. Note that to compute our augmented reward function it is not
necessary to represent the entire distribution, just its expectation.

Representation of human beliefs. A limitation of our ap-
proach is that, in contrast to some other work in AI, human be-
liefs and how they change are not explicitly represented, but are
only implicitly reflected in the distribution over value functions
(which reflect possible policies, which would depend on the hu-
man’s beliefs). This suggests some open research challenges, which
we discuss further in Section 5.

3.1 Experiments
In this section, we demonstrate our proposed approach via some
simple experiments.1 We use a kitchen environment (Figure 1). The
robot’s task is to prepare ameal using an oven, and the human needs
to use the fridge. Agents may need to get items from the cupboards,
and each agent leaves the kitchen to conclude its task. The robot has
full observability. In contrast, the human has partial observability
and cannot see inside closed cupboards, nor can it observe the
robot’s actions. The agents can move in the kitchen grid in four
directions or perform an executive action such as opening, closing,
picking up, putting down, and cooking (all actions are deterministic).
Each agent gets -1 reward for performing an action, except that the
human additionally gets -10 reward from getting hurt in experiment
D, and -5 reward from getting sick in experiment E.

We compare our approachwith two baselines. In the first baseline
(Non-augmented), the robot’s reward function is unmodified. In
the second (Full-observability), the robot’s reward function is
augmented per our approach but as though the human had full
observability (so the human value functions the robot considers
possible correspond to policies that act with full observability). For
the purposes of the experiments, the possible human policies were
handcrafted (and the relevant parts of their history-state value

1The code is available at https://github.com/praal/epistemic_side_effects.

Figure 1: The kitchen environment, with its two cupboards,
oven, and fridge.

Table 1: Experimental results. Each column shows a different
experiment in the kitchen environment, and each row corre-
sponds to a different method (used to determine the robot
policy). Each cell shows the additional penalty (reward) the
human gets in an experiment as a result of acting following
a robot that uses a particular method. −∞ means that the
human was unable to complete their task.

Method Experiment

A B C D E

Our approach 0 0 0 0 0
Non-augmented -7 0 -∞ -10 -8
Full-observability 0 -1 0 -10 -8

functions computed). The robot policies were determined via Q-
learning.2 Results are in Table 1.

In the first set of experiments, (A, B, and C), there are cooking
utensils in the corner cupboard, and dishware in the right cupboard.
To complete its task, the robot has to pick up the utensils and dish-
ware from the cupboards and go to the oven to prepare a meal, and
may place the utensils and the dishes in either of the cupboards
before leaving. The human wants to get either the utensils or the
dishware and believes that each is in its original cupboard; their
policy (in A and B) is that if they cannot find what they are looking
for, they will then check the other cupboard. The robot is uncer-
tain what the human wants – and so which policy the human will
follow – so their distribution over human value functions (used
by our approach) reflects that uncertainty (giving equal probabili-
ties to each case). Using our approach, the robot puts each of the
items back in its original place, where the human expects to find
it (incurring -4 reward for itself by spending more time). With the
Non-augmented baseline, the robot puts everything in the corner
cupboard since that’s faster. The Full-observability baseline puts
everything in the right cupboard, because under the assumption
that the human has full observability, it would take the human
fewer steps to reach things there. In experiment A, the human ac-
tually needs the dishes, so the Non-augmented baseline results in
-7 extra reward for the human since the dishes were moved to the
corner cupboard. In experiment B, the human actually needs the
utensils, so the Full-observability baseline does the worst. Finally,
experiment C is like A, except (unknown to the robot) the actual

2The 𝜖-greedy algorithm is used to balance exploration and exploitation and 𝜖 = 0.4.
In all the experiments and methods the learning rate is 1,𝛾 = 1, 𝛼1 = 1, and 𝛼2 = 4.01.
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human policy is a simpler one which won’t check more than one
cupboard, so epistemic side effects have worse consequences.

In experiment D, the floor is wet, which the human cannot di-
rectly observe, but there is an observable “Wet Floor” sign in the
middle of the kitchen. If the robot goes over the sign, the sign would
fall, and the human would not observe it and get hurt (-10 reward)
from slipping on the wet floor. With our approach, implicitly con-
sidering the creation of the false belief that the floor is dry, the
robot takes a longer path (going around the sign and getting -2
reward) and prevents the negative side effect.

In the final experiment, E, the human only needs to go to the
fridge. There is expired food in the right cupboard which the human
is not aware of. By leaving that cupboard door open, the robot would
reveal the food, giving the human the true belief that there is food
there. This would result in the human (who observes the food but
not that it’s expired) eating the food and getting sick (-3 reward for
spending more time and -5 reward for getting sick). Only with our
approach does the robot, by considering the epistemic side effect,
take a step to close the cupboard.

4 RELATEDWORK
Some approaches to avoiding (physical) side effects, such as ones by
Krakovna et al. [14] or Turner et al. [24], have taken a single-agent
approach: they try to avoid side effects by considering how actions
would affect the agent’s own future abilities. The reason we based
our approach to avoiding epistemic side effects in Section 3 on
our previous work [1] instead is that that, while only dealing with
physical side effects, did already consider multiple agents’ value
functions.

Another somewhat similar approach to side effect avoidance
with multiple agents was proposed by Bussmann et al. [6], who in-
troduced the empathetic Q-learning algorithm, in which an agent is
rewarded with a weighted sum of its own rewards and the rewards
it would get were it in another agent’s place. Their experiments
also featured partially observable environments; however, the par-
tial observability didn’t seem to play a major role in the paper –
epistemic side effects were not discussed. Additionally, their ap-
proach required that the agents have at least somewhat similar
reward functions. We note that the general idea of rewarding an
agent based on other agents’ rewards has often shown up in various
forms in the literature [e.g., 17, 22, 30].

Wang et al. [28] considered a number of POMDP reward func-
tions depending on a (model of a) human’s belief, including “a
reward that encourages the agent to keep the human’s belief stable.”
However, these were not designed for safety purposes. Note that if
the world is being changed, keeping the human’s belief stable may
be undesirable.

5 SUMMARY AND CHALLENGES
We have introduced the notion of epistemic side effects – that an
AI system may make changes to humans’ (or other agents’) knowl-
edge or beliefs because it wasn’t told not to. Furthermore, we have
observed that such changes could cause agents to act in ways that
have undesirable or even catastrophic consequences. While prior
work has considered some ways in which AI systems may nega-
tively affect beliefs, we provided a general, unifying conception

that relates to prior work on (physical) side effects. We were able
to adapt an existing approach to avoiding negative physical side ef-
fects to also avoid certain negative epistemic side effects. However,
it remains an important research challenge to handle the broad
range of negative epistemic side effects that may occur in practice.

For the approach we outlined in Section 3, not explicitly rep-
resenting the human’s beliefs introduces a couple of difficulties
to avoiding epistemic side effects, that an explicit representation
could overcome. Firstly, it’s difficult to model human tasks with
epistemic goals (e.g., to learn the location of an object). Secondly,
the augmented reward only gives the robot an incentive to avoid
(epistemic) side effects insofar as they reduce the expected return
the human will get – there is no direct way to penalize causing
false beliefs. Penalizing false beliefs might be desired, since as we
discussed in Section 2, false beliefs could be viewed as intrinsically
negative. This leads to the first of the research challenges below.

Challenge: Incorporate a model of agent beliefs into the
avoidance of negative epistemic side effects. Of course, there is
a long history of AI research on representing and reasoning about
the beliefs and/or knowledge of (multiple) agents (see, e.g., the
textbooks by Fagin et al. [8] and Halpern [9]). In particular, there
is a body of work on symbolic epistemic planning, which routinely
involves epistemic goals (see, e.g., the work by van der Hoek and
Wooldridge [27] at the first AAMAS conference). So some existing
work from the AAMAS research community may find applications
in dealing with the problem of epistemic side effects.

Challenge: Better characterize when epistemic side effects
are to be avoided. Whether an epistemic side effect is seen to
be positive or negative is often a matter of perspective. In Sec-
tion 3 when we considered a setting with a robot and a human, we
suggested that negative side effects would be the side effects that
reduce the human’s expected return, but in a more realistic setting
there would be many humans involved, with possibly conflicting
objectives. Furthermore, false beliefs might play a special (generally
undesirable) role, though sometimes it’s considered socially accept-
able to cause false beliefs (e.g., when parents tell their children
about the tooth fairy). More research is needed to characterize prin-
ciples underlying when epistemic side effects should be avoided.

Challenge: Develop more psychologically accurate computa-
tional models of belief that can be used for avoiding negative
epistemic side effects on humans. Models of belief can require
strong assumptions regarding how beliefs will get updated and
what reasoning can be done, which may not be psychologically re-
alistic for humans. For example, in classical epistemic logic, agents
are modelled as believing all the deductive consequences of their be-
liefs [see, e.g., 23]. Human beliefs are complicated – people may fail
to draw inferences, have conflicting beliefs, and forget things. One
direction for future work would involve replacing hand-crafted rep-
resentations of beliefs and processes of belief change with learned
models. For example, perhaps a sufficiently advanced language
model could be queried about what agents would believe in a given
scenario — the ability of language models to answer questions about
mental states is currently an active area of study [e.g., 5, 12, 21, 25].
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