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ABSTRACT
Social networks arise as a result of complex interactions among

people, and homophily plays an important role in this process. If

we view homophily as a dominant force in network formation

and associate each node with a collection of features, this process

gives rise to spatial networks, with likelihood of an edge an increas-

ing function of feature similarity among its incident nodes. A link

prediction problem in such spatial networks then amounts to deter-

mining whether the pair of nodes are sufficiently close according

to this edge likelihood function. We undertake the first algorithmic

study of the adversarial side of this problem in which the adversary

manipulates features of a subset of nodes on the network to pre-

vent predicting target edges. We show that this problem is NP-hard,

even if the edge likelihood function is convex. On the other hand,

if this function is convex, we show that the problem can be solved

with convex programming when the set of nodes that the adversary

needs to manipulate is fixed. Furthermore, if the edge likelihood

function is linear, we present approximation algorithms for the case

when the features are binary, and we wish to hide only a single

edge, and for the case when the features are real-valued but we

need to hide an arbitrary collection of edges.
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1 INTRODUCTION
Homophily [16]—the property that relationships are more likely

among more similar individuals—is an important social driver of

network emergence. In the abstract, a natural way to capture ho-

mophily is by embedding nodes in a metric space. Distance between

nodes so embedded, and associated links, can then capture a variety

of phenomena, such as spatial proximity (with friendships more

likely to emerge through frequent contact), the similarity of opin-

ions (where individuals who are in greater overall agreement more

likely to establish long-term relationships), cultural similarity, and

so on.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Such similarities are not considered by traditional network anal-

ysis that typically focuses on the graph structure representing ob-

served relationships. However, when we have access not only to the

network structure but also node features, this additional informa-

tion can be further leveraged for network analysis tasks [1, 11]. Let

us take as an example the task of link prediction, in which we are

particularly interested in this paper. The aim of this fundamental

problem in social network analysis is to anticipate the existence

of connections that are missing from the data or that are yet to

be created [14]. Various applications, such as detecting concealed

relationships in organized crime, have motivated consideration of

adversarial vulnerabilities of link prediction algorithms [5, 8, 26, 27].

This line of research is focused predominantly on vulnerabilities

of similarity metrics that solely use the network topology, such as

the set of common neighbors. However, if link prediction leverages

node attributes rather than, or in addition to, observed edges, per-

turbing these attributes becomes an essential means of an attack

that has scarcely been analysed in the literature.

Against this background, we propose to study adversarial link
prediction in spatial networks (Adversarial LPSN) where the proba-
bility of a link is a function of the attributes (features) of the nodes

incident to it. In our model, the adversary aims to hide a collection

of target links by selecting a subset of nodes on the graph and per-

turbing their features subject to a perturbation budget constraint.

We begin by considering real-valued features. We first show that

this problem is NP-Hard and, indeed, hard to approximate to arbi-

trary precision, even if the edge likelihood function is convex. On

the other hand, we give an algorithm for this problem that yields

a 2-approximation. Furthermore, we show that if we first fix the

set of nodes that the adversary may manipulate, the problem can

be solved using convex programming. Next, we consider binary

features and show that the problem is NP-hard, even if we wish

to hide a single edge. However, we also give a 2-approximation

algorithm for this problem.

In summary, we make the following contributions:

(1) We present a novel model of adversarial perturbations to

link prediction in spatial networks.

(2) We show that the adversarial problem we define is inapprox-

imable in general. Moreover, it remains NP-hard if features

are binary, even if the link likelihood function is convex.

(3) We give a convex programming solution to a special case

when the set of nodes that can be adversarially perturbed

is fixed, the link likelihood function is convex, and features

are real-valued.

(4) We provide a polynomial algorithm with a 2-approximation

guarantee if features are binary, only a single node is per-

turbed, and the link likelihood function is linear.

(5) Finally, we provide a polynomial time algorithm with a 2-

approximation guarantee if features are real-valued.
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2 RELATEDWORK
Various evasion techniques against several social network analysis

tools have been investigated in the literature with a typical goal of

privacy protection. Unfortunately, it was shown that social network

analysis tools could be used to infer even undisclosed information

about social media users, including their sexual orientation or other

sensitive characteristics [17].Given this, Waniek et al. [24] studied
how to avoid identification by community detection algorithms.

Another sample research line of this literature are the papers that

analyse manipulating centrality measures [4, 23, 25].

Our model is also closely related to decision-time (or adversar-

ial perturbation) attacks in adversarial machine learning (see, e.g.,

[2, 9, 22]), particularly if we view link prediction as binary clas-

sification. A decision-time attack on a binary classifier involves

an adversary adding a (typically norm-bounded) perturbation to

inputs in order to cause these to be misclassified by the model.

However, there are several crucial differences between our model

and this literature. First, in our model, features of nodes enter the

predictions indirectly via the weighted distance calculation; for ex-

ample, even if the classifier is linear in inputs, it is non-linear in

perturbations. Second, and more significant, is the fact that in our

model, the adversary may select and perturb a subset of nodes on

the network, and the goal is to impact predictions for a collection of

links, adding an important combinatorial dimension to the problem.

Models, in which an underlying geometry is present, are actu-

ally natural for applications in data science and network analysis

(we can think of network nodes as being represented by a feature

vector in some 𝑑-dimensional vector space, with the nodes that

share similar features being the neighbors of a given node). The

spatial constraints imposed on the graph are also relevant for the

geometric graph theory, especially for the studies of random geo-

metric graphs. Our model is related to the recent investigations

from [12], where the authors investigate the problem of distin-

guishing an Erdös-Renyi (standard) random graph 𝐺 (𝑛, 𝑝) from a

random geometric graph 𝐺𝑒𝑜𝑑 (𝑛, 𝑝), where 𝑛 vertices of the graph

are identified with an independently and uniformly sampled vector

from the 𝑑-dimensional unit sphere, and the pairs of vertices are

connected by an edge if the vectors are sufficiently close to each

other, so that that the marginal probability of an edge existence is

equal to 𝑝 . As the authors note, geometric random graphs, both

in the high-dimensional setting as studied in the aforementioned

paper, as well as in the more familiar setting of low-dimensional

geometric graphs (as studied e.g. in the classic monograph [19])

could be a widely applicable benchmark for some computational

methods used in the so-called semi-random setting. Here, we focus

on spatial networks representable in a finite-dimensional normed

space that are generated stochastically, which may be seen as a

working case of the geometric random graph model described.

3 BACKGROUND
We consider link prediction in the so-called spatial networks, rep-

resented by graphs where nodes correspond to points in R𝐷 . For-
mally, a spatial network is a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) where the nodes
𝑉𝐺 ⊂ R𝐷 correspond to a finite subset of R𝐷 and each edge

(𝑥,𝑦) ∈ 𝐸 connecting a pair of nodes 𝑥,𝑦 ∈ 𝑉𝐺 is generated stochas-

tically as follows. Let

𝑧 (𝑥,𝑦) := ( |𝑥1 − 𝑦1 |𝑝 , . . . , |𝑥𝐷 − 𝑦𝐷 |𝑝 )
for a fixed 𝑝 ≥ 1. We will refer to this function as a 𝑝-vector

function. We assume that the probability of an edge is determined

by a function 𝑓 (𝑧 (𝑥,𝑦)) for any pair of nodes (𝑥,𝑦). We refer to 𝑓

as the edge likelihood function.
In a link prediction setting, we observe a graph with the entire

set of nodes 𝑉 , but only a subset of existing edges 𝐸 ⊆ 𝐸, and our

goal is to identify whether particular other edges in the graph exist

or not. A natural link prediction algorithm in such spatial networks

would first learn 𝑓 (e.g., 𝑓 can be a logistic regression) based on the

observed edges in the network (using attributes of their incident

nodes), and then use 𝑓 to predict unobserved links. Note that this

process makes use of the observed network structure in learning the

function 𝑓 , but once 𝑓 is given, this structure is no longer required

in link prediction.

A special type of spatial networks that we will consider here and

an example that allows illustrating the idea behind them are the

two-dimensional Euclidean graphs. In these graphs, the nodes are

identified with points in the Euclidean two-dimensional plane, and

to each link between any two points, we assign lengths equal to

the Euclidean distance between those points. It is perhaps worth

noting that the class of spatial graphs we investigate in this paper is

not identical with the class of the so-called planar networks, where

it is required that the nodes are embedded in the two-dimensional

plane in such a way that the links do not intersect each other.

Formally, a two-dimensional Euclidean network is a graph 𝐺 =

(𝑉 , 𝐸) such that each node in 𝑉 is associated with a point in the

Euclidean two-dimensional plane, i.e., each 𝑣 ∈ 𝑉 is represented by

a point 𝑥𝑣 ∈ R2. Furthermore, with each link 𝑒 = {𝑣,𝑤} ∈ 𝐸, we
associate a distance 𝛿 (𝑣,𝑤) that is equal to the Euclidean metric.

Clearly, all norms and the metrics induced by these norms can be

considered in their weighted versions, where computing the norm

involves, additionally, a multiplication by a particular function (or

constant) referred to as the weight.

4 ATTACK MODEL
Suppose that an Attacker is a malicious agent who aims to hide

some of the links (for example, relationships among particular

malicious nodes). In our context, hiding a link entails ensuring that

the edge likelihood function 𝑓 is erroneously perceived as small for

the target pair of nodes {𝑥,𝑦}. We suppose that the Attacker can

modify the perceived value of 𝑓 by adding adversarial perturbations
𝛿 to a subset of nodes on the network𝐴 ⊆ 𝑉𝐺 (potentially including

nodes 𝑥 and𝑦). We assume that both the network𝐺 observed by the

Analyst and the edge likelihood function 𝑓 (including the function

𝑧 (𝑥,𝑦)) are known to the Attacker, but the Attacker is limited in

the extent to which the features of any node can be perturbed, for

example, to avoid becoming highly suspicious. We capture this

constraint formally as follows. Let 𝑢 ∈ 𝐴 be a node in the spatial

network for which original features 𝑢 are changed by the adversary

into 𝑢 ′, and define 𝛿 = 𝑢 ′ −𝑢. We constrain that any perturbation 𝛿

to any node 𝑢 ∈ 𝐴 satisfies ∥𝛿 ∥ ≤ 𝜖 where 𝜖 > 0 is an exogenously

specified limit on how much the Attacker can perturb any node,

and ∥ · ∥ is an ℓ𝑝 norm with 𝑝 ≥ 1.
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We begin by considering a simplified version of the Attacker

problem in which the Attacker aims to hide a link between a single

pair of nodes 𝑥 and 𝑦 and can only add perturbation 𝛿 to one of

them—say, 𝑦, without loss of generality (i.e., the subset of nodes

being attacked is 𝐴 = {𝑦}). In this special setting, we formally

define the following adversarial optimization problem in which the

goal of the adversary is to modify a node 𝑦 adjacent to a target

link {𝑥,𝑦} so as to minimize the perceived likelihood of this link

by the Analyst, that is, to minimize 𝑓 (𝑧 (𝑥,𝑦 + 𝛿)) over feasible
perturbations 𝛿 to 𝑦.

Problem 1. Given a positive real number 𝜖 , a spatial graph 𝐺 =

(𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 and a pair of nodes 𝑥,𝑦 ∈ 𝑉𝐺 such that
{𝑥,𝑦} ∉ 𝐸𝐺 find

min

𝛿 ∈R𝐷
𝑓 (𝑧 (𝑥,𝑦 + 𝛿)), s.t. | |𝛿 | | ≤ 𝜖.

A natural variation of this problem is the following formulation,

in which we instead minimize the magnitude of the adversarial

perturbation that enables us to hide the target link by ensuring that

the resulting perceived link likelihood 𝑓 (𝑧 (𝑥,𝑦 + 𝛿)) is below an

exogenously specified threshold 𝜃 .

Problem 2. Given a real number 𝜃 ∈ [0, 1], a spatial graph 𝐺 =

(𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 and a pair of nodes 𝑥,𝑦 ∈ 𝑉𝐺 such that
{𝑥,𝑦} ∉ 𝐸𝐺 find

min | |𝛿 | |, s.t. 𝑓 (𝑧 (𝑥,𝑦 + 𝛿)) ≤ 𝜃 .

In this formulation, the threshold parameter 𝜃 represents the

threshold used by the Analyst in link prediction, so that whenever

𝑓 is below the threshold, the Analyst is expected to predict that the

target pair of nodes are not connected. This variation, therefore,

requires the Attacker to also know the threshold 𝜃 used by the

Analyst or at least have a conservative bound on this threshold.

Both problem formulations above are conceptually similar to the

general class of decision-time attacks on classifiers in the adversarial

machine learning literature [22]. The principal difference is that

the impact of modifications on the target function 𝑓 is indirect,

mediated by 𝑧 (𝑥,𝑦). This is inconsequential if features are real-

valued and we use gradient-based methods (such as PGD [15]) to

heuristically solve Problems 1 and 2, but it becomes important

if features are binary and we wish to take advantage of special

structure of 𝑓 , such as linearity: even if 𝑓 is linear in 𝑧, it is non-

linear in 𝑦.

A decision-theoretic version of the problems above, which we

refer to as Adversarial Link Prediction in Spatial Networks orALPSN,
simply imposes both the constraint that perturbations𝛿 are bounded

and that the attack succeeds.

Problem3 (Adversarial Link Prediction in Spatial Networks (ALPSN)).
Given real numbers 𝜃 ∈ [0, 1] and 𝜖 > 0, a spatial graph 𝐺 =

(𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 , and a pair of nodes 𝑥,𝑦 ∈ 𝑉𝐺 such that
{𝑥,𝑦} ∉ 𝐸𝐺 , decide if there exists a 𝐷-vector 𝑦′ = (𝑦′

1
, . . . , 𝑦′

𝐷
) with

| |𝑦 − 𝑦′ | | ≤ 𝜖 such that 𝑓 (𝑧 (𝑥,𝑦′)) ≤ 𝜃 .

One might ask: why should the information induced by the

(weighted) distances, even if implicit in the 𝑝-vector function 𝑧, be

taken into account while analyzing the mere link prediction task?

The answer is that the relations of the (tuples of) features of the

nodes in the network are important from the learning-theoretic

point of view. Consider the likelihood function 𝑓 and the problem

of learning it. Access to the metric structure of the features of the

nodes in the network (features that correspond to coordinates of

the nodes in this space) can enable learning a more fine-grained

and precise link prediction function 𝑓 . Then, if the algorithms

realizing this learning task can use the information contained in the

geometric structure of the network (information available thanks

to the spatiality of the network, i.e., of its embedding into some

metric space), i.e., if learning the function 𝑓 can be dependent on

the 𝑧-function (induced by the distances in the abstract metric space

the network is embedded into), then can become a point of attack

of the adversary. Therefore, attacking the learning process of the

spatial likelihood function used for link prediction might consist

in introducing perturbation directly to the features of the nodes,

i.e., to their locations in the abstract metric space the network is

embedded into.

Next, we consider a natural generalization of the problem in

which the adversary chooses a subset of nodes𝐴, as well as modifies

the features of all of these nodes as above. The key additional

aspect of this problem is that we impose a cardinality constraint

that |𝐴| ≤ 𝑘 for an exogenously specified 𝑘 . Note, however, that the

problem remains non-trivial even if 𝑘 = |𝑉𝐺 |. This general variant
is a substantive departure from conventional adversarial machine

learning approaches.

Problem 4 (Set Adversarial Link Prediction in Spatial Networks

(SALPSN)). Given real numbers 𝜃 ∈ [0, 1] and 𝜖 > 0, a spatial
graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 , a positive integer 𝑘 < |𝑉𝐺 |, a
subset 𝑆 ⊆ 𝑉𝐺 of vectors from the set of nodes of 𝐺 , and a target
set 𝐻 ⊆ 𝑉𝐺 ×𝑉𝐺 of pairs of nodes such that for each {𝑥,𝑦} ∈ 𝐻 it
holds that {𝑥,𝑦} ∉ 𝐸𝐺 , decide if there is a set 𝐴 ⊆ 𝑆 of at most 𝑘
vectors 𝑣 ′ = (𝑣 ′

1
, . . . , 𝑣 ′

𝐷
) with | |𝑣 − 𝑣 ′ | | ≤ 𝜖 such that in the graph

𝐺 ′ = (𝑉 ′
𝐺
, 𝐸𝐺 ), where𝑉 ′

𝐺
= 𝑉𝐺 \𝐴∪{𝑣 ′ : 𝑣 ∈ 𝐴}, for each {𝑥,𝑦} ∈ 𝐻

it holds that 𝑓 (𝑧 (𝑥,𝑦)) ≤ 𝜃 . An instance of the problem is a tuple
(𝐺, 𝑆, 𝜃, 𝜖, 𝐻, 𝑘).

The two distinguished special cases of the problem are for the set 𝑆
being (a) 𝑉𝐺 , or (b) 𝑉𝐺 \ 𝑑𝑜𝑚(𝐻 ), where for 𝐻 ⊆ 𝑉𝐺 ×𝑉𝐺 :

𝑑𝑜𝑚(𝐻 ) = {𝑣 ∈ 𝑉𝐺 : ∃𝑤 ∈ 𝑉𝐺 : (𝑣,𝑤) ∈ 𝐻 ∨ (𝑤, 𝑣) ∈ 𝐻 }.

The set 𝐴 in the definition of SALPSN will be referred to as the

displacement set of an instance of the problem. Observe that, in

general, nothing prevents the nodes 𝑥 or 𝑦 from being in the set

𝐴. This is an inconsequential issue: whether 𝑥,𝑦 are allowed to be

elements of 𝐴 does not alter the results below.

The final variant of the problem we consider fixes the set 𝐴 of

nodes that can be displaced.

Problem 5 (Fixed-SALPSN). Given a tuple (𝐺, 𝜃, 𝜖, 𝐻,𝐴), where
𝐹 ⊆ 𝑉𝐺 is a fixed subset of nodes, decide if there exists a set 𝐹 ′ of
vectors 𝐹 ′ = {𝑣 ′ : 𝑣 ∈ 𝐴} with | |𝑣 − 𝑣 ′ | | ≤ 𝜖 such that in the graph
𝐺 ′ = (𝑉 ′

𝐺
, 𝐸𝐺 ), where𝑉 ′

𝐺
= 𝑉𝐺 \𝐴∪{𝑣 ′ : 𝑣 ∈ 𝐴}, for each {𝑥,𝑦} ∈ 𝐻

it holds that 𝑓 (𝑧 (𝑥,𝑦)) ≤ 𝜃 .

5 COMPLEXITY ANALYSIS
For the complexity analysis of these problems, we use specific geo-

metric tools from algorithmic graph theory. In particular, we will

employ the so-called penny graphs, machinery that very recently
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Figure 1: Construction of a penny graph from a planar graph
of degree at most three, so that each link is replaced by in-
termediate nodes whose number is a multiple of four.

has been successfully applied for complexity analysis in computa-

tional social choice theory [7]. A penny graph is defined by a set of

unit disks, i.e., balls of diameter one in R2, such that no two disks

overlap (but they can touch). Each disk corresponds to a node, and

two nodes are connected by a link if their disks touch (i.e., if their

centers are precisely at a distance of 1). A graph is a penny graph

if it has such a representation by unit disks (the name comes from

the analogy between the disks and pennies laying on a flat surface).

Obviously, all penny graphs are planar. In our construction, we

are using penny graphs of degree three obtained via the following

result of [21].

Lemma 1. [21]. There is a polynomial-time algorithm that, given
a planar graph with maximum degree of at most 4, computes its
embedding on the two-dimensional Euclidean real space so that its
nodes are at integer coordinates, and its links are represented by
vertical and horizontal line segments.

Recall that in the Vertex Cover problem (VC) we are given a

graph 𝐺 = (𝑋, 𝐸) and a positive integer 𝑟 . We ask if there exists a

vertex cover of 𝐺—i.e., a subset of nodes 𝑈 ⊆ 𝑋 of size at most 𝑟

such that each link {𝑥,𝑦} ∈ 𝐸 has an end in 𝑈 , i.e., at least one of

the nodes 𝑥,𝑦 is in𝑈 . It is known that the problem is NP-hard for

cubic planar graphs [18, Theorem 4.1(a)]. Given an instance (𝐺, 𝑟 )
of VC, where𝐺 is a cubic planar graph, we can construct an instance

of VC for penny graphs as follows (we use the construction of [3,

Theorem 1.2]; we repeat it here as we need its specific properties).

First, we use Lemma 1 to obtain a planar representation of 𝐺 ,

where the nodes are at integer coordinates and the links consist

of vertical and horizontal line segments (see the left-hand side of

Figure 1; note that in this figure the nodes have degrees at most

three, and not exactly three). Second, we multiply node coordinates

by four, ensuring that the lengths of the line segments forming the

links also are multiples of four. Third, for each node 𝑣 , we put a

unit disk centered at the position of 𝑣 , and we replace all the line

segments forming the links by sequences of consecutive unit disks

(located on the integral points within these lines; see the center of

Figure 1). This way, each link becomes a sequence of 4𝑡 − 1 disks,

where 𝑡 is an integer (possibly different for each link). Finally, for

each link we introduce a single local displacement, which consists of
replacing the second disc that lies on the link with two tangent disks

(it does not matter from which end we start counting the disks);

these two disks are also tangent to the disks on the two sides of the

disk that we replaced (see the right-hand side of Figure 1). Local

displacements ensure that disks on the links come in multiples of

four. All in all, we obtain a penny graph.

Let 𝐺 ′
be the penny graph that we constructed. Each node of

𝐺 ′
has either two or three adjacent nodes. The nodes with two

neighbors correspond to disks put on the links, and we refer to them

as intermediate. We call a node locally displaced if it corresponds

to a disk that was introduced as a result of a local displacement.

Let 𝐿 be the total number of intermediate nodes. One can easily

verify that 𝐺 has a vertex cover of size 𝑟 if and only if 𝐺 ′
has an

independent set of size 𝑟 ′ = 𝑟 + 𝐿/2 (this follows from the work of

[3]). We refer to the penny graphs obtained by this construction as

almost integral, and we use the fact that VC is NP-hard for them.

Let 𝜃 ∈ [0, 1] be any real number in the unit interval. A real-

valued functionR𝐷 → R is 𝜃 -sensitive if there exists a non-negative
real number 𝜌 such that the following equivalence holds for any

𝑥 ∈ R𝐷 :
𝑓 (𝑥) ≥ 𝜃 iff | |𝑥 | | ≤ 𝜌.

Theorem 1. The problem SALPSN is NP-hard for any 𝜃 -sensitive
function 𝑓 : R𝐷 → R In particular, the problem is NP-hard for 𝐷 = 2.

Proof. We will actually prove a somewhat stronger hardness

result. Namely, we will demonstrate that, already for the Euclidean

metric on a two-dimensional plane, it is NP-hard to decide if we

can displace at most 𝑘 nodes in order to hide the links by reducing

the edge likelihood functions.

The proof goes by a reduction from Vertex Cover for almost

integral penny graphs. Let 𝐼 = (𝐺,𝑘) be an instance of the Vertex

Cover problem for almost integral penny graphs, where𝐺 = (𝑋, 𝐸 ′),
and let𝑛 = |𝑋 |, and𝑚 = |𝐸 ′ |. We construct an instance 𝐽 of SALPSN

with the network being represented by a graph in the real plane

with Euclidean metric such that there exists a vertex cover of size at

most 𝑘 in 𝐼 iff there exists a displacement set of size at most 𝑘 in 𝐽 .

First, we define the spatial network 𝐺 ′ = (𝑉𝐺′, 𝐸𝐺′). For each node

𝑥 ∈ 𝑋 of the graph 𝐺 construct a node of the network 𝑣𝑥 ∈ 𝑉𝐺′

located in the same point as 𝑥 , i.e., let 𝑉𝐺′ = {𝑣𝑥 : 𝑥 ∈ 𝑋 }. Further
let 𝐸𝐺′ be any set of pairs not containing any of the links from the

penny graph 𝐺 , i.e. let

𝐸𝐺′ ⊆ (𝑉𝐺′ ×𝑉𝐺′) \ 𝐸 ′.

Let the target set of pairs 𝐻 in 𝐽 contain all the pairs that have

been elements of the target set from the graph 𝐺 , i.e., let 𝐻 = 𝐸 ′.
In what follows we actually demonstrate that our reduction works

also for an arbitrary instance of SALPSN, where the target set is

a superset of the set of edges from the penny graph, i.e., even

if 𝐻 ⊋ 𝐸 ′, the reduction will be correct. By assumptions, for a

fixed 𝜃 , the edge likelihood functions is 𝜃 -sensitive. Without loss

of generality, put 𝜌 from the definition of 𝜃 -sensitivity to be equal
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𝑦 𝑥

𝑧

𝑢 𝑣𝑥

𝑤

𝑣𝑦

𝑣𝑧

𝜖

𝜖

𝑑

Figure 2: Estimating the distance between points – case 1:
𝑥𝑦 and 𝑥𝑧 are orthogonal. Even if the Attacker decides to
displace the nodes 𝑣𝑥 and 𝑣𝑦 in a direction that makes them
closer to each other than before the displacement took place,
even if the pair {𝑣𝑥 , 𝑣𝑦}was in the target set, then the distance
between them remains above 𝜌 so that the edge-likelihood 𝜃
threshold is still not exceeded. Observe how, in this case, the
nodes 𝑢 and𝑤 , neighboring 𝑣𝑦 , and 𝑣𝑧 , correspondingly, are
also made distant from these nodes, allowing for the edge
likelihood function to drop below 𝜃 for {𝑢, 𝑣𝑦}, and𝑤, 𝑣𝑧 }.

𝑥 𝑗
𝑥𝑖

𝑥𝑡

𝑥ℓ 𝑣 𝑗

𝑣 ′
𝑖

𝑣𝑡

𝑣ℓ

Figure 3: Case 5: The node 𝑥𝑖 in the vertex cover is one of
the vertex points of the penny graph that has three neigh-
bors, one of which, say 𝑥𝑡 , is connected to 𝑥𝑖 along the line
segment perpendicular to the line segment on which two of
the other neighbors of 𝑥𝑖 lie. Then we move 𝑣𝑖 by a vector
𝛿𝑖 (of length 𝜖) along the line connecting 𝑣𝑖 to 𝑣𝑡 , in the di-
rection further away from 𝑣𝑡 . Observe that the fragment of
the picture consisting of the balls around the nodes 𝑥 𝑗 , 𝑥𝑖 ,
and 𝑥ℓ , adequately depicts the case 1, i.e. such that node 𝑥𝑖 in
the vertex cover is an intermediate node that has not been
subject to local displacement in the process of constructing
the almost integral penny graph, neither of its neighbors has
been locally displaced, and 𝑥𝑖 and both of its neighbors are
colinear. Then we move the node 𝑣𝑖 by 𝛿𝑖 (of length 𝜖) verti-
cally or horizontally, along the line that is perpendicular to
the line segment on which the node 𝑣𝑖 and its neighbors lie.

to 1, i.e., let it be that:

𝑓

(√︃
(𝑣𝑥,1 − 𝑣𝑦,1)2 + (𝑣𝑥,2 − 𝑣𝑦,2)2

)
≥ 𝜃

if and only if √︃
(𝑣𝑥,1 − 𝑣𝑦,1)2 + (𝑣𝑥,2 − 𝑣𝑦,2)2 ≤ 1,

for any 𝑣𝑥 , 𝑣𝑦 ∈ R2 .
Let 𝜖 > 0 be any positive real number less or equal to

2−
√
2

2
≈

0.29. The exact value of 𝜖 will directly follow from the estimations

in the correctness proof below.

Finally, let 𝑘 ′ be equal to 𝑘 , i.e., we require that the maximal size

of the displacement set in the constructed instance of SALPSN is

equal to the maximal size of the vertex cover in the given penny

graph. Observe that for each edge (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝑋 ′
of the penny graph

the distance between 𝑥𝑖 and 𝑥 𝑗 is equal to 1. This ends the descrip-

tion of the reduction, now we will demonstrate its correctness. First,

assume there exists a vertex cover of 𝐼 of size at most 𝑘 . Let it be

denoted by

𝑈 = {𝑥1, . . . , 𝑥𝑘 },
and let the set of corresponding nodes of the network 𝐺 ′

in 𝐽 be

denoted by

𝑈 ′ = {𝑣1, . . . , 𝑣𝑘 }.
Then, it is possible to displace each of the nodes 𝑣𝑖 by a vector 𝛿𝑖 of

norm 𝜖 in such a way that the distance between each pair of nodes

corresponding to the links in the penny graph will be grater than

1. The way we obtain these displacements depends exactly on the

relative position of the corresponding nodes in the penny graph:

(1) Node 𝑥𝑖 in the vertex cover is an intermediate node that

has not been subject to local displacement in the process

of constructing the almost integral penny graph, neither of

its neighbors has been locally displaced, and 𝑥𝑖 and both of

its neighbors are colinear. Then we move the node 𝑣𝑖 by 𝛿𝑖
(of length 𝜖) vertically or horizontally, along the line that is

perpendicular to the line segment on which the node 𝑣𝑖 and

its neighbors lie.

(2) Node 𝑥𝑖 in the vertex cover is an intermediate node that

has not been subject to local displacement in the process

of constructing the almost integral penny graph, neither

of its neighbors has been locally displaced, but the lines

connecting 𝑥𝑖 to its neighbors are perpendicular. Then we

move the node 𝑣𝑖 by 𝛿𝑖 (of length 𝜖) along the line that is

within the angle of
𝜋
4
w.r.t. the lines on which the neighbors

of 𝑣𝑖 . lie.

(3) Node 𝑥𝑖 in the vertex cover is an intermediate node that

has not been subject to local displacement in the process of

constructing the almost integral penny graph, but one of its

neighbors has been locally displaced. Denote its non-locally

displaced neighbor by 𝑢, and its locally displaced neighbor

by𝑤 . Then move the node 𝑣𝑖 by the vector 𝛿𝑖 (of length 𝜖)

along the line perpendicular to the line segment on which

both 𝑣𝑖 and 𝑢 lie.

(4) Node 𝑥𝑖 in the vertex cover is a locally displaced intermediate

node of the penny graph. Then 𝑥𝑖 is one of the nodes of the

parallelogram 𝑥 𝑗 , 𝑥𝑖 , 𝑥ℓ , 𝑥𝑡 , as depicted in Figure 4. We then

move the node 𝑣𝑖 by the vector 𝛿𝑖 (of length 𝜖) along the line

of the diagonal of the parallelogram in the direction outside
of the parallelogram.

(5) Node 𝑥𝑖 in the vertex cover is one of the vertex points of the

penny graph that has 3 neighbors, one of which, say 𝑢, is

connected to 𝑥𝑖 along the line segment perpendicular to the

line segment on which two of the other neighbors of 𝑥𝑖 lie.

Then we move 𝑣𝑖 by a vector 𝛿𝑖 (of length 𝜖) along the line
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𝑥 𝑗

𝑥ℓ

𝑥𝑡

𝑥𝑖

𝑣 𝑗

𝑣ℓ

𝑣𝑡

𝑣𝑖
𝑣 ′
𝑖

𝑎

𝛼

𝜋-𝛼

Figure 4: The disks at 𝑥 𝑗 and 𝑥ℓ form a local displacement.
Observe that moving node 𝑣𝑖 to 𝑣 ′𝑖 keeps the distances be-
tween 𝑣 ′

𝑖
and 𝑣 𝑗 and between 𝑣 ′

𝑖
and 𝑣ℓ above threshold 𝜌 = 1.

The distance 𝑎 between the nodes 𝑣ℓ and 𝑣 𝑗 is unaffected by
manipulating the node 𝑣𝑖 and strictly greater than 1. This
picture illustrates the displacement that can be made in the
cases 3 and 4 in the description of the reduction.

connecting 𝑣𝑖 to 𝑣𝑡 , in the direction further away from 𝑣𝑡 , as

depcited in Figure 3.

In case 1, it is clear that the distance between the nodes on the

line is equal to

√
1 + 𝜖2 > 1. In case 2, the distance of the displaced

node from its neighbors is:√︃
(1 + 𝜖

√
2/2)2 + (𝜖

√
2/2)2 > 1.

In cases 3 and 4, the distance from the displaced node and its neigh-

bors is again equal to

√
1 + 𝜖2 and:√︃
(1 + 𝜖

√
2/2)2 + (𝜖

√
2/2)2 .

In case 5, additionally, the distance from 𝑣 ′ to 𝑣𝑡 is equal simply

to 1 + 𝜖 . If the target set of pairs contains more pairs than merely

the set of links of the input almost integral penny graph, there is a

problematic case we need to consider. It occurs when the vertex 𝑥𝑖
corresponds to one of the original nodes from the planar graph, and

by the grid structure of the penny graph𝐺 resulting from Valiant’s

lemma makes the lines |𝑥𝑖 , 𝑥 𝑗 | and |𝑥𝑖 , 𝑥𝑡 | orthogonal to each other.

In such a case the distance between 𝑣 ′
𝑗
and 𝑣 ′𝑡 is easily seen to be:

𝑑 = (𝜌 − 𝜖)
√
2,

where 𝜖 is the distance of 𝑣 𝑗 from the 𝑣 ′
𝑗
and the distance of 𝑣𝑡 from

𝑣 ′𝑡 . It is immediate to check that 𝑑 > 𝜌 for:

𝜖 < 𝜌 −
√
2

4

,

which for 𝜌 = 1 is 1 −
√
2

2
≈ 0.292 which is greater than

2−
√
2

2
.

Hence, requiring the points 𝑣 ′ to be within distance 𝜖 <
2−

√
2

2
is

clearly sufficient for the distances between corresponding agents

in the network to be kept sufficiently large.

Observe that the above actually proves the correctness of the

reduction - if 𝐼 is a positive instance of the VC problem for almost

integral penny graphs, the displacement described above gives the

solution to the instance 𝐽 SALPSN, and if 𝐼 is a negative instance

of VC, then at least one pair in the target set of links in 𝐽 has to

stay unsolved, as the corresponding link in 𝐼 is uncovered. □

It is sometimes the case that geometric computational problems

that are hard when stated for vector spaces of arbitrary finite di-

mension are polynomial-time solvable when the dimension is fixed.

The result above, however, gives us a hardness phenomenon that

is stronger than such fixed-parameter tractability with respect to

the dimension. Since the theorem states NP-hardness for functions

𝑓 defined on R2, it immediately follows that deciding SALPSN is

NP-hard in general, i.e., the following holds:

Corollary 1. The problem SALPSN is NP-hard for the Euclidean
metric any 𝜃 -sensitive function 𝑓 : R𝐷 → R, where 𝐷 is any natural
number greater or equal than 2. In particular, the problem is NP-hard
even if the dimension 𝐷 is fixed.

Observe that the reduction used in the proof actually gives us

an alternative, simpler proof of a couple of general graph-theoretic

results relevant for the study of link or sign prediction in social

networks. In particular in the problem of Eliminating Similarity,

studied, e.g., by [5], the input consists of a graph, a set of targeted

pair of nodes, a set 𝐶 of links that can be removed, and the max-

imum number 𝑘 of links that can be deleted. In this problem, we

are asked to compute if there exist at most 𝑘 links in 𝐶 such that

removing them results in every pair of nodes from the target set

having a disjoint neighborhood. Assuming that we deal with spatial

networks and nodes can be only connected by a link if their dis-

tance does not exceed a given threshold, our reduction immediately

gives:

Corollary 2. The problem of Eliminating Similarity is NP-hard even
for spatial networks.

Further, we can notice that the reduction is approximation-

preserving. This means that inapproximability properties of Vertex

Cover transfer to the SALPSN. In particular, since the construc-

tion of (almost integral) penny graphs is performed on the planar

graphs of bounded degree, it follows that our reduction preserves

inapproximability results for (planar) graphs with bounded de-

gree. For specific results, one can consult the work by [10]. To be

more specific, recall that an NP-optimization problem has an effi-

cient polynomial-time approximation scheme (EPTAS) if it admits a

polynomial-time approximation scheme whose time complexity is

bounded by 𝑂 (𝑓 (1/𝜀) |𝑥 |𝑐 ), where 𝑓 is a computable function and 𝑐

is a constant. The class SNP (Strict NP) consists of the NP-problems

that can be defined by a second-order formula ∃𝑆∀𝑥𝜓 (𝑥, 𝑆), where
𝜓 is quantifier-free. It is commonly believed that it is unlikely that

all problems in SNP are solvable in subexponential time. Together

with Theorem 2 from the paper by [10], our reduction implies the

following:
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Theorem 2. The SALPSN problem has no EPTAS of running time

2
𝑜 (
√

1/𝜀)𝑛𝑂 (1) , where 𝜀 > 0 is the given error bound, unless all SNP
problems are solvable in subexponential time.

In the next section, we will demonstrate positive approximation

results for versions of the problem. Before that, however, we need

to note that

Theorem 3. The problem ALPSN is NP-hard, if the features of the
vectors 𝑥,𝑦 ∈ R𝐷 are binary, even if the edge likelihood function 𝑓 is
convex.

Proof. The proof goes by a reduction from the Subset Sum

problem. Fix a set of integers 𝑆 = {𝑠1, . . . , 𝑠𝑛} and an integer 𝑡 that

constitute an instance of the Subset Sum problem. Given even a

linear function 𝑓 , we can easily transform the integers into a binary

vector 𝑥 in an obvious way such that setting the threshold of the

function 𝑓 to 𝑡 , and scaling it if necessary gives us an equivalence

between a solution to the original problem and the solution to

ALPSN. □

Let us end this section with a comment. It might be meaningfully

asked if it is the number of nodes participating in the target set of

links that is, in some sense, the source of hardness for the Attacker.

In the case of general graphs (as opposed to spatial ones), the

following is true: if the likelihood function predicting links is in-

creasing with the set of common neighbors and one targets all

links connecting a group 𝑈 of nodes (i.e., the target is actually a

group of nodes 𝑈 and that the target link set is the collection of

edges between each pair of nodes in𝑈 , i.e., the target set of links

is 𝐻 = {{𝑥,𝑦} : 𝑥,𝑦 ∈ 𝑈 }), the problem of hiding these links is in

P [6, 26]. This can be seen via a greedy algorithm (formalized in

terms of relevant matrices or induced subgraph matchings) and

follows directly from results in the literature (see the results by

[26] (Proposition 3.9) and by [6] (Theorem 3.4, independently)). The

results do not directly transfer to the setting of spatial networks

with the likelihood function based on the distance between nodes,

but we conjecture that for some classes of geometric graphs (in-

cluding geometric random graphs) the problem is also in P. We

base the conjecture on the fact that, e.g., for the so-called geometric

random graphs it is more likely for a pair {𝑥,𝑦} to have a large

common neighborhood, if the nodes 𝑥 and𝑦 are closer to each other

in Euclidean distance.

6 ALGORITHMIC RESULTS
So far, the results we have presented, were mostly negative. Now

we demonstrate that if the edge likelihood function is convex, the

problem can be solved with convex programming if we first fix the

set of nodes that the adversary needs to manipulate. Furthermore,

if this function is linear, we present approximation algorithms for:

• the case when the features are binary and we wish to hide

only a single edge, and

• the case when the features are real-valued but we need to

hide an arbitrary collection of edges.

Observe that convexity of 𝑓 is a natural property: it means that 𝑓

decreases at a slower rate as nodes grow farther apart.

Most importantly, in contrast to the hardness result for SALPSN,

we demonstrate that, if we fix the set of nodes that the Attacker

can manipulate to hide links between all the pairs of nodes in the

target set, then we obtain a feasible solution:

Theorem 4. The problem Fixed-SALPSN can be solved by convex
programming, provided the edge likelihood function 𝑓 is convex.

Proof. Recall, that in this problem, for a fixed 𝑝 , and a convex 𝑝-

vector edge likelihood function, we are given a tuple (𝐺, 𝜃, 𝜖, 𝐻, 𝐹 ),
where 𝐹 ⊆ 𝑉𝐺 is a fixed subset of nodes 𝑣 which we are able to

manipulate in the sense of moving them to some vectors 𝑣 ′ with a

constraint that for each point 𝑣 ∈ 𝐹 it has to be the case that

| |𝑣 − 𝑣 ′ | | ≤ 𝜖.
We are asked to decide if there exists a set 𝐹 ′ of such vectors

{𝑣 ′}𝑣∈𝐹 such that in the graph 𝐺 ′ = (𝑉 ′
𝐺
, 𝐸𝐺 ), where:

𝑉 ′
𝐺 = 𝑉𝐺 \ 𝐹 ∪ {𝑣 ′ : 𝑣 ∈ 𝐹 },

for each {𝑥,𝑦} ∈ 𝐻 it holds that

𝑓 (𝑧 (𝑥,𝑦)) ≤ 𝜃 .
It is clear that, if we denote by 𝑑𝑜𝑚(𝐻 ) the domain of the target set

of pairs, i.e., the set:

𝑑𝑜𝑚(𝐻 ) = {𝑥 ∈ 𝑉𝐺 : ∃ℎ ∈ 𝐻 𝑥 ∈ 𝑒},
then it is only reasonable to search for the set of nodes to displace

inside 𝑑𝑜𝑚(𝐻 ). That is, the task is to decide whether there exists

the a set:

𝑊 = {𝑥 ′
1
, . . . , 𝑥 ′𝑚} ⊆ 𝑑𝑜𝑚(𝐻 ) ∩ 𝐹

such that, for each 𝑖 ≤ 𝑚, it holds that:

| |𝑥𝑖 − 𝑥 ′𝑖 | | ≤ 𝜖
with the property that in the graph 𝐺 ′

with

𝑉 ′
𝐺 = 𝑉𝐺 \𝑊 ∪ {𝑥 ′ : 𝑥 ∈𝑊 }

(with 𝑥 ′ replacing 𝑥 also in the domain of the target set) for each

pair {𝑥,𝑦} ∈ 𝐻 ′
we have that

𝑓 ( |𝑥1 − 𝑦1 |𝑝 , . . . , |𝑥𝐷 − 𝑦𝐷 |𝑝 ) ≤ 𝜃 .
But then, by the choice of𝑊 and convexity of the edge likelihood

function 𝑓 , it is clear that the optimization version of the problem

can be solved by the ellipsoid method for convex programming.

Recall that in the optimization form, we are given a positive real

number 𝜖 , a spatial graph𝐺 = (𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 , a target set
𝐻 of pairs of nodes 𝑥,𝑦 ∈ 𝑉𝐺 such that {𝑥,𝑦} ∉ 𝐸𝐺 , and we are

asked to find

min

𝛿 ∈R𝐷
𝑓 (𝑧 (𝑥,𝑦 + 𝛿)), s.t. | |𝛿 | | ≤ 𝜖

for each pair (𝑥,𝑦) ∈ 𝐻 from the target set. We can do this itera-

tively, by solving a version of the problem for each pair (𝑥,𝑦) ∈ 𝐻 .

Without loss of generality, we may assume that the set 𝐹 is con-

tained in the domain of𝐻 . We assume that, for each pair (𝑥,𝑦) ∈ 𝐻 ,

we are given a convex set 𝐾𝑥 over which we minimize. We assume

that each 𝐾𝑥 is a superset of a ball of radius 𝑟 and at every step

of the search of the basic ellipsoid algorithm the algorithm works

with an appropriate choice of the inner ball parameter. We also

assume that all the values of 𝑓 over 𝐾𝑥 lie in the interval [𝐿𝑥
0
, 𝑅𝑥

0
].

The details are presented in the pseudocode of the Algorithm 1.

By the general properties of the Ellipsoid algorithm (for convex

optimization with constraints), i.e. that the access to the values
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Algorithm 1 ALPS algorithm for convex 𝑓 using the Ellipsoid

algorithm

Input: a real number 𝜖 > 0, a spatial graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) defined
on R𝐷 , a pair of nodes 𝑥,𝑦 ∈ 𝑉𝐺 such that {𝑥,𝑦} ∉ 𝐸𝐺

1: for (𝑥,𝑦) ∈ 𝐻 do
2: 𝐿 := 𝐿𝑥

0
and 𝑅 := 𝑅𝑥

0

3: while 𝑅 − 𝐿 > 𝜖
2

do
4: 𝜃 := 𝐿+𝑅

2

5: 𝑟 ′ := 𝑟𝜖
2(𝑅0−𝐿0)

6: Apply the Ellipsoid algorithm to the set

𝐾𝜃
𝑥 := {𝑧 ∈ 𝐾 : 𝑓 (𝑧) ≤ 𝜃 }

with parameter 𝑟 ′

7: if Ellipsoid returns YES then
8: 𝑢 := 𝜃

9: Set 𝑧 ∈ 𝐾𝜃
𝑥 as the point returned by Ellipsoid

10: else
11: 𝐿 := 𝜃

12: Return the point 𝑦 for which 𝑧 is the value of the function

𝑧 applied to the pair (𝑥,𝑦).

and the gradients of 𝑓 is sufficient for the choice of 𝑟 ′ to make the

binary search algorithm to give correct answers, it follows that the

above is the correct algorithm. □

Furthermore, there exist algorithms for some other restricted

variants of ALPSN and SALPSN.

Theorem 5. There exists a 2-approximation polynomial time algo-
rithm solving the problem of ALPSN, if the features of the vectors are
binary and if the edge likelihood function 𝑓 is linear.

Proof. Recall that we are given a real number 𝜃 ∈ [0, 1], and
a spatial graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 , and a pair of nodes

𝑥,𝑦 ∈ 𝑉𝐺 such that {𝑥,𝑦} ∉ 𝐸𝐺 , and we are asked to compute

a 𝐷-vector 𝑦′ = (𝑦′
1
, . . . , 𝑦′

𝐷
) with | |𝑦 − 𝑦′ | | minimized such that

𝑓 (𝑧 (𝑥,𝑦′)) ≤ 𝜃 . If the features of the vectors are binary, then the

result follows from Theorem 5.4 of [13] on ACRE-learnability. The

reason the Lowd & Meek algorithm works is that ALPSN with the

conditions as above is indeed an adversarial linear classification

problem. Since the features of the vectors are binary, the Attacker

wishes to switch some of these binary values, thus dislocating

the vectors themselves, so as the linear function 𝑓 outputs values

bounded by 𝜃 . The fact that 𝑓 is linear amounts to being expressible

as ∑︁
𝑖≤𝐷

𝑤𝑖 |𝑧𝑖 − 𝑧𝑎𝑖 |

for some base instance 𝑧𝑎 = (𝑧𝑖 )𝑖≤𝐷 and numbers𝑤𝑖 . This serves

as an ideal minimum-cost instance and gives us the opportunity to

use the property that linear functions define the loss of an instance

as a weighted sum of differences in features, relative to the base

instance. Let 𝑣 be a 𝐷-vector and denote by 𝐶𝑣 the set of features

that have different values between 𝑧𝑎 and 𝑣 . Since 𝑓 is linear, it

is sufficient to consider the loss or cost of the 𝐷-vector 𝑣 as the

cardinality of the set 𝐶𝑣 . The algorithm begins with an arbitrary

instance𝑦′′ (i.e., such that 𝑓 (𝑧 (𝑥,𝑦′′)) ≤ 𝜃 .) The goal now is to find

subsequent replacements of𝑦′′ that keep the value of the likelihood

function 𝑓 (𝑧 (𝑥,𝑦′′)) below the threshold, while minimizing the

norm of 𝑥 − 𝑦′′, up to the point where any swap in some value

of any feature 𝑦𝑖 would result in 𝑓 (𝑧 (𝑥,𝑦′′)) surpass 𝜃 . Since, by
Theorem 5.4 of [13], Boolean linear classifiers are ACRE (adversarial

classifier reverse engineering) 2-learnable (i.e., where costs are

within a constant factor of 2 of the so-called minimal adversarial

cost) under uniform linear cost functions. □

Theorem 6. There exists a 2-approximation polynomial time algo-
rithm solving the problem of SALPSN, if the features are real-valued.

Proof. If the features of the vectors are real-valued, then the

result follows by the use of a box-constrained L-BFGS to perform

a line-search of approximation, along the lines of applying the

algorithm from Section 4.1 in [20]. Recall that we are given a real

number 𝜃 ∈ [0, 1], a spatial graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) defined on R𝐷 , a
positive integer 𝑘 < |𝑉𝐺 |, a subset 𝑆 ⊆ 𝑉𝐺 of vectors from the set of

nodes of𝐺 , and a target set𝐻 ⊆ 𝑉𝐺 ×𝑉𝐺 of pairs of nodes such that

for each {𝑥,𝑦} ∈ 𝐻 it holds that {𝑥,𝑦} ∉ 𝐸𝐺 . We are now asked to

compute the set 𝐴 ⊆ 𝑆 of at most 𝑘 vectors 𝑣 ′ = (𝑣 ′
1
, . . . , 𝑣 ′

𝐷
) with

minimal | |𝑣 − 𝑣 ′ | | such that in the graph 𝐺 ′ = (𝑉 ′
𝐺
, 𝐸𝐺 ), where

𝑉 ′
𝐺 = 𝑉𝐺 \𝐴 ∪ {𝑣 ′ : 𝑣 ∈ 𝐴},

for each {𝑥,𝑦} ∈ 𝐻 it holds that 𝑓 (𝑧 (𝑥,𝑦)) ≤ 𝜃 .We can assume that

𝑓 has an associated continuous loss function, denoted as usual by

𝑙𝑜𝑠𝑠𝑓 . The task amounts to solving the following box-constrained

optimization problem:

• for all the vectors in 𝐴 minimize | |𝑣 − 𝑣 ′ | | subject to:
(1) 𝑓 (𝑧 (𝑥,𝑦)) ≤ 𝜃 , and
(2) |𝐴| ≤ 𝑘 .

Let 𝐷 (𝑣, 𝜃 ) denote any function attaining an appropriate single

minimizing vector 𝑣 ′. As the exact computation of 𝐷 (𝑣, 𝜃 ) is hard,
one can apply a box-constrained L-BFGS in order to approximate

the minimizers. We therefore greedily find the least 𝜉 > 0 such that

𝜉 | |𝑣 ′ − 𝑣 | | + 𝑙𝑜𝑠𝑠𝑓 (𝑣 ′, 𝜃∗)

is minimized for each 𝑣 ∈ 𝐴, where 𝜃∗ ≤ 𝜃 . If 𝑓 was convex and

𝑘 = 1, then we could get an exact solution, but in the general case,

we get a 2-approximation. □

7 CONCLUSION
We presented the first systematic study of adversarial link pre-

diction in spatial networks, where the likelihood of a link is an

increasing function of weighted distance between attribute vectors

associated with the incident nodes. In this problem, the adversary

aims to prevent positive identification of a set of links by manipulat-

ing the attributes of a subset of nodes on the network. We showed

that this problem is NP-hard (and inapproximable) in general, and

when features are binary, it is NP-hard even if there is a single tar-

get link that the adversary wishes to hide. However, if the features

are real-valued and we fix the set of nodes that the adversary can

manipulate, the problem can be solved using convex programming.

Furthermore, the single-target-link case with binary features ad-

mits a 2-approximation in polynomial time, as does the general

case with real-valued features.
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