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ABSTRACT
In a pre-election period, candidates may, in the course of the public

political campaign, adopt a strategic behavior by modifying their

advertised political views, to obtain a better outcome in the election.

This situation can be modeled by a type of strategic candidacy game,

close to the Hotelling-Downs framework, which has been investi-

gated in previous works via political views that are positions in a

common one-dimensional axis. However, the left-right axis cannot

always capture the actual political stances of candidates. Therefore,

we propose to model the political views of candidates as opinions

over binary issues (e.g., for or against higher taxes, abortion, etc.),

implying that the space of possible political views can be repre-

sented by a hypercube whose dimension is the number of issues.

In this binary strategic candidacy game, we introduce the notion of

local equilibrium, broader than the Nash equilibrium, which is a

stable state with respect to candidates that can change their view

on at most a given number of issues. We study the existence of local

equilibria in our game and identify natural conditions under which

the existence of an equilibrium is guaranteed. To complement our

theoretical results, we provide experiments to empirically evaluate

the existence of local equilibria and their quality.
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1 INTRODUCTION
Strategic voting [20] is a major topic of interest and has been widely

studied in Computational Social Choice [4] and Algorithmic Game

Theory [22]. While strategic behavior is typically imputed to voters,

candidates can also manipulate in real elections. Strategic candi-

dacy [10] occurs when a candidate may strategize by withdrawing

from the election in order to obtain a better outcome. Another

perspective by which a candidate can be strategic, is to exhibit

an insincere political stance [14, 26]. Instead of presenting them-

selves truthfully, such candidates adopt a dishonest political posi-

tion whenever it is beneficial.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

In order to model the political stance taken by candidates, most

papers use a one-dimensional axis to describe the left-right axis

of the political spectrum, and study the existence of equilibria in

this context (see, e.g., [14]). However, such left-right representation

of the political spectrum fails to capture the complexity of current

political debates. Benoit and Laver [3] claim that “this drastically
oversimplified notion of a ‘left-right dimension’ refers to potentially
separable issues [...] Indeed, it is very common to need more than one
dimension to describe key political differences” (see also [16]).

A more accurate perspective to describe candidates’ positions in

the political spectrum can be to consider a list of issues on which

each candidate is either “in favor” or “against” (e.g., for or against

higher taxes, euthanasia, abortion, etc.). This modeling of the polit-

ical spectrum can be represented by a hypercube whose dimension

is the number of issues. Thus a candidate can stand on a vertex of

the hypercube, and attracts voters who agree with her on all issues,

but also the voters for whom she is the “closest” candidate.

Consequently, given a distribution of the voters on the hypercube

of issues and the position of her competitors, a candidate may be

willing to move strategically from the vertex corresponding to her

initial truthful political stance, to another position in the hypercube,

in order to obtain a better outcome in the election. This game

defines a binary variant of strategic candidacy that corresponds to

a Hotelling-Downs game [7, 15] on a hypercube structure.

In this model, some moves from a position to another in the hy-

percube of issues can be unlikely to occur, when these positions are

too far apart. Indeed, a candidate would not benefit from expressing

very contrary opinions because voters would uncover the strategic

and insincere aspect of such move, and would not vote for this

dishonest candidate. Thus, it seems realistic to assume that only

local moves would be performed. This leads to the definition of a

new solution concept, called t-local equilibrium, which generalizes

the notion of Nash equilibrium, and captures stability w.r.t. moves

to positions that differ on at most t issues from the current one.

In this article, we investigate the existence of local and Nash

equilibria in binary strategic candidacy games, both theoretically

and empirically, and focus on several natural restrictions, either on

the distribution of voters or on the structure of candidates’ strategy

sets. Specifically, we study the impact of restricting to a single-

peaked distribution of voters. Such restriction can be interpreted as

a homogeneous voting body in which there exists a modal position

corresponding to the most frequent political stance; the other posi-

tions becoming less and less frequent when moving away from this

peak position. Another interesting type of restriction is related to

the set of positions in the hypercube a candidate can take. A ratio-

nale for this restriction comes from the fact that candidates might
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not want to deviate too much from their truthful position. More-

over, there could be correlations between issues (or more generally

some structure over the set of issues) that imply some forbidden

positions (e.g., for abortion and against euthanasia).

2 RELATEDWORK
Several attempts to tackle similar problems have been found in

the literature, coming from a diversity of areas. The Hotelling-

Downs model has existed since its original formulation by Hotelling

[15] on the well-known problem of ice-cream vendors positioning

themselves strategically on a beach. This idea was later translated

to voting theory by Downs [7], adapting the strategic location

of vendors to a strategic placement of candidates on a political

spectrum. The Hotelling-Downs model (HDM) is one of the most

widespread models to interpret scenarios coming both from politics

and from economics. A range of variants have been studied over the

years, both in the context of facility location (the game of companies

placing their facilities on a given metric space, trying to attract

customers assumed to seek for the closest available seller) [6, 11]

and in voting models for positioning of candidates [24].

Sengupta and Sengupta [27] were among the first to make links

between the literature of the HDM with that of strategic candidacy,
an election game where candidates may abstain at will, in order

to achieve a result closer to their preference. The original model

of strategic candidacy was introduced by Dutta et al. [10], being

followed along the years by multiple different variants, e.g., mixing

strategic voting and strategic candidacy [5], understanding its equi-

libria [18, 25], or assuming given behaviors for candidates [17, 23].

The first papers (to our knowledge) trying to make the fusion

between the Hotelling-Downs model for elections and strategic

candidacy are Sabato et al. [26] (with their real candidacy games),
and Harrenstein et al. [14] (with their HDM for party nominees).
Quite similar models (although with a different perspective) come

from the context of Algorithmic Game Theory, with Voronoi games:
strategic positioning of players on a metric space, seeking to max-

imize the amount of points that fall the closest to them. Despite

the extensive literature on these games for continuous settings and

sequential decisions (see, e.g., [1, 2]), the discrete-setting variant

of Voronoi games on graphs was relatively recently discussed by

Dürr and Thang [9] with the complexity analysis of deciding the

existence of a Nash equilibrium. In our binary strategic candidacy

game, as it is classical in Voronoi games, the voters split their vote

among candidates that are the closest to their truthful position.

However, our candidates do not aim to maximize the number of

votes they receive (contrary to Voronoi games), but want to get a

better outcome for the election (like in strategic candidacy). The
analysis of our game, which is based on a hypercube, has some

similarities with that of Voronoi games in transitive graphs [12], in

particular on the importance of antipodal positions in the graph.

As mentioned by Harrenstein et al. [14], there is really scarce

literature on the HDM for elections with multiple participants and

restricted strategy sets. In particular, and even though similar games

have been studied for general graphs, no evidence was found of an

attempt of applying the ideas of Hotelling-Downs specifically to a

hypercube over issues, as we do in this article. Themain idea of such

a model comes from the setting of Judgment Aggregation (JA) [19].

In this context, Nehring and Puppe [21] have notably defined gen-
eral single-peaked structures, from which we take inspiration to

define single-peaked distributions of voters on the hypercube. The

use of the Hamming distance in our study was similarly inspired

by this field of research (though other alternatives could have been

considered from the vast JA literature, see, e.g., [8]).

3 THE MODEL
For an integer k ∈ N, we define [k] := {1, . . . ,k}. We are given a

set of voters N = [n], and a set of candidates C = {c1, . . . , cm }. We

assume that the population (voters and candidates) is interested

in a fixed number K ∈ N of relevant binary issues. All possible

opinions on these binary issues are given by the setH = {0, 1}K .

A position p ∈ H representing a global opinion over all issues is

a K-vector p = (p1,p2, . . . ,pK ) where pj ∈ {0, 1} for all j ∈ [K].
The distance between two positions p and p′ in H is defined as

the Hamming distance between the two corresponding vectors, i.e.,

dist(p,p′) = |{j ∈ [K] : pj , p′j }|. The possible positions can be

represented on a hypercube graphGH := (H ,E) where {p,p′} ∈ E
iff dist(p,p′) = 1 for every positions p,p′ ∈ H . The antipodal

position p̂ of position p ∈ H is the position where all opinions are

reversed compared to p, i.e., p̂i = 1 − pi for every i ∈ [K].
Each voter v ∈ N and each candidate c ∈ C has a position on

the hypercube, pv ∈ H and pc ∈ H , respectively, representing her

truthful opinion about all binary issues. The voters are assumed to

focus on the announced opinions of the candidates on the binary

issues in order to form their preferences over the candidates. More

precisely, the voters prefer the candidates whose announced opin-

ions are closer to theirs. The preferences of each voter v ∈ N over

positions in the hypercube are represented by a weak order ≿v
over H such that p ≿v p′ iff dist(p,pv ) ≤ dist(p′,pv ) (the strict
and symmetric parts of ≿v are denoted by ≻v and ∼v , respectively).

The voters can derive, from their fixed preferences over the posi-

tions in the hypercube, their preferences over the candidates. The

preferences of each voter v ∈ N over the candidates, w.r.t. a profile

of positions s = (s1, . . . , sm ) ∈ Hm
where si is the announced po-

sition of candidate ci ∈ C , can be represented by a weak order ≿sv
over C defined as follows: ci ≿

s
v c j iff si ≿v sj , for every i, j ∈ [m].

The candidates run for an election whose winner is determined

by a voting rule F :≿s→ C that takes as input the preferences of

the voters according to a state s ∈ Hm
of announced positions of

the candidates, or equivalently, the truthful positions of all voters as

well as the description of s, and returns awinning candidate inC .We

assume F is resolute therefore, if needed, we use a deterministic tie-

breaking rule that is a linear order ▷ overC such that c1▷c2▷ . . . cm .

We focus on a voting rule which is a variant of plurality, where

each voter has one point that she divides among the candidates

she ranks in the top indifference class of her preference ranking,

and F returns the candidate with the highest score. The score of

each candidate c ∈ C w.r.t. voting rule F on preference profile ≿s is

given by a scoring function sc≿
s

F
: C → R (when the context is clear

the parameters may be omitted) and F (≿s) ∈ argmaxc ∈C sc≿
s

F
(c).

Example 3.1. Consider an instance with two issues, two can-

didates c1 and c2, and five voters whose truthful positions are
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p1 = p2 = (0, 0), p3 = (1, 0), p4 = (0, 1), and p5 = (1, 1). The two can-
didates are such that pc1 = (1, 0) and pc2 = (0, 1) and they announce
such truthful positions. The voters can be described as weights re-

lated to positions in the hypercube as represented below (left), and

their preferences over positions and over candidates can be derived

as done below (right). Thus, we have scF(c1) = scF(c2) = 2.5 and

c1 wins by the tie-breaking rule.

2

1

1

1

1, 2 : (0, 0) ≻ (1, 0) ∼ (0, 1) ≻ (1, 1) ⇒ c1 ∼ c2
3 : (1, 0) ≻ (0, 0) ∼ (1, 1) ≻ (0, 1) ⇒ c1 ≻ c2
4 : (0, 1) ≻ (0, 0) ∼ (1, 1) ≻ (1, 0) ⇒ c2 ≻ c1
5 : (1, 1) ≻ (1, 0) ∼ (0, 1) ≻ (0, 0) ⇒ c1 ∼ c2

3.1 Binary Strategic Candidacy (BSC) Game
The candidates may announce opinions on the issues that do not

exactly fit their truthful opinion, in order to alter the outcome of the

election towards one they consider better. Therefore, analogously
to the voters, each candidate c ∈ C also expresses preferences over

the candidates, that are represented by a weak order ≿c over C .
Basically, since they run for the election, all candidates prefer to

be elected than that another candidate is elected, i.e., for every

candidate c ∈ C , ≿c is such that c ≻c c
′
for every c ′ ∈ C \ {c}. Note

that the candidates may not be willing to announce any possible

position in the hypercube (they may not want to lie too much com-

pared to their truthful position). The subset of possible announced

positions for candidate ci ∈ C is given byHi ⊆ H where pci ∈ Hi .

How the candidates can strategize by advertising political views

can be modelled by a strategic game: the Binary Strategic Candidacy
(BSC) game. In this game, the set of players corresponds to the set of

candidates, the set of strategies of each candidate ci ∈ C is given by

Hi , and a state s is a profile of announced positions s = (s1, . . . , sm )
where si ∈ Hi for each candidate ci ∈ C . A state s is only evaluated
via its winner F (≿s). By abuse of notation, we may directly write

F (s) to denote the winner of the election at state s according to the
fixed preferences of the voters over the positions. A candidate ci has
a better response from state s if there exists a position s ′i ∈ Hi such

that F ((s ′i , s−i )) ≻ci F (s). We can thus redefine the well-known

solution concept of Nash equilibrium for the BSC game.

Definition 3.2 (Nash equilibrium). A state s ∈
∏m

i=1Hi is a Nash

equilibrium if there is no strategy s ′i ∈ Hi for a candidate ci ∈ C
such that F ((s ′i , s−i )) ≻ci F (s).

A Nash equilibrium is immune to unilateral deviations of candi-

dates to another position that would strictly improve the outcome

of the election with respect to their preferences. The considered

deviations for a candidate c can be of any type withinHc . However,

it may not be realistic for a candidate to pass from one announced

position to a radically different one: the voters may not trust her.

We thus relax the solution concept of Nash equilibrium by consid-

ering stability w.r.t. reasonable deviations that are not too far away

from the current position of the candidate. This solution concept is

the t-local equilibrium, given a maximum distance t ∈ [K].

Definition 3.3 (t-local equilibrium). A state s ∈
∏m

i=1Hi is a t-
local equilibrium if there is no strategy s ′i ∈ Hi for a candidate

ci ∈ C such that dist(s ′i , si ) ≤ t and F ((s ′i , s−i )) ≻ci F (s).

A Nash equilibrium is equivalent to aK-local equilibrium. Also, a

t-local equilibrium is a t ′-local equilibrium for every 1 ≤ t ′ ≤ t ≤ K .

Therefore, in a given BSC game, if a Nash equilibrium exists then a t-
local equilibrium exists for every t ∈ [K], and if a t-local equilibrium
does not exist then no Nash equilibrium can exist.

3.2 Restrictions on the BSC Game
Distribution of voters. Each voter v ∈ N is characterized

by her truthful opinion pv ∈ H . This means that we can

alternatively formulate the set of voters as a distribution of
voters over H , i.e., a function fN : H → N such that∑
p∈H fN (p) = n, counting how many voters have each po-

sition p ∈ H as their truthful opinion. Let [x , z] := {y ∈

H : ∃ a shortest path in GH between x and z passing through y}

denote all positions between x and z. A distribution fN is said to be

single-peaked if there exists a peak position p∗ ∈ H such that for

every positions x ,y ∈ H , y ∈ [x ,p∗] implies fN (x) ≤ fN (y). This
definition encodes the idea of having a most popular opinion p∗

such that, when walking away from it, we find only positions that

are at most as popular. A particular case of single-peaked distribu-

tion is the uniform distribution, in which fN : H → N is constant.

By abuse of notation, for S ⊆ H , we denote by fN (S) the number

of voters whose truthful position is in S , i.e., fN (S) :=
∑
p∈S fN (p).

Candidates’ preferences. Beyond the fact that the preferences of

the candidates are such that each candidate strictly prefers her-

self to any other candidate, they can be of several types. We will

particularly focus in the article on the following types:

• fixed: the candidates’ preferences are not affected by the posi-

tion chosen by the other candidates;
1

• narcissistic: the candidates do not care about the winner if

they are not elected, i.e., for every candidate c ∈ C , ≿c is such that

c ′ ∼c c
′′
for every c ′, c ′′ ∈ C \ {c}.

Note that the two types of candidates’ preferences coincide when

there are only two candidates, and that narcissistic preferences

are a specific type of fixed preferences. It follows that a t-local
equilibrium under fixed candidates’ preferences is also a t-local
equilibrium under narcissistic candidates’ preferences.

Candidates’ strategies. It would seem unnatural if the only possi-

ble positions that a candidate may announce were, e.g., antipodal

positions. Therefore, a realistic assumption on the set of strategies of

a candidate is its connectedness in the hypercube. Another natural

restriction would be to assume that the set of strategies of candidate

ci ∈ C is a ball of a given radius b, meaning that all positions at

distance at most b from her truthful position are positions that she

accepts to announce (a candidate accepts to lie on at most b issues

no matter which they are), i.e.,Hi := {p ∈ H : dist(p,pci ) ≤ b}.2

Case ofm = 2 candidates. One can exploit the geometric struc-

ture of the hypercube, which provides particular insights for the

case of two candidates. When we deal with two candidates, the

hypercubeH can be easily partitioned into sets of influence asso-
ciated with each candidate and a set of indifferent positions. For
an index i ∈ {1, 2}, let c−i denote candidate c3−i . Given a strat-

egy profile s = (s1, s2), the set of influence of candidate ci for

1
Note that candidates’ preferences determined by the distances between their truthful

and their rivals’ truthful positions, are a particular case of fixed preferences.
2
Note that candidates’ strategies that are balls induce a symmetric neighborhood

around the truthful position, which implicitly assumes independence of the issues.
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i ∈ {1, 2} is denoted by Psi and represents the set of positions

which are the truthful positions of the voters who strictly prefer

ci to c−i , i.e., P
s
i := {p ∈ H : dist(p, si ) < dist(p, s−i )}. Given a

strategy profile s = (s1, s2), the set of indifferent positions is de-
fined by I s := {p ∈ H : dist(p, si ) = dist(p, s−i )}. It follows that,
given a strategy profile s = (s1, s2), the set of all possible positions
can be partitioned as follows:H = Ps

1

·∪ Ps
2

·∪ I s. This means that

for every voter v ∈ N , it holds that pv ∈ Psi ⇔ ci ≻
s
v c−i and

pv ∈ I
s ⇔ ci ∼

s
v c−i . Note that the voters whose truthful position

is in I s do not matter for the computation of the scores of the two

candidates, since their vote is equally divided between the two

candidates. Therefore, the winner w.r.t. F in state s only depends

on the number of voters whose truthful positions are in Ps
1
and

in Ps
2
, i.e., F (s) ∈ argmaxci ∈C fN (P

s
i ). Hence, understanding the

structure of the sets of influence is key for the analysis of the game.

First observe that we can focus on the parts of the strategy

positions that are different between the two candidates. Given

s = (s1, s2), let X s
= and X s

, denote the sets of issues on which

positions s1 and s2 agree and disagree, respectively, i.e., X s
= :=

{j ∈ [K] : (s1)j = (s2)j } and X s
, := {j ∈ [K] : (s1)j , (s2)j }. By

definition, we have [K] = X s
=
·∪ X s
, and |X s

, | = dist(s1, s2). Let
dists,(.) denote the distance calculated only on the issues of X s

,.

The sets of influence can be defined only based on dists,(.).

Observation 3.1. For every state s ∈ H1 × H2, i ∈ {1, 2}, and
position p ∈ H , we have p ∈ Psi ⇔ dists,(p, si ) < dists,(p, s−i ), and
p ∈ I s ⇔ dists,(p, si ) = dist

s
,(p, s−i ).

Secondly, we can observe that the sets of influence can be de-

fined w.r.t. the distance between the strategy positions of the two

candidates. Given s = (s1, s2) and r s := dist(s1, s2), let dr s denote
the critical distance up to which any given candidate has ensured

influence, i.e., dr s := ⌈
r s
2
⌉ − 1.

Observation 3.2. For every state s ∈ H1 × H2, i ∈ {1, 2}, and
position p ∈ H , we have p ∈ Psi ⇔ dists,(p, si ) ≤ dr s and p ∈ I s ⇔
r s is even and dists,(p, si ) =

r s
2
.

Thus, r s is even iff I s , ∅. An interesting further remark is that

when we change one of the two strategy positions of a state on ex-

actly one issue, then no position can directly pass from an influence

set to another, it must intermediately pass by the indifference set,

as stated in the next lemma. We denote by P̃si the set of positions
in Psi that are at the limit of the set of influence of candidate ci in s,
i.e., P̃si := {p ∈ Psi : dist(p, si ) = dist(p, s−i ) − 1}. For a given subset

P ⊆ H , let P |x=e denote the subset of positions from P whose value

on issue x is equal to e ∈ {0, 1}, i.e., P |x=e := {p ∈ P : px = e}.

Lemma 3.4. If candidate ci for i ∈ {1, 2} performs a 1-local de-
viation from state s = (si , s−i ) to state s′ = (s ′i , s−i ) where position
strategies si and s ′i differ on issue x ∈ [K], then:

• if r s is odd, then r s
′

is even and Ps
′

i = Psi \(P̃
s
i ) |x=1−(s ′i )x

, Ps
′

−i =

Ps
−i \ (P̃

s
−i ) |x=(s ′i )x

and I s
′

= (P̃si ) |x=1−(s ′i )x ∪ (P̃
s
−i ) |x=(s ′i )x

,

• otherwise (i.e., r s is even), then r s
′

is odd and Ps
′

i = Psi ∪

I s
|x=(s ′i )x

, Ps
′

−i = Ps
−i ∪ I

s
|x=1−(s ′i )x

, and I s
′

= ∅.

Finally, one can observe that the set of influence of a candidate

is composed of the antipodal positions of the positions in the set of

influence of the other candidate, i.e., for every state s ∈ H1 ×H2,

i ∈ {1, 2}, and position p ∈ H , we have p ∈ Psi iff p̂ ∈ Ps
−i , and

p ∈ I s iff p̂ ∈ I s. Thus, the sets of influence always have the same

size for both candidates. Hence, under a uniform distribution of

voters, both candidates get the same score in all states, ensuring

the existence of Nash equilibria.

Proposition 3.5. Every state of a BSC game is a Nash equilibrium
whenm = 2 under a uniform distribution of voters.

4 EXISTENCE OF A LOCAL EQUILIBRIUM
First, a Nash equilibrium may not exist in the game, since even a

1-local equilibrium may not exist under rather strong restrictions.

Proposition 4.1. A 1-local equilibrium may not exist in a BSC
game even whenm = 2, and K = 3.

Proof. Consider a BSC game where m = 2, n = 3 and K =
3. The sets of candidates’ strategies are H1 := {(0, 1, 0), (0, 1, 1)}

and H2 := {(1, 0, 1), (1, 1, 1)}. The distribution of voters on the

hypercube as well as the candidates’ strategies are represented

below on the left (red squares for H1 and green circles for H2).

The table below (right) reports all possible states of the game; the

number of votes that each candidate gets is given for each state,

and it is written in bold to represent the winner. From each of these

states, there is a 1-local deviation, denoted by an arrow towards a

best response for the candidate mentioned next to the arrow.

0

1

0 1

0

1

0

0

s2 ∈ H2

(1, 0, 1) (1, 1, 1)

s 1
∈
H

1 (0, 1, 0) (1, 2)
c2
←−− (1.5, 1.5)

c1 ↓ ↑ c1

(0, 1, 1) (1.5, 1.5)
c2
−−→ (1, 2)

□

However, a 2-local equilibrium always exists for two candidates

and an odd number of voters, by considering the outcome pm ∈ H
of the majority rule from Judgment Aggregation [19] over a voter

preference profile given by the truthful positions of all voters, i.e.,

(pm )j = argmaxe ∈{0,1} fN (H |j=e ) for all j ∈ H , in other words

pm captures the majoritarian view on each issue.

Theorem 4.2. There always exists a 2-local equilibrium in a BSC
game whenm = 2, n is odd, and pm ∈ H1 ∩H2.

Sketch of proof. Given the geometric structure of the influence

sets for two candidates, any 1-local deviation by c2 from state s0 =
(pm ,pm ), where c1 wins, will result in cutting the hypercube in

half (along the issue that was changed). However, by definition, pm

is always on the half of the hypercube that has the most voters,

therefore c1 would still win. For 2-local deviations from s0, we use
the fact that the influence sets for any 2-local move will be included

in those of the 1-local deviations that lead to them (two possible

ways). Given that on both cases the set is a cut of the hypercube,
and that pm always has more voters on its half of the cut, by adding

both inequalities, we can conclude that c1 would still win. □

However, under the same conditions, this positive result cannot

be extended to 3-local equilibria, as stated below.
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Proposition 4.3. A 3-local equilibrium may not exist in a BSC
game even whenm = 2, K = 3, and the sets of candidates’ strategies
coincide, contain pm and are connected.

Proof. Consider a BSC game withm = 2, n = 61 andK = 3. The

sets of strategies areH1 = H2 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

The distribution of voters on the hypercube is represented below

(left), where the set of strategies of both candidates is marked by

black vertices. In this game, pm = (1, 1, 1). The table below (right)

reports all possible states of the game; the number of votes that

each candidate gets is given for each state, and it is written in bold

to represent the winner. One can observe that, from each of these

states, there is a 3-local deviation.

7

9

8 8

8

10

5

6

s2 ∈ H2

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

s 1
∈
H

1

(0, 0, 0) (30.5, 30.5) (30, 31) (30, 31) (31, 30)
(1, 0, 0) (31, 30) (30.5, 30.5) (30, 31) (30, 31)
(1, 1, 0) (31, 30) (31, 30) (30.5, 30.5) (30, 31)
(1, 1, 1) (30, 31) (31, 30) (31, 30) (30.5, 30.5)

□

Moreover, deciding about the existence of a Nash equilibrium,

and even a 2-local equilibrium, is computationally hard.

Theorem 4.4. Deciding whether there exists a t-local equilibrium
is NP-hard, for t ∈ {2, . . . ,K}, even under narcissistic preferences.

Sketch of proof. We perform a reduction from Exact Cover

by 3-Sets (X3C), a problem known to be NP-complete [13]. In an

instance of X3C, we are given a set X = {x1,x2, . . . ,x3q } and a set

S = {S1, S2, . . . , Sr } of 3-element subsets of X and we ask whether

there exists an exact cover, i.e., a subset S ′ ⊆ S such that every

element of X occurs in exactly one member of S ′, in other words

S ′ is a partition of X . We construct a BSC game as follows. First we

consider K = 3q + 4 issues, and we create (3q + 10)wp + 23 voters,

given an arbitrary integerwp such thatwp > 24, where the voters

are distributed as follows on the positions of the hypercube:

• wp voters on each position ei = (0, . . . , 0, 1, 0, . . . , 0) such that

eii = 1 and eij = 0 for every j ∈ [3q + 4] \ {i}, for every i ∈ [3q];

• 5

2
wp + 11 voters on position p1 := (0, . . . , 0, 1, 1, 0, 0);

• 7 voters on position p2 := (0, . . . , 0, 0, 0, 1, 1);
• 5

2
wp + 3 voters on position p3 := (0, . . . , 0, 0, 0, 1, 0);

• 2 voters on position p4 := (0, . . . , 0, 0, 0, 0, 1).

We create q + 2 candidates and denote the set of candidates by

C := CS ∪ {ca , cb }, where the set CS :=
⋃q
j=1 c j regroups the

so-called subset-candidates. The sets of strategies are:

• Hc := HS :=
⋃r
j=1{s

j = (s1, . . . , s3q , 0, 0, 0, 0) ∈ {0, 1}
K

:

∀i ∈ [3q], si = 1 iff xi ∈ Sj } for every c ∈ CS ;

• Hca := {s1a := (0, . . . , 0, 1, 0, 0, 1), s2a := (0, . . . , 0, 1, 1, 0, 0)};

• Hcb := {s1b := (0, . . . , 0, 0, 0, 1, 1), s2b := (0, . . . , 0, 1, 0, 1, 0)}.

The candidates’ truthful positions are arbitrary and their pref-

erences are narcissistic. We report in Table 1 the number of votes

that candidates ca and cb can get from positions p1, p2, p3, and p4.
One can prove that there exists a Nash equilibrium in the BSC

game iff there exists a subset of S that is a partition of X .

The idea is that only candidates ca and cb may have an incentive

to deviate and they would do so only if there is a position ei for
i ∈ [3q] not “covered” by the strategy position of a subset-candidate.

Table 1: Number of votes, from the voters whose truthful
position is in {p1,p2,p3,p4}, that candidates ca and cb get ac-
cording to all their possible strategies.

Hcb

s1b s2b

Hca
s1a ( 5

2
wp + 12,

5

2
wp + 11) (

5

4
wp + 11,

15

4
wp + 12)

s2a ( 5
2
wp + 11,

5

2
wp + 12) ( 5

2
wp + 12,

5

2
wp + 11)

A better response for candidate ca or cb would trigger a cycle of

local deviations, preventing a Nash equilibrium to exist, as it can

be deduced from Table 1. Moreover, the only deviations that ca or

cb can make are towards another strategy position at distance 2

from their previous strategy position. It follows that the complexity

result also holds for 2-local equilibria. □

The question is nevertheless open whether hardness still holds

for 1-local equilibria or connected candidates’ sets of strategies.

Remark that there exists a fixed-parameter tractable algorithm w.r.t.

the number of issues and candidates for deciding the existence of a

t-local equilibrium, since it suffices to check all the possible states

of the game (by the game’s structure, checking whether a candidate

has an improving Nash deviation may already take O(2K ) steps).

Nevertheless, positive results can be found when restrictions are

added on the distribution of voters or on candidates’ strategies.

4.1 Restrictions on the Distribution of Voters
Restricting to a single-peaked distribution of voters allows to guar-

antee the existence of a Nash equilibrium for two candidates.

Theorem 4.5. There always exists a Nash equilibrium in a BSC
game under a single-peaked distribution of voters whenm = 2 and
the peak position p∗ is included inH1.

Sketch of proof. Consider any state s = (s1, s2) ∈ H1 × H2

where c1 chooses the peak position, i.e., s1 = p∗. We will prove

that sc(c1) ≥ sc(c2) must hold and thus, by the tie-breaking rule,

c1 always wins and c2 cannot change the outcome by deviating to

another strategy. If s1 = s2, then we trivially have sc(c1) = sc(c2),
and we are done. We thus assume that s1 , s2. One can show that

we can construct a perfect matching φ : Ps
1
→ Ps

2
such that each

position p1 ∈ P
s
1
in on a shortest path between φ(p1) ∈ P

s
2
and p∗

in GH implying, by single-peakedness, that sc(c1) ≥ sc(c2). □

However, this positive result cannot be extended to more than

two candidates since even a 1-local equilibrium may not exist.

Proposition 4.6. A 1-local equilibrium may not exist in a BSC
game even whenm = 3, K = 2, the candidates’ preferences are fixed,
and the distribution of voters is uniform.

Proof. Consider a BSC game with m = 3, K = 2 and n is a

multiple of 2
K
. The voters are distributed inH in such a way that

there are w := n
2
K voters on each position p ∈ H . The sets of

strategies are H1 = H2 = {(0, 0), (1, 0)} and H3 = {(0, 1), (1, 1)}.

The distribution and the strategies are represented below on the

left (red squares forH1, green circles forH2, and blue diamonds for

H3). The candidates’ preferences are fixed and given below (right).
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w

w

w

w c1: c1 ≻ c3 ≻ c2
c2: c2 ≻ c1 ≻ c3
c3: c3 ≻ c2 ≻ c1

The table below reports all possible states of the game; the num-

ber of votes that each candidate gets is given for each state, and it

is written in bold to represent the winner. One can observe that,

from each of these states, there is a 1-local deviation.

s2 ∈ H2

(0, 0) (1, 0)

s 1
∈
H

1 (0, 0) (w,w, 2w)
c2
−−→ (w, 32w,

3

2
w)

c1 ↓ ↓ c1

(1, 0) ( 32w,w,
3

2
w)

c2
←−− ( 7

6
w, 7

6
w, 53w)

s3 = (0, 1)

s2 ∈ H2

(0, 0) (1, 0)

s 1
∈
H

1 (0, 0) ( 7
6
w, 7

6
w, 53w)

c2
−−→ ( 32w,w,

3

2
w)

c1 ↑ ↑ c1

(1, 0) (w, 32w,
3

2
w)

c2
←−− (w,w, 2w)

s3 = (1, 1)

c3

c3

□

4.2 Restrictions on Candidates’ Strategies
The counterexample of Proposition 4.1 for the existence of a 1-local

equilibrium is specific because the sets of candidates’ strategies

are disjoint and contain only two strategies. However, for two

candidates and sets of strategies that coincide, there always exists

a 1-local equilibrium, as stated more generally in the next theorem.

Theorem 4.7. There always exists a 1-local equilibrium in a BSC
game whenm = 2 andH2 ⊆ H1. Such an equilibrium can be found
in polynomial time.

Sketch of proof. We construct a particular sequence s =
⟨s0, s1, . . . , sT ⟩ of improving 1-local deviations that eventually ends

in a 1-local equilibrium after at most 2K steps. In the sequence, each

state st , where t is even, is unanimous with st = (st−1
1
, st−1
2
) such

that st−1
1
= st−1

2
and makes c1 win, whereas each state st , where t is

odd, is such that st = (st−1
1
, st
2
)with dist(st−1

1
, st
2
) = 1 and makes c2

win. One can prove that, once c2 has changed her mind on one issue

x , during sequence s , she cannot reverse this opinion on issue x .
Hence, c2 cannot make more than K 1-local deviations in sequence

s and thus sequence s eventually ends in a state st , with even t ,
such that st is a 1-local equilibrium. □

This positive result contrasts with the case of Nash equilibria, and

even 3-local equilibria, where the same conditions are not sufficient

to guarantee the existence, as it can be observed in Proposition 4.3.

The question is open whether the existence is guaranteed for 2-

local equilibria under the same conditions. Beyond the connections

between sets of candidates’ strategies, another type of restriction

that can be considered concerns the structure of these sets.

Theorem 4.8. There always exists a 1-local equilibrium in a BSC
game whenm = 2 and candidates’ strategies are balls of radius one.
Such an equilibrium can be found in polynomial time.

Sketch of proof. Consider the truthful state s0 = (s0
1
, s0
2
)where

s0
1
= pc1 and s0

2
= pc2 . Say that ci wins in s0 for some i ∈ {1, 2}.

Suppose there exists a strategy s1
−i ∈ H−i such that ci wins in state

s1 := (s0i , s
1

−i ). The only 1-local deviation that c−i could perform

from s1 is towards her truthful strategy s0
−i . However, this deviation

is not a better response because it leads to s0, thus s1 is a 1-local
equilibrium. Hence, suppose that all possible 1-local deviations of

c−i from s0 lead to a state where c−i wins. Denote by s1x the state

resulting from the deviation from s0 where c−i changes her strategy
s0
−i only on issue x . Consider the state s2x which is the same as s1x

except that ci changes her strategy s
0

i only on issue x .

Suppose that r := dist(s0i , s
0

−i ) is even. If there exists an issue

x ∈ X s0
= , then one can prove that s2x is a 1-local equilibrium. Let us

thus assume that all issues are in X s0
, . This implies that s0i and s

0

−i
are antipodal positions. By Lemma 3.4, among the n0 := fN (I

s0 )

voters whose truthful position is in I s
0

, we must have strictly more

than
n0

2
voters whose truthful position has a value equal to (s0i )x

on issue x , for all x ∈ [K]. In the same time, by Observation 3.2,

the truthful position of each such voter must have exactly
K
2
issues

with the same value as s0i , because they belong to I
s0
. By the pigeon-

hole principle, these two requirements cannot be simultaneously

fulfilled, a contradiction.

Suppose now that r is odd. If there exists an issue x ∈ X s0
, , then

one can prove that s2x is a 1-local equilibrium. Let us thus assume

that all issues are inX s0
= . It follows that the sets of strategies of both

candidates coincide, thus we can use the proof of Theorem 4.7 to

construct a 1-local equilibrium. □

The previous positive result for the existence of t-local equilibria
when t = 1 cannot be extended to larger t , as stated below.

Proposition 4.9. A 2-local equilibrium may not exist in a BSC
game, even whenm = 2, K = 3, and both candidates’ strategies are
balls of radius one.

Proof. Consider a BSC game withm = 2, n = 9 and K = 3. The

sets of strategies areH1 := {(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0)} and

H2 := {(1, 0, 0), (0, 0, 0), (1, 1, 0), (1, 0, 1)}, which are balls of radius

one around truthful positions pc1 = (0, 0, 0) and pc2 = (1, 0, 0), re-
spectively. The distribution of voters and the sets of candidates’

strategies (red squares for H1 and green circles for H2) are rep-

resented below (left). The table below (right) reports all possible

states of the game; the number of votes that each candidate gets

is given for each state, and it is written in bold to represent the

winner. From each of these states, there is a 2-local deviation.

2

0

1 1

1

1

2

1

s2 ∈ H2

(1, 0, 0) (0, 0, 0) (1, 0, 1) (1, 1, 0)

s 1
∈
H

1

(0, 0, 0) (4, 5) (4.5, 4.5) (4, 5) (4, 5)
(1, 0, 0) (4.5, 4.5) (5, 4) (4, 5) (4, 5)
(0, 1, 0) (4.5, 4.5) (5, 4) (5, 4) (4, 5)
(0, 0, 1) (4.5, 4.5) (5, 4) (4, 5) (5, 4)

□

5 EMPIRICAL STUDY OF LOCAL EQUILIBRIA
We also perform an experimental study on synthetic data in order

to investigate the behavior of local equilibria in practice. In par-

ticular, we will perform two types of analysis: on the equilibria

themselves and on the dynamics of local deviations. In general, we

generate 1,000 instances of BSC games with 5,000 voters whose

truthful position is selected via a uniform distribution over the

hypercube of issues (the number of voters does not impact the ex-

periments, if it is large enough, since it only affects the scale of the

“weights” associated with each position). The candidates’ strategies

are “random balls”: for each candidate c ∈ C , are generated using a
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(a) Proportion of instances where a t -local equilibrium exists
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Figure 1: Existence experiments for t-local equilibria; with
m ∈ {2, 3, 4} candidates, K ∈ {3, 4, 5} issues, 5,000 voters, all
t ∈ [K], under fixed or narcissistic candidates’ preferences.

uniform distribution both distance b and position pc , and then her

set of strategies is defined as a ball of radius b around pc . Due to
computational burden, the choice for the rest of the parameters of

the BSC game depends on the type of experiments we perform.

5.1 Existence of Local Equilibria
We first analyze how often local equilibria exist and the propor-

tion of states that are local equilibria. We generate BSC games for

K ∈ {3, 4, 5} issues andm ∈ {2, 3, 4} candidates. The candidates’
preferences are either fixed and uniformly generated, or narcissistic.

For each set of parameters, Figure 1 (a) presents the proportion

of the games, over the 1,000 generated games, that admit a t-local
equilibrium, for each t ∈ [K].

The most noteworthy observation from Figure 1, which contrasts

with our theoretical results exhibiting several negative results, is

that a t-local equilibrium almost always exists for every t ∈ [K]. In-
deed, for all sets of experiments under consideration, the frequency

of existence is around 95% and is also very often close to 100%. In

accordance with the theoretical connection between t-local equilib-
ria, stating that a t-local equilibrium is also a t ′-local equilibrium
for t ′ ≤ t , we observe that the frequency of existence of 1-local

equilibria is greater than the frequency of existence of 2-local equi-

libria, and so on. In particular, for all our choices of parameters, a

1-local equilibrium always exists in the generated games.

We know that an equilibrium under fixed candidates’ preferences

is also stable under narcissistic preferences. This fact is clearly visi-

ble in Figure 1 (a) since the frequency of existence is always greater

for narcissistic preferences. Interestingly, in our experiments, all

games under narcissistic preferences admit a t-local equilibrium.

Now, we investigate how many states are equilibria. More pre-

cisely, by generating all possible states, we verify whether each one

is a t-local equilibrium for each t ∈ [K] and then we compute the

average proportion of states that are t-local equilibria over all the
1,000 generated games. The results are presented in Figure 1 (b).

Like for the question of existence, we can recover the connec-

tions between t-local equilibria w.r.t. distance t , i.e., there are more

1-local equilibria than 2-local equilibria, and so on. The proportion

of t-local equilibria is rather close for all t ∈ {2, . . . ,K} however,
interestingly, there is a large gap with the proportion of 1-local

equilibria which is approximately twice as high as the proportion

of 2-local equilibria. This particular behavior of 1-local equilibria is

already notable in our theoretical results since our counterexam-

ples for the existence of a Nash equilibrium are typically already

counterexamples for the existence of 2-local equilibria.

Note that the number of t-local equilibria under narcissistic pref-
erences is around twice that number under fixed preferences, for all

sets of experiments (except form = 2 where they coincide). While

the proportion of t-local equilibria tends to decrease when the num-

ber of candidates increases under fixed candidates’ preferences, this

tendency is not visible under narcissistic candidates’ preferences.

This can be explained by the fact that candidates may have less

freedom to strategize when the hypercube is divided among several

candidates’ sets of influence: it can be more difficult for a candidate

to find enough space for a deviation that would make her win.

5.2 The Dynamics of Local Deviations
For the experimental study of the dynamics of t-local deviations,
we consider successive rounds of the game, in which at every given

iteration exactly one player is selected (at random) to choose (at

random) any t-local best response she might have from the current

state. The initial state of the dynamics is the truthful state where
every candidate c ∈ C is placed in her truthful position pc . When-

ever such a simulated dynamic converges, it is because a t-local
equilibrium is reached; we will say the simulated dynamics are

non-convergent whenever the sequence of visited states cycles, i.e.,
the dynamic returns to an already visited state.

We simulate BSC games for K ∈ {3, 5, 7} issues andm ∈ {2, 3, 4}
candidates. All candidates’ preferences are fixed and uniformly

generated. For each set of parameters, the proportion of games

from which the simulated dynamic reached a t-local equilibrium
(for t ∈ {1, 2, 3, 4}) is represented in Figure 2 (a).

Similarly to our results for the existence, in most cases, t-local
equilibria can be reached by randomly following an improving

move dynamic from the truthful state. Note nevertheless that, for
some parameters, around 20% of the time, we do stumble upon

cycles in the dynamics. It seems like the 1-local dynamic has a

higher tendency towards reaching 1-local equilibria, than the rest of

dynamics, whichwould be in linewith the fact that 1-local equilibria

are more frequent than other t-local equilibria (see Figure 1 (b)).
Figure 2 (b) displays, for all the different configurations of our

parameter space, the number of iterations (or turns) that were re-
quired for the dynamic to converge. It is seen, as expected, that for

a greater number of candidates, the amount of deviations required

to get to a stable state is significantly larger. This is, of course, due

to the greater amount of possible candidates who might have an
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Figure 2: Convergence experiments for the simulated t-local
dynamics from the initial truthful state; with m ∈ {2, 3, 4}
candidates, K ∈ {3, 5, 7} issues, 5,000 voters, and t ∈ {1, 2, 3, 4},
under fixed candidates’ preferences.

improving deviation. We notice that the number of iterations re-

quired to converge increases both with the number of candidates

and issues; however this increase is not as significant for the 1-local

dynamics as for the other ones (which all behave in a somewhat

similar manner). Once again, this may be explained by the fact that

1-local equilibria are significantly more frequent, and thus they

might be found faster within the dynamic.

Another metric was studied to evaluate the quality of the dy-

namics: the distance between the stance displayed by the initial

state’s winner and the stance displayed by the winning candidate

at the final state of the dynamic. This idea is to identify whether

our t-local dynamic brought us to a radically different winner from
that corresponding to the truthful positions. Figure 2 (c) shows the

average distance for each considered combination of parameters.

We clearly see that, given a fixed number of issues, as we increase

the number of candidates in the game (and thus, the possibilities

of deviating), the average distance gets closer and closer to
K
2
. In

some sense, for those cases the end position is as good as if it had

been chosen uniformly at random (in which case we would see

a distance of
K
2
in expectation). In general, the 1-local dynamic

converges to states whose winner is significantly closer to that

of the initial state than the dynamics for larger t , whose average

distance is nevertheless still below
K
2
. This may also be explained

by the proportion of states that are 1-local equilibria: as they are

relatively common, a dynamic will likely converge without too

drastic deviations from candidates. This result tells us, in a way,

that the 1-local dynamic is the most robust in terms of how far

away the BSC game may take us: it generally converges to a new

winner that is not dramatically far away (in displayed position)
from the original truthful winner. Remark that when there are two

candidates, the dynamic in general does not drift too far away from

the state of the original winner, possibly due to the high number of

equilibria present in the game.

6 CONCLUSION
We have introduced a Hotelling-Downs game to capture the strate-

gic behavior of candidates that may lie about their true opinions in

an election. Beyond the classical left-right axis, we have proposed

to model political views via binary opinions over issues, leading to

work with a very structured environment, i.e., the hypercube. In

this context, a natural notion of distance arises, giving birth to the

solution concept of local equilibrium. While in general local equilib-

ria may not exist, we have identified several meaningful conditions

under which the existence is guaranteed. Moreover, our experi-

mental results balance the apparently negative theoretical results

since equilibria almost always exist in practice and can be mostly

reached by successive local deviations. All our findings highlight a

very interesting behavior for t-local equilibria: it seems that there

is a clear frontier for positive results between t = 1 and the rest.

Since 1-local deviations are the most realistic moves, this suggests

that the outcome of an election with strategic candidates may not

be disastrous: we would stabilize rather quickly on a equilibrium

electing a candidate not that far from the sincere outcome.

Our work opens several interesting and challenging questions.

First of all, there are still some gaps in our theoretical results that

would be worth investigating. In particular, does an equilibrium

always exist under narcissistic preferences, as our experiments

suggest? Similarly, it may be of interest to consider voting rules

other than plurality whenm ≥ 3. In our specific setting on binary

issues, aggregation rules from Judgment Aggregation [19] would be

particularly relevant, think, e.g., about the classical majority rule

which takes the majoritarian outcome on each issue independently.

Integrating withdrawal as an additional possible strategy for can-

didates or assuming that both voters and candidates are strategic

(see, e.g., [5]) are also immediate extensions of our model.

A model even closer to that of Harrenstein et al. [14] and to

the setting of Voronoi games on graphs would be one on which

candidates choose to deviate if they are able to increase the amount
of votes that they receive (without necessarily winning the election).

Such lane of study certainly seems like an interesting development

to consider. This would nevertheless take us away from the original

idea of strategic candidacy where candidates may choose to favor

other candidates if they cannot be elected themselves.
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