Poster Session |

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Blame Attribution for Multi-Agent Pathfinding Execution Failures
Extended Abstract

Avraham Natan
Ben-Gurion University of the Negev
Be’er Sheva, Israel
natanavr@post.bgu.ac.il

ABSTRACT

When executing large Multi-Agent Path Finding (MAPF) scenarios,
faulty events can occur over time and contribute to the overall
degraded system performance. This raises the problem of how to at-
tribute blame over the set of faulty events. The first contribution
of this paper is to define this problem and propose the well-known
Shapley value for solving it. The second contribution is an effi-
cient approach for approximating Shapley values that is inspired
by diagnosis concepts.

KEYWORDS

Multi-Agent Systems; Multi-Agent Pathfinding; Diagnosis; Blame
Attribution

ACM Reference Format:

Avraham Natan, Roni Stern, and Meir Kalech. 2023. Blame Attribution for
Multi-Agent Pathfinding Execution Failures: Extended Abstract. In Proc.
of the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 — June 2, 2023,
IFAAMAS, 3 pages.

1 MOTIVATION

Multi-Agent Path Finding (MAPF) is a problem of finding non-
conflicting paths for a group of agents from a set of starting points
to a set of goal points [20, 21]. Notable real-world MAPF instances
occur in automated warehousing [22] and automated parking [26].
Finding high-quality solutions to MAPF problems is NP-Hard or
worse [14, 15], yet modern MAPF algorithms can plan paths for
hundreds of agents.

The execution of such Multi-Agent Plans (MAP) rarely goes
smoothly and often deviates from the plan. Such deviations may
occur as a result of internal reasons (jammed wheel), external rea-
sons (obstacles), or due to imprecise assumptions about the world
[4, 12, 13]. Such deviations may lead to unacceptable degradation in
overall system throughput. As an example, consider an automatic
warehouse where worker robots are tasked to move items from
the factory output to a fleet of trucks. A delay in one of the robots
may cause it to interfere with another robot which in turn will
interfere later with other robots, and so on. Eventually, this can
cause a significant and unacceptable delay in loading the truck.

An important question to ask when a multi-agent system fails is
“what is the root cause of the failure?” Prior work proposed diagnosis
algorithms for multi-agent systems [8, 9] were designed to answer
this question and localize the responsible faulty events. In this work
we ask the complementing question: “how much did each faulty

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Roni Stern
Ben-Gurion University of the Negev
Be’er Sheva, Israel
roni.stern@gmail.com

2358

Meir Kalech
Ben-Gurion University of the Negev
Be’er Sheva, Israel
kalech@bgu.ac.il

event contribute to the system failure?” Answering this question is
also known as blame attribution. To motivate answering the blame
attribution question, consider an accident (a system failure) in a
multi-agent system of autonomous vehicles. Diagnosis algorithms
may infer which defective vehicles are to blame for the accident, but
will not determine how much each vehicle contributed to it. This is
important in order to fairly decide how to split the compensation
costs between the defective vehicles owners. In an autonomous
warehouse setting, blame attribution can also be used to focus the
efforts of warehouse maintenance teams.

2 CONTRIBUTION

The first contribution of our paper is to formally define the blame
attribution problem in the context of MAPF execution failures. We
call this the Blame Attribution for Multi-Agent Pathfinding
Execution Failures (BAMPEF). There may be multiple ways to
attribute blame, but in this work we propose to use the well-known
Shapley values [18, 19]. Shapley values are used in moral philosophy
[11, 24], law [3], politics [2, 7], and other areas [5, 6, 10].

Informally, the goal of Shapley values calculation is to determine
the division of power among a group of members. The approach
for calculating this division is by using the marginal contribution of
each member to the various subsets of the member group. A formal
definition can be found in many forms in the literature [17, 23, 25].

Calculating Shapley values is computationally costly, as the cal-
culation must consider all the possible subsets of a given set of
faults, which is exponential. The second contribution of this
paper is a fast method to approximate the Shapley value that we
call Diagnosis-Directed Blame Attribution (DDBA). DDBA uses
concepts from the field of Model-Based Diagnosis [16] to identify
which subsets of fault events are sufficient to consider to obtain an
effective approximation for the Shapely Value. Limiting the Shapley
calculation only to consider these subsets of faulty events signifi-
cantly reduces the run-time. For instance, in an example of 13 fault
events it took 1.62 seconds on average, while calculating the full
Shapley values for that example took 36.2 seconds.

3 METHODOLOGY

In this work, we use Shapley values to distribute blame among the
faults. To that end, we look at an execution of a MAP as a game
where the set of members is the set of accelerations or delays that
occurred in the plan execution, which we denote as FAULT EVENTS
(E). Such execution will result in a degree of degradation in the
system’s performance. We assume a value function v, that given E,
calculates the value of system degradation. This allows us to use
Shapley values to determine the division of blame of the system
degradation among the FAuLT EVENTs E. Formally,

Poster Session |

DerFINITION 1 (Shapley Values for BAMPEF).
Given a set E of n FaurT EVENTs and a wvalue function
v 2F R, the Shapley Value for FaurtT EVENT e is:

$e(0) = Spep oy ELEZEID (B (B U {e})) - o(E\ E)]

Using Shapley values requires to process the entire power set of
E. This may lead to exponential computational time. To address this,
we improve Shapley values calculation using diagnosis concepts.
Diagnosis processes aim to identify the root cause of a failure in a
system. In our domain, the root cause is the FAuLT EVENT(s) that
caused the degradation in the system’s performance. To this end,
we define first the concept of Userur REPAIR. A USEFUL REPAIR
is a subset of the FAULT EVENTs set, that improves the system
performance when the system is simulated without having those
faults. Formally:

DEFINITION 2 (USEFUL REPAIR). Given a set E of n FAULT
EVENTs and a value function v : 2 5 R, the set of UseruL RE-
pairs isQ ={E' CE:v(E\ E’) <v(E)}.

Once the set Q is calculated, we calculate the Shapley values
of the FAuLT EVENTSs with respect to each w € Q. In that way, for
every USEFUL REPAIR we calculate how much every participating
FaurT EVENT contributed to the system repair. We call this approach
Diagnosis Directed Blame Attribution (DDBA). We extend the
definition of Shapley value to consider the set w:

DEFINITION 3 (Shapley Value for BAMPEF w.r.t). Given a
set w C E of n FAULT EVENTs and a value functionv : 2E — R, the
Shapley value w.r.t w for FAULT EVENT e is defined as follows:

PR S i Rl T

o' Co\{e} n

[0(E\(0"U{e}))~0(E\&)]

Once the Shapley values of the FAuLT EVENTs have been calcu-
lated with respect to each w, we aggregate them to receive the final
values.

At this point Q may still be big - there may be a lot of UseruL
REPAIR sets. Shapley would run on all w € Q, and this might lead
to long run-times. In order to reduce this run-time, we propose to
decrease the size of Q by considering only w € Q with cardinality
up to a number k. We denote the resulting smaller set as Q’. To
that end, we iterate over the different cardinalities i € [1, ..., k], and
for each cardinality we compute Shapley values of w € Q' with
cardinality i. Finally, we aggregate those values over all the FAuLT
EvENTs in Q’ to achieve an approximation to the Shapley value.

4 EVALUATION

For experiments, we generated instances with ranging number of
plan lengths y € {8, 10, 12}, agents x € {8, 10,12}, faulty agents
f € {3,4,5}, fault probabilities p € {0.5,0.7,0.9}. We compared
our algorithm (denoted DDBA) with the traditional Shapley values
calculation (denoted Gold), and an existing random sampling algo-
rithm [1], where the subsets of the FAuLT EVENTSs for the shapley
calculation are selected randomly (denoted Random). As a com-
parison metric, we use Euclidean Distance to measure the distance
between the Shapley values of the approximate approaches and the
Shapley gold standard (denoted error). In addition, we measure the
run-time (in seconds) of the methods.

2359

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Useful Repair

Cardinality 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
Average ‘ Random 0.146
Error | DDBA | 0355 [0.229 [0.138 [0.107 [0.089 [0.076 | 0.069 [0.066

Table 1: Error of Random and DDBA, with the increase of the
useful repair cardinality (k).

Useful Repair Cardinality 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
Average | Gold 7.024
Runtime | Random 1.074
(Seconds) | DDBA 0.006 [0.036 [0.167 [0.588 | 2.077
Average | Random 0.151

Error | DDBA 0.376 | 0.257 | 0.170 | 0.130] 0.107

Table 2: Average runtime and error of Random and DDBA with
the increase in the useful repair cardinality.

Fault Events 6 7 8 9 10 11 12 13
Average Random 0.147 | 0.146 | 0.148 | 0.149 0.153 0.154 0.153 0.156
Error DDBA 0.112 | 0.113 | 0.120 | 0.127 | 0.133 | 0.140 | 0.146 | 0.146
Average Gold 0.052 | 0.152 | 0.334 | 0.737 1.745 4.449 | 12.505 | 36.215
Runtime Random 0.062 | 0.129 | 0.256 | 0.467 0.718 1.239 2.174 3.546
(Seconds) | DDBA 0.038 | 0.090 | 0.180 | 0.363 | 0.517 | 0.785 | 1.107 | 1.623
DDBA Useful Repairs | 34.84 | 58.75 | 92.37 | 138.64 | 198.32 | 272.80 | 367.96 | 476.65

Table 3: Results for different number of faulty events.

Table 1 shows the error of DDBA for USEFUL REPAIR cardinality
of k = 1,...,8, for BAMPEF instances with 12 agents, plans of
length 12, 5 faulty agents, 0.9 fault probability and 10 FAULT EVENTs.
The error decreases fairly fast until k = 5, and then decreases
significantly slower. Since increasing k means higher runtime, we
limited k to be at most 5 in the remaining experiments.

Table 2 shows the runtime and error for DDBA, Random, and
Gold. As expected, DDBA is much faster than Gold. We also observe
that DDBA is faster than Random for k < 4. The error of DDBA
is higher than Random for k < 4, and lower when k > 4. Thus,
our results confirm the expected trade-off provided by the UseruL
REPAIR cardinality k between runtime and error. In our experiments,
however, setting k = 4 provides an effective middle-ground between
runtime and error. Hence, in the next results, we fixed k to 4.

Table 3 presents the results of DDBA, Random, and Gold for vary-
ing number of faulty events (fe). First, the runtime of Gold increases
exponentially with fe. The runtime of Random also increases, but
at a much lower rate than Gold, while the runtime of DDBA is even
lower. For instance, while considering fe = 13, DDBA runs 2 times
faster than Random on average, and 50 times faster than Gold. This
shows the efficiency of DDBA when considering high fe. Second,
the error of both Random and DDBA increases very slightly with fe,
which suggests that Random and DDBA are not influenced much
by fe. This means that DDBA is scalable for larger amounts of fault
events. In addition, the error of DDBA is lower than the error of
Random. Specifically, this difference is higher when considering
low fe. This suggests that for small systems, DDBA is preferable
over Random. Third, the runtime of DDBA is strongly affected by
the number of useful repairs it considers. To highlight this, Table 3
also shows the number of useful repairs considered by DDBA for
a different fe. Indeed, the runtime of DDBA is correlated with the
number of useful repairs, which increases with fe. For example,
for fe = 8, with cardinality up to k = 4, the empirical number of
useful repairs is (2) - 2% = 1120, while the actual number is 92.37
on average. This gap is because many subsets of the fault events
are not useful repairs.

Poster Session |

ACKNOWLEDGMENTS

This research was funded by ISF grant No. 1716/17, and by the
ministry of science grant No. 3-6078.

REFERENCES

[1] Javier Castro, Daniel Gémez, and Juan Tejada. 2009. Polynomial calculation of

[2

=

=

[11]

the Shapley value based on sampling. Computers & Operations Research 36, 5
(2009), 1726-1730.

GN Engelbrecht and AP Vos. 2009. On the use of the shapley value in political
conflict resolution. Scientia Militaria: South African Journal of Military Studies
37, 1 (2009).

Samuel Ferey and Pierre Dehez. 2016. Multiple causation, apportionment, and
the Shapley value. The Journal of Legal Studies 45, 1 (2016), 143-171.

Gordon Fraser, Gerald Steinbauer, and Franz Wotawa. 2005. Plan execution in
dynamic environments. In International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems. Springer, 208-217.

Christopher Frye, Colin Rowat, and Ilya Feige. 2020. Asymmetric Shapley values:
incorporating causal knowledge into model-agnostic explainability. Advances in
Neural Information Processing Systems 33 (2020), 1229-1239.

Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of data
for machine learning. In International Conference on Machine Learning. PMLR,
2242-2251.

Franz Hubert and Svetlana Ikonnikova. 2003. Strategic investment and bargaining
power in supply chains: A Shapley value analysis of the Eurasian gas market.
Humboldt University Berlin (2003).

Meir Kalech and Avraham Natan. 2022. Model-Based Diagnosis of Multi-Agent
Systems: A Survey. In AAAI Conference on Artificial Intelligence. 12334-12341.
Eliahu Khalastchi and Meir Kalech. 2019. Fault detection and diagnosis in multi-
robot systems: a survey. Sensors 19, 18 (2019), 4019.

Richard TB Ma, Dah Ming Chiu, John CS Lui, Vishal Misra, and Dan Ruben-
stein. 2007. Internet Economics: The use of Shapley value for ISP settlement. In
Proceedings of the 2007 ACM CoNEXT conference. 1-12.

Moshe Mash, Roy Fairstein, Yoram Bachrach, Kobi Gal, and Yair Zick. 2020.
Human-computer coalition formation in weighted voting games. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 11, 6 (2020), 1-20.

[12] Jonathan Morag, Ariel Felner, Roni Stern, Dor Atzmon, and Eli Boyarski. 2022.

Online Multi-Agent Path Finding: New Results. In Proceedings of the International

2360

[13

[14

[15

[24
[25

[26

]

]

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Symposium on Combinatorial Search, Vol. 15. 229-233.

Avraham Natan and Meir Kalech. 2022. Privacy-aware Distributed Diagnosis of
Multi-Agent Plans. Expert Systems with Applications 192 (2022), 116313.
Bernhard Nebel. 2020. On the computational complexity of multi-agent pathfind-
ing on directed graphs. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 30. 212-216.

Bernhard Nebel, Thomas Bolander, Thorsten Engesser, and Robert Mattmiiller.
2019. Implicitly coordinated multi-agent path finding under destination uncer-
tainty: Success guarantees and computational complexity. Journal of Artificial
Intelligence Research 64 (2019), 497-527.

Raymond Reiter. 1987. A theory of diagnosis from first principles. Artificial
intelligence 32, 1 (1987), 57-95.

Alvin E Roth. 1988. Introduction to the Shapley value. The Shapley value (1988),
1-27.

L Shapley. 1953. Quota solutions op n-person gamesl. Edited by Emil Artin and
Marston Morse (1953), 343.

Lloyd S Shapley and Martin Shubik. 1954. A method for evaluating the distribution
of power in a committee system. American political science review 48, 3 (1954),
787-792.

Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. 2019. Multi-
agent pathfinding: Definitions, variants, and benchmarks. In Twelfth Annual
Symposium on Combinatorial Search.

Nathan R Sturtevant. 2012. Benchmarks for grid-based pathfinding. IEEE T-CIAIG
4,2 (2012), 144-148.

Hongtao Tang, Xiaoya Cheng, Weiguang Jiang, and Shouwu Chen. 2021. Research
on Equipment Configuration Optimization of AGV Unmanned Warehouse. IEEE
Access 9 (2021), 47946-47959.

Stelios Triantafyllou, Adish Singla, and Goran Radanovic. 2021. On Blame Attri-
bution for Accountable Multi-Agent Sequential Decision Making. Advances in
Neural Information Processing Systems 34 (2021), 15774-15786.

Menahem E Yaari. 1981. Rawls, Edgeworth, Shapley, Nash: Theories of distributive
justice re-examined. Journal of Economic Theory 24, 1 (1981), 1-39.

H Peyton Young. 1985. Monotonic solutions of cooperative games. International
Journal of Game Theory 14, 2 (1985), 65-72.

Jiawei Zhang, Zhiheng Li, Yidong Li, and Hairong Dong. 2021. A bi-level coop-
erative operation approach for AGV based automated valet parking. TR_C 128
(2021), 103140.

	Abstract
	1 Motivation
	2 Contribution
	3 Methodology
	4 Evaluation
	Acknowledgments
	References

