
A Novel Aggregation Framework for the Efficient Integration of
Distributed Energy Resources in the Smart Grid

Extended Abstract

Stavros Orfanoudakis∗
Delft University of Technology

Delft, The Netherlands
s.orfanoudakis@tudelft.nl

Georgios Chalkiadakis
Technical University of Crete

Chania, Greece
gehalk@intelligence.tuc.gr

ABSTRACT
In this paper, we put forward a novel DER aggregation frame-
work, encompassing a multiagent architecture and various types of
mechanisms for the effective management and efficient integration
of DERs in the Grid. One critical component of our architecture
is the Local Flexibility Estimators (LFEs) agents, which are key
for offloading the Aggregator from serious or resource-intensive
responsibilities—such as addressing privacy concerns and predict-
ing the accuracy of DER statements regarding their offered demand
response services. The proposed aggregation framework allows the
formation of efficient LFE cooperatives. Our experiments verify
its effectiveness for incorporating heterogeneous DERs into the
Grid in an efficient manner—showing that the use of appropriate
mechanisms results in higher payments for participating LFEs.
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1 INTRODUCTION
The emerging Smart Grid, with its bidirectional electricity and in-
formation flow, is envisaged to deliver electrical power in very
resourceful ways, to efficiently optimize the performance of in-
termittent assets [1] and successfully exploit all the Distributed
Energy Resources (DERs) that are continuously emerging [9, 15].
DERs are the various electricity supply or demand assets that are
spread across the Grid; and which, however small, when combined,
can enhance the Grid’s ability to seamlessly provide power, even if
it largely originates from intermittent renewable energy sources.

Furthermore, recent developments regarding environmental poli-
cies and the emergence of a multitude of (distributed) energy mar-
kets, have turned the attention of the electricity stakeholders to
research on DERs’ flexibility [11]. The notion of flexibility corre-
sponds to the DERs’ ability to either offer produced/stored energy
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or consumption reduction services to the Grid to promote its sta-
bility [18]. There is much work on estimating the flexibility of
DER assets [8, 23]; while the use of aggregators [6, 13, 14] is one
of the most important mechanisms that were created to utilize the
flexibility of the DERs in the Smart Grid.

An aggregator is a mediator between DERs and the energy mar-
kets [6], with the mission to trade the flexibility obtained from the
DERs by participating in the markets on behalf of the DERs’ own-
ers [13]. Generally, aggregators offer stability guarantees to the Grid
by offering flexible loads. Currently, the existing legal frameworks
of many countries, especially in the EU and USA, have been updated
to allow the existence of such aggregator mechanisms [2, 20].

In this paper, we employ ideas from mechanism design and
cooperative game theory to outline a novel aggregator framework
for the efficient integration of DERs in the Grid. Our framework
provides an aggregation architecture, shown in Fig. 1, along with
mechanisms for its effective and efficient operation and manages
to increase the flexibility offered to the Grid and the profits of
participating agents.
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Figure 1: Component diagram of the proposed framework.

2 THE DER AGGREGATION FRAMEWORK
In our multiagent [22] architecture, we introduce the so-called Local
Flexibility Estimators (LFEs) that allow us to address some severe
aggregator issues, such as privacy concerns and evaluation of the
DERs’ flexibility accuracy. LFEs essentially serve as DER coalition
managers, coordinating their members’ market activities. Given
this, we focus on creating efficient LFE cooperatives intending to in-
crease the profits of every stakeholder. To achieve this, we have pop-
ulated our framework with various selection mechanisms—some of
which are scoring rules [7], and some are (deep) reinforcement learn-
ing (RL) [19] techniques. Therefore, an Aggregator agent can then
use these selection mechanisms to decide which LFEs to include in
its (flexibility) offers to the day-ahead markets.
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In practice, LFEs are end-nodes that only have to publish to the
Aggregator limited information with respect to their flexibility and
availability. Other works try to preserve the privacy of DERs by
introducing new communication protocols and algorithms [5, 21].
We propose a new all-in-one framework that can, on top of all
other benefits, contribute to the privacy concerns that arise when
information flows from DERs toward the Aggregator. In our case,
DERs with common interests could form an LFE and participate as
a multipurpose flexibility provider in any Aggregator, hiding their
details from the (potentially non-trusted) Aggregator.

The total communication complexity of the proposed framework
unavoidably increases compared to a traditional aggregator [6].
However, since LFEs are local entities (e.g., managing the assets of
a single company or local energy community), the added commu-
nication load with their DERs is expected to be minimal. Overall,
incorporating LFEs within an Aggregator agent allows us to gener-
alize and scale up, since an Aggregator can serve more DERs by just
adding LFEs to take up some of its optimization burden. Therefore,
offloading some of the optimization complexity to a lower level
(that of LFEs) could mean more accurate and scalable outcomes in
terms of flexibility provided to the Grid.

Now, ranking and selecting LFEs is a key concern: LFEs with
unreliable (low-accuracy predictions regarding their) flexibility esti-
mations can trade with the Grid directly, but should not participate
in the Aggregator’s flexibility offers, since they can damage its prof-
its and overall reputation. The Aggregator is thus able to calculate
the total energy flexibility it can offer by selecting which LFEs will
participate in the upcoming flexibility trades, using various scoring
and ranking mechanisms. Moreover, the Aggregator is responsible
for splitting the profits back to the LFEs, based on their contribu-
tion and appropriate scoring mechanisms that may also take into
account the accuracy of LFE flexibility predictions.

3 MECHANISMS AND EVALUATION
We conducted a systematic experimental evaluation using data from
the PowerTAC [10] simulator in various experimental scenarios
to test the different aspects of our framework. To this end, we cre-
ated and compared five different methods, each of which combines
different LFE selection and pricing mechanisms (distributing the
Aggregator’s profits to the LFEs):

The first method uses the Simple Selection mechanism to decide
which LFEs to participate in the aggregator. This scoringmechanism
uses the Mean Absolute Error of each LFE’s flexibility prediction.
In detail, the aggregator calculates the average score of 𝐿𝐹𝐸𝑖 over a
time period𝑤 of past trading cycles, and then selects 𝐿𝐹𝐸𝑖 if that
score exceeds a threshold 𝜏 . Also, we use the (simple) Prediction
Accuracy pricing mechanism [3], for this method since we assume
that LFEs in this setting are able only to provide point estimates
regarding their anticipated delivered flexibility.

In the rest of our methods, wemake use of the Continuous Ranked
Probability Score (CRPS) pricing mechanism [7, 16, 17], assuming
that LFE agents are now able to provide distributions over their
prediction error. Given these, CRPS provides incentives for truthful
and reliable LFE predictions, as it postulates that agents should be
rewarded according to both the actual flexibility they delivered and
the accuracy of their probabilistic predictions.

Our second method employs the so-called DQN Selection we put
forward. Specifically, we use the celebrated Q-Networks (DQN) [12]
RL algorithm, using two different reward functions. We formulate
the aggregator’s decision-making problem as a decision process,
aiming to find the action with the highest Q-value—corresponding
to the long-term utility of selecting a set of LFEs at a time step.

The third method uses CRPS as a selection mechanism also.
Specifically, we calculate the average CRPS score of a time period𝑤
and check if the final average score is higher than a specific thresh-
old. Higher (normalized to [0, 1]) CRPS values represent LFEs with
higher prediction accuracy, while lower CRPS values correspond to
less accurate LFEs; and our CRPS Selection picks LFEs whose CRPS
scores exceed a threshold for inclusion in the Aggregator.

In the fourthmethod, every LFE interacts directlywith the energy
markets using the CRPS Pricing mechanism. This serves actually as
a baseline method, corresponding to how the LFEs would have per-
formed if they had never participated in our framework. In the last
method, all LFEs participate in the Aggregator without selection cri-
teria. This mirrors the current state-of-the-art aggregation scenario,
in which an aggregator incorporates all available resources.

Results and concluding remarks. Our aggregator framework
contributes to the smooth DERs’ integration into the Grid since (a) it
allows smaller DERs to participate in the Smart Grid markets; (b) it
selects which LFEs to participate in the energy transactions, increas-
ing the expected accuracy of the promised offers, thus indirectly
aiding the Grid’s stability; and (c) as verified via our experiments,
the use of certain designed selection and pricing mechanisms leads
to higher payments for LFEs that the aggregator manages.

In some detail, the use of the truthfulness-incentivizing CRPS
Selection mechanism rewards effectively LFEs that have reliable
flexibility estimates and results to the highest aggregator-to-LFEs
payments for those LFEs, compared to those achieved with other
selection mechanisms; or compared to assets’ earnings in “baseline
settings” when they either participate in a “traditional” aggregator
that manages all available DERs or when they trade directly with
the Grid. Also, using the CRPS Selection mechanism, and regardless
of the LFEs’ prediction accuracy, our framework results in increased
profits for every LFE, compared to those potentially accrued via
participation in functional commercial flexibility aggregators paid
via pricing mechanism in use in the current Smart Grid [4].

The Simple Selectionmechanism we propose ranks as a close sec-
ond to CRPS. However, this mechanism is easier for non-specialists
to comprehend. This result implies a trade-off between using a
highly efficient yet complex scoring rule vs. a slightly less efficient
yet easy-to-understand selection mechanism, since using the latter
can motivate the participation of small DERs (e.g., corresponding
to small and medium-sized enterprises or private homes).

Finally, theDQN Selectionmechanismswere better than the afore-
mentioned baseline settings only for certain settings in which DER
accuracy does not fluctuate dynamically over time. Additionally,
low-accuracy LFEs prefer to participate in larger LFE cooperatives
so the team can balance out their errors.

Overall, our results demonstrate the effectiveness of our frame-
work. Future work includes studying scenarios that allow LFEs to
replace inefficient DER assets; and enhancing our framework with
the ability to include multiple competing aggregators.

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2515



REFERENCES
[1] Temitope Adefarati and Ramesh C. Bansal. 2016. Integration of renewable dis-

tributed generators into the distribution system: a review. Iet Renewable Power
Generation 10 (2016), 873–884.
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