
A Cloud-Based Solution for Multi-Agent Traffic Control Systems
Extended Abstract

Chikadibia Ihejimba
The University of Texas at Dallas

Richardson, United States
cki100020@utdallas.edu

Behnam Torabi
The University of Texas at Dallas

Richardson, United States
behnam.torabi@utdallas.edu

Rym Z. Wenkstern
The University of Texas at Dallas

Richardson, United States
rymw@utdallas.edu

ABSTRACT
This paper introduces a cloud-based solution for multi-agent Traf-
fic Control Systems (TCSs). We focus on re-architecting the DALI
system, a self-adaptive, collaborative multi-agent TCS. We explore
different options to effectively engineer and deploy a highly avail-
able, low-latency cloud-based solution for DALI.

KEYWORDS
Traffic Control Systems; Cloud-Native; Microservices; Serverless

ACM Reference Format:
Chikadibia Ihejimba, Behnam Torabi, and Rym Z. Wenkstern. 2023. A Cloud-
Based Solution for Multi-Agent Traffic Control Systems : Extended Abstract.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Over the years, a plethora of solutions for Traffic Control Systems
(TCSs) has been proposed. Most research in TCS focuses on the in-
tricacies of the traffic system algorithmswithout deep consideration
of deployment options. As such, most traffic lights are still man-
aged by intersection controllers connected directly or indirectly to a
higher-level central trafficmanagement unit [7, 11, 18, 19]. Recently,
a few agent-based TCSs have been successfully deployed in the
US [12, 17]. While the MAS paradigm brings in the much-needed
concepts of distribution, intelligence, autonomy, and collaboration,
agent-based TCSs are still deployed using conventional approaches:
agents are either physically integrated into intersection controllers
[12] or run on a data center and connect to intersection controllers
via VPN [17]. No existing agent-based TCS in the field takes advan-
tage of modern cloud-native technologies and tools.

This paper presents a cloud-native deployment solution for DALI
[14–17], a multi-agent, collaborative traffic control system currently
operating in the US.

2 RELATEDWORKS
Existing TCSs can be classified as non-MAS or MAS, non-cloud-
based or cloud-based. Furthermore, cloud-based solutions can be
categorized as non-cloud-native or cloud-native. In this section, we
restrict our discussion to commercial systems or deployed research
systems.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2.1 Non-MAS Solutions
Non-MAS TCSs are conventional systems used to manage traffic.
They are either non-cloud based or cloud-based.
Non-MAS, Non-Cloud Based solutions include conventional TCSs
deployed in an on-premise data center or on a traditional server. Sys-
tems that fit in this category include TRANSYT [11] , SCOOT ([19],
and STREAM [18]. It is well known that centralized approaches
limit the scalability of TCSs.
Non-MAS, Cloud-Based solutions include the SCATS commercial
system [7]. Though the core platform is cloud-based, SCATS still
suffers from the limitations of conventional centralized systems.

2.2 MAS Solutions
There are currently limited commercial MAS solutions and very
few deployed MAS research solutions for traffic control. Unlike non-
MAS solutions, in multi-agent TCSs the intersection controllers are
augmented with software agents which are responsible to define
and optimize traffic signal timing plans in real-time for their re-
spective intersections.

MAS, Non-Cloud Based multi-agent TCSs leverage the decentralized
nature of MAS but run on a traditional data center or in a non-cloud
environment. SURTRAC [12] and DALI fall into this category. DALI
[16] is a collaborative multi-agent TCS successfully deployed in
2019 in the US. In DALI, agents run on a data center and connect
to intersection controllers via VPN. Agent-based solutions provide
scalability for TCS, but their non-cloud implementation requires
expensive high-speed direct connections for low latency.

MAS, Cloud-Based. Multi-agent TCS in this category take the extra
step of utilizing cloud-based technologies.
MAS, Cloud Native System. Cloud-native solutions use modern soft-
ware development techniques such as microservices, containers,
agile methodologies, and DevOps [6] (i.e., combination of practices
to unite development and operations) to build resilient and scalable
systems. There are currently no MAS, cloud-native systems for
traffic control.

In this paper, we propose a novel cloud-native implementation of a
multi-agent TCS using serverless computing, containers, serverless
database with auto-scalability, and software-defined networking.
The solution provides low latency, scalability, and a click-to-deploy
DevOps solution for easy deployment to cities and municipalities.
The contributions are a native cloud solution, a highly scalable,
and low latency solution, a click-to-deploy DevOps solution, and
a blueprint for taking non-cloud-based traffic control systems to
cloud-native implementation.

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2529



3 SYSTEM DESIGN AND IMPLEMENTATION
3.1 Latency and Scalability
Two primary factors have influenced the design decisions for the
proposed system. These are latency[9] and scalability[13].

Our proposed solution employs AWS microservices tools and
AWS Fargate [4] serverless container solution to achieve latency
and on scalability, it uses a microservices architecture, which allows
"a large application to be separated into smaller independent parts,
with each part having its own realm of responsibility" [5].

3.2 Cloud Architecture Design
Our approach to developing a novel solution for a cloud-based
TCS involved multiple iterative processes and experiments to opti-
mize the solution. Since we were modernizing an existing solution,
DALI, which runs in an on-premises data center, we followed the
recommended industry best practices, cloud-native and the Seven
R’s framework (Re-hosting, Re-platforming, Re-factor, Replacing,
Retiring, Retaining, and Reimagining), for migrating to the cloud
[1, 10].

3.3 System Design
For system design, we considered three cloud implementation op-
tions for DALI :

(1) Lift & Shift : focuses on deploying our instances to emulate
the current state of DALI with no changes - Re-Host.

(2) Container Based Architecture: combines cloud-native server-
less, microservices, and VMs architecture to improve scala-
bility and lower latency - Re-Host & Re-factor

(3) Serverless Container Based Architecture: is similar to the sec-
ond option, but the middle tier uses a serverless container -
Re-Platform, Re-factor, & Re-Host. This offers improved scal-
ing on demand and lower latency without extensive code-
rewrite for the middle layer, making it a cost-effective and
desirable option for achieving serverless scalability and low
latency.

Figure 1: DALI Cloud Solution Architecture

4 EXPERIMENTAL RESULTS
4.1 Experiment Setting
Two experiments were conducted to evaluate the effectiveness of
the proposed cloud-native solution compared to a traditional EC2

instance using APIMetrics[2] observability tool. Design options 1
and 3 were selected, and seven-day response time was measured
along with the system’s availability rate to determine if the pro-
posed solution has better latency and scalability.

Experiment 1: EC2. Our REST API and database were hosted on
EC2 Instances with the following specifications (t2.medium, 4GB
memory, 2 vCPUs, EBS only, 64-bit platform). Our experiment in-
volved running DALI API on an Apache web server, which connects
to the controller. A status API call retrieves a data payload from
the back-end database.

Experiment 2: AWS Fargate. Our Serverless container solution
is deployed on Docker using AWS CloudFormation written in
YAML[8]. The PHP code is packaged in the Docker container and
deployed to AWS Fargate tasks with specifications similar to EC2.
The system is auto-scalable, with new tasks created to handle extra
demand. The database is set up on AWS Aurora Serverless[3] with
a similar configuration as the EC2 database in experiment 1.

4.2 Results

2 4 6 1,000

1,200

1,400

200

300

Days
agents requests

la
te
nc
y
[m

s]

Daily Latency - EC2 vs Fargate

Fargate
EC2

Figure 2: Latency(ms)

2 4 6 1,000

1,200

1,4000

10

Days
agents requests

av
ai
la
bi
lit
y
ra
te

[%
]

Availability % - EC2 vs Fargate

Fargate
EC2

Figure 3: Availability(%)

Latency Results: Experiment 2 performs better than experiment 1,
with an average response time, lowest response time, and highest
response time improving by 20.83%, 21.15%, and 47.16%, respectively.
The average daily latency for EC2 was 317.7ms, whereas Fargate
had a latency of 232.7ms, signifying a 36.5% improvement during
the seven days of the experiment.
Availability Results: Experiment 2 had a higher availability rate of
99.95% compared to 95.72% in experiment 1. Experiment 1’s system
logs showed that the system experienced scalability issues due to
limited resources to handle requests and "out of memory" issues,
resulting in a failure rate of 4.28%.

5 CONCLUSION
This paper presents a cloud-based implementation of DALI, a traf-
fic control system, which solves latency issues and provides on-
demand scalability. The solution offers a "click-to-deploy" DevOps
feature for easy implementation in cities and municipalities and
a blueprint for MAS Cloud implementation. Future work includes
extending the implementation to other public cloud providers and
a multi-cloud-hybrid deployment.

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2530



REFERENCES
[1] Accenture. 2021. Cloud Application & Infrastructure Modernization | Accenture.

http://tiny.cc/accenture7rs. (Accessed on 10/16/2022).
[2] Apimetrics. 2022. APImetrics: APImetrics. https://client.apimetrics.io/. (Accessed

on 10/27/2022).
[3] AWS. 2023. Amazon Aurora | AWS. https://aws.amazon.com/rds/aurora/. (Ac-

cessed on 02/27/2023).
[4] AWS. 2023. Serverless Compute Engine–AWS Fargate–Amazon Web Services.

https://aws.amazon.com/fargate/. (Accessed on 02/21/2023).
[5] Google. 2022. What Is Microservices Architecture?| Google Cloud. http://tiny.cc/

micro-services. (Accessed on 10/19/2022).
[6] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.

2019. A survey of DevOps concepts and challenges. ACM Computing Surveys
(CSUR) 52, 6 (2019), 1–35.

[7] NSW. 2022. SCATS. https://www.scats.nsw.gov.au. (Accessed on 10/19/2022).
[8] YAML Organization. 2022. The Official YAML Web Site. https://yaml.org/.

(Accessed on 04/14/2022).
[9] Perfmatrix. 2021. Latency, Bandwidth, Throughput and Response Time. http:

//tiny.cc/Perfmatrix (Accessed on 03/30/2022).
[10] Ronen Schwartz. 2021. The 7 R’s:Why infrastructure is critical to your application

cloud migration. http://tiny.cc/sevenRs. (Accessed on 03/30/2022).
[11] TRL Software. 2022. TRANSYT - TRL Software. https://tinyurl.com/ttransyt.

(Accessed on 10/12/2022).

[12] Rapid Flowt Tech. 2022. Surtrac: Intelligent Traffic Signal Control System. https:
//www.rapidflowtech.com/surtrac. (Accessed on 10/27/2022).

[13] techtarget. 2021. What Is Scalability? - Definition from SearchDataCenter.com.
https://www.techtarget.com/searchdatacenter/definition/scalability. (Accessed
on 02/27/2023).

[14] Behnam Torabi, Rym Z Wenkstern, and Robert Saylor. 2018. A self-adaptive
collaborative multi-agent based traffic signal timing system. In 2018 IEEE Inter-
national Smart Cities Conference (ISC2). IEEE, IEEE, 1–8.

[15] BehnamTorabi, RymZWenkstern, and Robert Saylor. 2020. A collaborative agent-
based traffic signal system for highly dynamic traffic conditions. Autonomous
Agents and Multi-Agent Systems 34, 1 (2020), 1–24.

[16] BehnamTorabi and RymZalila-Wenkstern. 2020. DALI: An Agent-Plug-In System
to" Smartify" Conventional Traffic Control Systems. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. AAMAS,
2120–2122.

[17] Behnam Torabi, Rym Zalila-Wenkstern, Robert Saylor, and Patrick Ryan. 2020.
Deployment of a Plug-InMulti-Agent System for Traffic Signal Timing. In Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems. 1386–1394.

[18] Transmax. 2022. Traffic Services – Transmax. https://tinyurl.com/Transmaxt.
(Accessed on 10/13/2022).

[19] trlsoftware. 2022. SCOOT® - TRL Software. https://tinyurl.com/tscoot. (Accessed
on 10/12/2022).

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2531

http://tiny.cc/accenture7rs
https://client.apimetrics.io/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/fargate/
http://tiny.cc/micro-services
http://tiny.cc/micro-services
https://www.scats.nsw.gov.au
https://yaml.org/
http://tiny.cc/Perfmatrix
http://tiny.cc/Perfmatrix
http://tiny.cc/sevenRs
https://tinyurl.com/ttransyt
https://www.rapidflowtech.com/surtrac
https://www.rapidflowtech.com/surtrac
https://www.techtarget.com/searchdatacenter/definition/scalability
https://tinyurl.com/Transmaxt
https://tinyurl.com/tscoot

	Abstract
	1 Introduction
	2 Related Works
	2.1 Non-MAS Solutions
	2.2 MAS Solutions

	3 System Design and Implementation
	3.1 Latency and Scalability
	3.2 Cloud Architecture Design
	3.3 System Design

	4 Experimental Results
	4.1 Experiment Setting
	4.2 Results

	5 Conclusion
	References



