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ABSTRACT
Designing well-functioning and fair transport networks is not a
trivial task, given the large space of solutions and constraints one
must satisfy. Moreover, different spatial segregation sources can
render some transportation network interventions unfair to specific
groups. It is thereby crucial to optimize the transportation system
while mitigating the disproportional benefits it can lead to. In this
paper, we explore the trade-off between efficiency and fairness in
the Transport Network Design Problem (TNDP), via the use of Deep
Reinforcement Learning (Deep RL). We formulate different fairness
definitions as reward functions — inspired by Equal Sharing of
Benefits, Narrowing the Gap, and Rawl’s justice theory. We apply
our method to Amsterdam (The Netherlands) and Xi’An (China)
and show that vanilla Deep RL can lead to biased outcomes. By
considering different fair rewards, however, we can shed light on
possible compromises between fairness and efficiency in the TNDP.
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1 INTRODUCTION
Public transportation planning driven by economic principles of
efficiency has exacerbated urban inequalities [12]. It is, therefore,
crucial to look beyond optimizing the efficiency of public transport
networks and to consider potential disparities they can lead to.

The Transport Network Design Problem (TNDP) is an NP-hard
optimization problem, where the goal is to design a new line that
maximizes the total citizens’ travel demand satisfied. TNDP has tra-
ditionally been addressed through integer optimization and heuris-
tic algorithms [1, 7, 11, 13, 15]. These methods, however, require a
long list of constraints and are hard to generalize, entailing limi-
tations to the search space in order to make the problem tractable
[18]. Given the sequential nature of designing new transportation
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systems, formulating the TNDP as a Deep Reinforcement Learn-
ing (Deep RL) problem can inspire new solutions that enable non-
myopic long-term decisions, as noted in recent work [5, 17].

Deep RL can effectively explore the search space in a variety
of TNDP environments by optimizing a reward function, without
requiring a long list of constraints to be formalized and imposed
[18]. This suggested new prominent methods prone to be applied
in real-world settings [14, 19]. Previous models ignore inequality
issues, and as we show in this paper, can even worsen them.

To address disparities in the TNDP, we look into transport plan-
ning research, measuring inequalities along different dimensions
[4, 6, 16]. We formulate the RL optimization problem of fairness
and efficiency in transport network design and formalize fairness-
based reward functions, evaluating their result along an efficiency-
fairness trade-off. We apply this methodology in two real city envi-
ronments: Xi’an in China [18]), and Amsterdam in The Netherlands.
We show that different reward functions can be used to navigate
the trade-offs between efficiency and fairness and to provide a new
toolkit for decision-makers to test how different fairness-efficiency
requirements can map onto different transportation lines.

2 FAIRNESS VS EFFICIENCY IN THE TNDP
We model a city as a two-dimensional grid environment 𝐻𝑛×𝑚 .
A transport line is a spatial graph 𝐺 (𝑁, 𝐸), connecting a set of
cells in the grid. The goal is to create lines that optimize the total
captured travel demand, expressed as a function𝑈𝑜𝑑 of the estimated
Origin-Destination (OD)matrix [8, 10]. Tomodel TNDP as aMarkov
Decision Process (MDP), we adopt the formulation in [18]. An agent
generates a transport line by taking sequential actions, i.e. select
cells to be stops in the new line.At every time step 𝑡 , the agent selects
a cell ℎ ∈ 𝐻𝑛×𝑚 to place a station on. At the end of the episode, the
sequence of selected cells is the generated transport graph𝐺 (𝑁, 𝐸).
The total selected locations are constrained by a budget 𝐵, a station
number limit 𝑇 , and direction-based constraints, so as to avoid
unfeasible line shapes; for simplicity, we omit these constraints
from the following discussion (see [18] for details). Formally, the
MDP ⟨S,A,P,R⟩ stands as:

• S: the state; sequence of previously selected grid cells to
include a transportation line stop.

• A: the action; selected cell at each time-step to add a stop.
• P : S × A × S → {0, 1}: state transition function.
• R : S × A × S → R: the reward.

To consider fairness, we define a set 𝐴, representing different
groups, based on the house-price index (proxy for an area’s devel-
opment). Each cell ℎ is associated with a group 𝑎 ∈ 𝐴. We adjust

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2532



Figure 1: Results in Amsterdam and Xi’an. In the left column, we show the average generated lines for each city. In the middle,
we present the fairness-efficiency trade-off(s). In the right column, we show the distribution of the satisfied demand between
the five groups for selected models. Here we use house prices as a proxy for placing individuals in different wealth bins.

the objective function based on different notions of fairness [2]. We
use𝑈 (𝐺) and𝑈𝑎 (𝐺) to denote the fraction of demand covered by
the new transportation graph 𝐺 , over all groups and for a specific
group 𝑎, respectively.

Variance Regularization . This reward aims to achieve the Nar-
rowing the Gap notion, by regularizing the variance of the groups’
satisfied travel demand with a hyperparameter _:

𝑟 =
∑︁
𝑎

𝑈𝑎 (𝐺) − _var(𝑈 (𝐺)) . (1)

Rawls . Reward based on Rawl’s theory of justice that aims at
maximizing the benefits received by the least privileged group [2]:

𝑟 = 𝑈𝑎0 (𝐺), (2)

where 𝑎0 is the group with least utility before adding the new line.

Generalized Gini Index (GGI). This reward is used to achieve
Equal Sharing of benefits. It is a weighted sum of the groups’ utility,
where the lowest weight is assigned to the group with the highest
utility. The weights are assigned via a hyperparameter.

𝐺𝐺𝐼𝑤 =
∑︁
∀𝑎∈𝐴

𝑤𝑑 𝜎 (𝑈𝑎 (𝐺)). (3)

𝜎 is a permutation that sorts the utilities in descending order and
weights𝑤𝑑 are non-increasing weights,𝑤1 > 𝑤2 > ... > 𝑤 |𝐴 | .

We use a recently proposed Deep RL method to explore the trade-
off described above and modify the reward function of the agent
to achieve outcomes with different degrees of fairness [3, 18]. At
each time step of the episode, the agent receives the current state
as input and selects the next action based on a parametrized policy
network 𝜋 (𝑎𝑡 |𝑠𝑡 , \ ). Action selection is stochastic during training
and greedy during testing [3, 18]. The agent is trained via a policy

gradient advantage actor-critic framework (A2C) [9]. Details on
the architecture can be found in our supplementary code 1 and
documentation, and in previous papers [3, 18].

3 EXPERIMENTS
We ran a vanilla Deep RL method (baseline) and our proposed mod-
ifications in two real-world case study cities: Xi’an and Amsterdam,
evaluating them on total satisfied Origin-Destination (OD) % and
the Gini index of satisfied OD % between groups — ranging from
0 (perfect equality) to 0.8 (maximum inequality — 0.8 due to there
being five values, one for each group).

Max Efficiency Baseline. It maximizes the total efficiency of the
line, without considering the benefits of different groups: 𝑟 = 𝑈 (𝐺).

Accessibility Index Baseline. The distance-decayed Wei et al. re-
ward that aims to connect low and high-priced areas: 𝑟 =

∑
𝑗 𝐷 𝑗𝑒

−𝛽𝑡𝑖 𝑗 ,
𝑖 ≠ 𝑗 , where 𝐷 𝑗 is the house-price index of 𝑗 , 𝑡𝑖 𝑗 is the distance
between 𝑖, 𝑗 and 𝛽 is a tunable parameter.

In Figure 1, we show the generated transport lines, along with
their performance on efficiency and fairness. We observe that util-
itarianism can lead to disparities: the method assuming baseline
reward (red circle) tends to achieve the best results on overall ef-
ficiency, but that comes at the expense of fairness. Disparities are
mitigated by the proposed reward functions, which outperform the
baselines in their respective fairness goals, providing a holistic view
of the trade-off in the TNDP. In conclusion, our experiments show
that due to segregation, different cities are characterized by different
efficiency-fairness trade-offs, suggesting that policy-makers should
consider multiple fairness criteria when applying these algorithms.
1https://github.com/sias-uva/fair-transport-network-design

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2533



ACKNOWLEDGMENTS
This research was carried on the SIAS group as part of the Civic
AI Lab project (ICAI) — in collaboration with the Municipality of
Amsterdam.

REFERENCES
[1] Renato Oliveira Arbex and Claudio Barbieri da Cunha. 2015. Efficient transit net-

work design and frequencies setting multi-objective optimization by alternating
objective genetic algorithm. Transportation Research Part B: Methodological 81
(Nov. 2015), 355–376. https://doi.org/10.1016/j.trb.2015.06.014

[2] Hamid Behbahani, Sobhan Nazari, Masood Jafari Kang, and Todd Litman. 2019.
A conceptual framework to formulate transportation network design problem
considering social equity criteria. Transportation Research Part A: Policy and
Practice 125 (July 2019), 171–183. https://doi.org/10.1016/j.tra.2018.04.005

[3] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Ben-
gio. 2017. Neural Combinatorial Optimization with Reinforcement Learning.
arXiv:1611.09940 [cs, stat] (Jan. 2017). http://arxiv.org/abs/1611.09940 arXiv:
1611.09940.

[4] Wenting Cheng, Jiahui Wu, William Moen, and Lingzi Hong. 2021. Assessing
the spatial accessibility and spatial equity of public libraries’ physical locations.
Library & Information Science Research 43, 2 (April 2021), 101089. https://doi.
org/10.1016/j.lisr.2021.101089

[5] Ahmed Darwish, Momen Khalil, and Karim Badawi. 2020. optimising Public Bus
Transit Networks Using Deep Reinforcement Learning. In 2020 IEEE 23rd Inter-
national Conference on Intelligent Transportation Systems (ITSC). IEEE, Rhodes,
Greece, 1–7. https://doi.org/10.1109/ITSC45102.2020.9294710

[6] Ahmed El-Geneidy, David Levinson, Ehab Diab, Genevieve Boisjoly, David Ver-
bich, and Charis Loong. 2016. The cost of equity: Assessing transit accessibility
and social disparity using total travel cost. Transportation Research Part A: Policy
and Practice 91 (Sept. 2016), 302–316. https://doi.org/10.1016/j.tra.2016.07.003

[7] Wei Fan and Randy B. Machemehl. 2006. Using a Simulated Annealing Algorithm
to Solve the Transit Route Network Design Problem. Journal of Transportation
Engineering 132, 2 (Feb. 2006), 122–132. https://doi.org/10.1061/(ASCE)0733-
947X(2006)132:2(122) Publisher: American Society of Civil Engineers.

[8] Reza Zanjirani Farahani, Elnaz Miandoabchi, W. Y. Szeto, and Hannaneh Rashidi.
2013. A review of urban transportation network design problems. European
Journal of Operational Research 229, 2 (Sept. 2013), 281–302. https://doi.org/10.
1016/j.ejor.2013.01.001

[9] Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, and Robert Babuska. 2012. A
Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gra-
dients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42, 6 (Nov. 2012), 1291–1307. https://doi.org/10.1109/TSMCC.2012.
2218595 Conference Name: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews).

[10] Valérie Guihaire and Jin-Kao Hao. 2008. Transit network design and scheduling:
A global review. Transportation Research Part A: Policy and Practice 42, 10 (2008),
1251–1273.

[11] Gilbert Laporte and Marta M. B. Pascoal. 2015. Path based algorithms for metro
network design. Computers & Operations Research 62 (Oct. 2015), 78–94. https:
//doi.org/10.1016/j.cor.2015.04.007

[12] Karel Martens. 2016. Transport Justice: Designing fair transportation systems.
Routledge. Google-Books-ID: m0yTDAAAQBAJ.

[13] Antonio Mauttone and María E. Urquhart. 2009. A multi-objective metaheuristic
approach for the Transit Network Design Problem. Public Transport 1, 4 (Nov.
2009), 253–273. https://doi.org/10.1007/s12469-010-0016-7

[14] Grigory Neustroev, Sytze P. E. Andringa, Remco A. Verzijlbergh, and Mathijs M.
De Weerdt. 2022. Deep Reinforcement Learning for Active Wake Control. In
Proceedings of the 21st International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS ’22). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 944–953.

[15] Mahmoud Owais and Mostafa K. Osman. 2018. Complete hierarchical multi-
objective genetic algorithm for transit network design problem. Expert Systems
with Applications 114 (Dec. 2018), 143–154. https://doi.org/10.1016/j.eswa.2018.
07.033

[16] Rafael H. M. Pereira, David Banister, Tim Schwanen, and Nate Wessel. 2019.
Distributional effects of transport policies on inequalities in access to opportuni-
ties in Rio de Janeiro. Journal of Transport and Land Use 12, 1 (2019), 741–764.
https://www.jstor.org/stable/26911287 Publisher: Journal of Transport and Land
Use.

[17] Naveen Raman, Sanket Shah, and John Dickerson. 2021. Data-Driven Methods
for Balancing Fairness and Efficiency in Ride-Pooling. arXiv:2110.03524 [cs] (Oct.
2021). http://arxiv.org/abs/2110.03524 arXiv: 2110.03524.

[18] YuWei,MinjiaMao, Xi Zhao, Jianhua Zou, and PingAn. 2020. CityMetro Network
Expansion with Reinforcement Learning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, Virtual
Event CA USA, 2646–2656. https://doi.org/10.1145/3394486.3403315

[19] Ziyi Xu, Xue Cheng, and Yangbo He. 2022. Performance of Deep Reinforcement
Learning for High Frequency Market Making on Actual Tick Data. In Proceedings
of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’22). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 1765–1767.

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2534

https://doi.org/10.1016/j.trb.2015.06.014
https://doi.org/10.1016/j.tra.2018.04.005
http://arxiv.org/abs/1611.09940
https://doi.org/10.1016/j.lisr.2021.101089
https://doi.org/10.1016/j.lisr.2021.101089
https://doi.org/10.1109/ITSC45102.2020.9294710
https://doi.org/10.1016/j.tra.2016.07.003
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(122)
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(122)
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.1016/j.cor.2015.04.007
https://doi.org/10.1016/j.cor.2015.04.007
https://doi.org/10.1007/s12469-010-0016-7
https://doi.org/10.1016/j.eswa.2018.07.033
https://doi.org/10.1016/j.eswa.2018.07.033
https://www.jstor.org/stable/26911287
http://arxiv.org/abs/2110.03524
https://doi.org/10.1145/3394486.3403315

	Abstract
	1 Introduction
	2 Fairness vs Efficiency in the TNDP
	3 Experiments
	Acknowledgments
	References



