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ABSTRACT

As large pre-trained image-processing neural networks are being
embedded in autonomous agents such as self-driving cars or robots,
the question arises of how such systems can communicate with
each other about the surrounding world, despite their different
architectures and training regimes. As a first step in this direction,
we explore the task of referential communication in a community of
state-of-the-art pre-trained visual networks, showing that they can
develop a shared protocol to refer to a target image among a set
of candidates. Such shared protocol, induced in a self-supervised
way, can to some extent be used to communicate about previously
unseen object categories. Finally, we show that a new neural net-
work can learn the shared protocol developed in a community with
remarkable ease, and the process of integrating a new agent into
a community more stably succeeds when the original community
includes a larger set of heterogeneous networks.
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1 INTRODUCTION

With deep neural networks being deployed industrially in a range
of disciplines, many concurrent architectures will soon be func-
tioning in the same spaces. We come to wonder how they could
communicate about the surrounding visual world, as seen through
the lenses of their respective core visual components. A new line
of research has recently emerged, focusing on methods to let deep
networks develop a shared communication protocol [7]. Specifi-
cally, the area of deep net emergent communication [3, 4] has scaled
this line of research to larger networks and datasets.
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Table 1: Pre-trained visual architectures employed

Architecture ‘ Type ‘ Training ‘ Parameters
ResNet152 [5] | CNN Supervised 60.2M
Inception [14] | CNN Supervised 27.2M
VGG 11 [12] CNN Supervised 132.9M
ViT-B/16 [6] Attention | Supervised 86.6M
ViT-S/16 [2] Attention | Self-supervised | 21M
Swin (8] Attention | Supervised 87.7M

2 SETUP

Inspired by the core communicative task of reference (e.g. [13]),
agents play the referential communication game. A sender is given
a target input (e.g., a picture) and issues a message (e.g., a small
vector). A receiver is exposed to a set of inputs, including the target,
and must correctly point to the latter based on the message it
receives from the sender. In our setup both sender and receiver are
neural networks as described in Fig. 1. We use as vision modules
widely used state of the art vision models (Table 1). Note that no
parameters are shared between sender and receiver, except those of
the frozen visual modules in the case in which the two agents are
using homogeneous visual architectures. Only the communication
and mapper modules are trained. All networks were pre-trained
on ILSVRC2012 ImageNet data [11]. We explore communication
across architectures, evaluating referential ability, generalization
capacity, and the learnability of communication strategies.

Training: We train the communication and mapper modules
using the Imagenet 1k validation set, which has not been seen by vi-
sion modules during pre-training. We reserve 10% of the validation
set for testing. Agents are also tested on an out-of-domain (OOD)
dataset containing classes from the larger ImageNet-21k repository,
as pre-processed by [9]. We selected 52 new classes among those
that are neither hypernyms nor hyponyms of imagenet1k classes,
and we made sure that no OOD class had a WordNet path similarity
score [1] above 0.125 with any imagenet1k class.!

'We provide scripts to reproduce our imagenet1k and OOD datasets at https://github.
com/mahautm/emecom_pop_data


https://github.com/mahautm/emecom_pop_data
https://github.com/mahautm/emecom_pop_data
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Figure 1: A target image is input to the sender (left), that
extracts a vector representation of it by passing it through
a pre-trained frozen visual network This vector representa-
tion is fed to the single layer feed-forward Communication
Module that generates a message (a 16 dimension continuous
vector). This message vector is input to the Receiver (right).
The receiver processes each of 64 candidate images in turn
by passing it through a pre-trained frozen visual network
(which is either the same (homogeneous) or another (hetero-
geneous) architecture), obtaining a set of vector representa-
tions. These are fed to a Mapper Module, another two layered
fully connected feed-forward component that maps them
to vectors in the same space as the sender message embed-
ding. The Selection Module of the receiver simply consists in
a parameter-free cosine similarity computation between the
message and each image representation, followed by Softmax
normalization. The receiver is said to have correctly identi-
fied the target if the largest value in the resulting probability
distribution corresponds to the index of the target in the
candidate array.

3 RESULTS

If different networks were pre-trained independently can they still
agree on reference? With a very small communication channel (16
dimensions), models rapidly converge to near perfect accuracy on
the referential task (first column of Table 2). This remains true
for all 6 tested models, in both homogeneous (both sender use the
same vision module, e.g. a ResNet) and heterogeneous (sender and
receiver have different vision modules, e.g. a ResNet sender and
VGG receiver) cases, across architecture types, and training types.
OOD performance, while not being as good as in-domain, confirms
the notable generalization capabilities of the emerged language. It
should be noted that all results using continuous communication
widely outperform those obtained with discrete communication
(not reported here for space reasons), in training speed (x9), accu-
racy (+30%), and generalisation capabilities (+30%).

Population: Like [3, 10] we study the impact of training agents in
a population setup. At every trial, two agents are randomly sampled
to play the referential game together, so that throughout training
any of the 6 senders will be paired with each of the 6 receivers.
Table 2 shows that performance is very close to that obtained when
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Table 2: Percentage accuracy of agents playing the referential
communication game on both datasets

Imagenet-1lk  OOD

Homogeneous 100+ 0 92+5
Heterogeneous 97 +2 61+ 16
Population 98 +1 66 + 15
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Figure 2: Test accuracy and learning speed of learner agents.
Blue line: learning curve on test data for learner agent added
to a communicating pair, averaged across all possible het-
erogeneous triples. Orange line: learning curve for learner
agent added to an existing community, averaged across all
possible leave-one-out cases. Vertical bars indicate standard
deviation across cases. As a baseline for learning speed, the
dashed green line shows the learning curve when training
the whole 6x6 populations at once from scratch.

training agent in fixed pairs (one-on-one). It is therefore possible to
make agents use messages that are understood by all architectures,
with little to no loss in performance. We leave extensive message
analysis to future works.

Learning a communication strategy: We finally imagine a sce-
nario where a group of agents has already been deployed, and there
is a need to add a new agent to the group: can it learn to com-
municate with its peers ? Once a group of agents has converged
upon a communication strategy that reaches high accuracy on the
referential task, we investigate how easily a new untrained agent
can learn to use it. New agents perform very well very fast (Fig. 2),
with accuracy reaching more than 85% by the first epoch. We show
that communication induced once by training, can be learnt, to a
lesser cost than if it had to be re-developed from scratch.
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