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ABSTRACT
Diffusion auction refers to an emerging paradigm where an auc-
tioneer utilises a social network to attract potential buyers.We con-
sider the risks of disclosing sensitive preferences of buyers from
the published auction outcome and initiate the study of differen-
tial privacy in diffusion auction. We study the single-unit case and
design two differentially private diffusion mechanisms (DPDMs):
recursive DPDM and layered DPDM.We prove their incentive and
privacy properties, and then empirically compare their performance
on real and synthetic datasets.
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1 INTRODUCTION
Diffusion auction is an emerging business paradigm of online social
network commerce. In this setting, a seller is able to harness the
power of social network to diffuse auction information, inviting
friends, friends-of-friends, etc., to join the auction, thereby attract-
ing a large number of potential buyers.This differs from a standard
auction (without social network) where the participants are fixed
beforehand. A challenge in diffusion auctions lies in resolving the
conflict between the seller who wants to attract more participants
for better revenue and the buyers who are reluctant to invite their
friends to avoid competition. Thus there is a need to extend incen-
tive compatibility (IC) for hidden valuations in classical auctions, to
diffusion IC for hidden valuation as well as social ties. Numerous
studies, e.g., [5–7, 13–15], have proposed mechanisms for diffusion
auction that achieve diffusion IC.

In an auction, buyers submit their (private) valuations in bids to
the auctioneer. The bids often imply buyers’ preferences and con-
fidential business strategies, and competitors may exploit them to
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gain an advantage. Hence, there is a need to protect the privacy of
bid information. The privacy issues in classical auctions have re-
cently been studied in [1, 3, 4, 8–12, 16, 17]. These studies employ
the well-established notion of differential privacy (DP) [2] to miti-
gate privacy risks. To achieve DP on bids, [8] proposes exponential
mechanism. The mechanism randomises auction results so that a
change in a buyer’s bid does not significantly affect the auction
outcome. In this way, the mechanism prevents the bid from being
inferred from the auction outcome.

However, no study has focused on the privacy issues for diffu-
sion auctions. Herewe close this gap by investigating the following
question: How do we design a differentially private diffusion mecha-
nism (DPDM) that guarantees desirable properties and preserves val-
uation privacy?

2 PROBLEM FORMULATION
Consider the following setup: There is a seller, 𝑠 and buyers 𝑁 =
{1, 2, . . . , 𝑛}. Seller 𝑠 has a single indivisible item to sell. Each buyer
𝑖 ∈ 𝑁 is willing to buy the item and attaches a valuation 𝑣𝑖 to the
item. The seller and the buyers form a social network 𝐺 = (𝑉 , 𝐸),
where 𝑉 = 𝑁 ∪ {𝑠} and 𝐸 ⊆ 𝑉 2. Each node 𝑖 ∈ 𝑉 has a neighbour
set 𝑟𝑖 B { 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸}. The pair 𝜃𝑖 = (𝑣𝑖 , 𝑟𝑖 ) is called the
true profile of the buyer 𝑖 . Each buyer 𝑖 ∈ 𝑁 , once invited to the
auction, is asked to report her profile 𝜃 ′𝑖 = (𝑣 ′𝑖 , 𝑟

′
𝑖 ), which might

not be the true one. This forms the tuple 𝜃 ′ B (𝜃 ′1, . . . , 𝜃
′
𝑛) called

a global profile of all buyers. By Θ we denote the set of all such
profiles. Given 𝜃 ′ ∈ Θ, we construct 𝐺𝜃 ′ = (𝑉𝜃 ′ , 𝐸𝜃 ′ ) the directed
graph: add a directed edge (𝑖, 𝑗) if 𝑗 is reported by 𝑖 as a neigh-
bour. We call such graph profile digraph. The utility of buyer 𝑖 is
𝑢𝑖 (𝜃 ′) = 𝑣𝑖𝜋𝑖 (𝜃 ′) − 𝑝𝑖 (𝜃 ′) when reported global profile is 𝜃 ′. The
social welfare of a mechanism𝑀 on 𝜃 ′, written 𝑠𝑤𝑀 (𝜃 ′), is the sum
of all utilities, i.e., 𝑠𝑤𝑀 (𝜃 ′) = ∑

𝑖∈𝑉 𝑢𝑖 (𝜃 ′).
Designing a DPDM has mainly three challenges: (1) Valuation

asymmetry. Buyers’ true valuations are hidden from the seller.
Thus buyers have an advantage over the seller as they can misre-
port their valuations. (2) Neighbourhood asymmetry. Buyers’
neighbours are hidden, so buyer 𝑖 may misreport the neighbour
set 𝑟 ′𝑖 ⊆ 𝑟𝑖 as disseminating the auction information may hinder
their own chance of winning. (3) Valuation privacy. Once the
auction result is announced, an attacker may infer the bid infor-
mation from the published auction result. This disadvantages the
buyer(s) whose private valuation is diclosed.
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To preserve privacy, we use randomisation. Let Ω be a probabil-
ity space. A randomised mechanism 𝑀 consists of two randomised
functions (𝜋 (·), 𝑝 (·)), where 𝜋 : Θ× Ω → {0, 1}𝑛 , 𝑝 : Θ× Ω → R+.

Definition 2.1. Let𝑀 be a randomisedmechanism. Call themech-
anism𝑀 𝜖-differentially private (𝜖-DP) if for any two global profiles
𝜃 ′, 𝜃 ′′ ∈ Θ that differ on a single buyer’s valuation, and for any pos-
sible outcome 𝑜 ∈ 𝑂 , Pr[𝑀 (𝜃 ′) = 𝑜] ≤ exp(𝜖)Pr[𝑀 (𝜃 ′′) = 𝑜].

In randomised mechanisms, we use E𝑀 [𝑢𝑖 (·)] to denote 𝑖’s ex-
pected utility in 𝑀 . The social welfare of 𝑀 is also in expectation,
i.e., E𝑀 [𝑠𝑤𝑀 (𝜃 )] = ∑

𝑖∈𝑉 E𝑀 [𝑢𝑖 (𝜃 )] .
Definition 2.2. Let 𝑀 be a randomised mechanism,

• The mechanism 𝑀 is IC if for all 𝑖 ∈ 𝑁 , all 𝜃𝑖 , 𝜃 ′𝑖 ∈ Θ and for
all 𝜃 ′−𝑖 , 𝜃

′′
−𝑖 ∈ Θ𝑛−1, we have the following, E𝑀 [𝑢𝑖 ((𝜃𝑖 , 𝜃 ′−𝑖 ))] ≥

E𝑀 [𝑢𝑖 ((𝜃 ′𝑖 , 𝜃
′′
−𝑖 ))] .

• The mechanism 𝑀 is IR if for all 𝑖 ∈ 𝑁 and all 𝜃 ′−𝑖 ∈ Θ𝑛−1, we
have E𝑀 [𝑢𝑖 ((𝜃𝑖 , 𝜃 ′−𝑖 ))] ≥ 0.

We aim to design a randomised mechanism that is IC, IR, 𝜖-DP
(for reasonable 𝜖) while maximising expected social welfare.

3 RECURSIVE DPDM
Preserving valuation privacy in diffusion auctions is not a trivial
task. Existing diffusion auctions, including IDM [7], CMD [6], and
FDM [14], are deterministic, and thus fail to preserve privacy. Ex-
isting DP mechanisms, including exponential mechanism, fail to
incentivise truthful report of neighbours as inviting more partici-
pants means a lower probability of winning the auction.

To incentivise buyers to diffuse auction information, we need
to ensure each buyer’s utility of reporting her neighbours should
be no less than that of non-reporting. We propose recursive DPDM
REC to achieve this. The basic idea is “market division”, i.e., treat
the social network as a market, partition the market into multiple
sub-markets and assign each sub-market a probability with which
buyers in this sub-market win. Then each buyer would report as
many neighbours as possible in order to maximise the probability
of the sub-market she belongs to.The buyers in a sub-market share
the probability of the sub-market in such a way that the winning
probability of any buyer is independent from her children. There-
fore, the buyers have no competition with their children and have
no incentive to hide them.

Specifically, fix a score function𝜎 (·) non-decreasing in 𝑣 ′𝑖 . Given
𝜃 ′ ∈ Θ, a privacy parameter 𝜖 and the function 𝜎 (·) as input,
REC works as follows: (1) From the profile digraph 𝐺𝜃 ′ , REC con-
structs a diffusion critical tree𝑇𝜃 ′ [15]. (2) REC determines winning
probabilities. The process is recursive and starts with 𝑇𝜃 ′ . Given a
(sub-)tree rooted by 𝑖 ∈ 𝑉 , REC assigns a probability to each sub-
tree rooted by 𝑗 ∈ 𝑟𝑖 , and a winning probability to each 𝑗 ∈ 𝑟𝑖 .
This operation is repeated for 𝑗 ’s children, children of 𝑗 ’s children
and so on until there is no more children. (3) REC randomly se-
lects a buyer 𝑤 as a winner according to the constructed distribu-
tion in Step (2). REC sets 𝑤 ’s allocation 𝜋𝑤 = 1, and payment as
𝑝𝑤 = 𝑣 ′𝑤 −

∫ 𝑣′𝑤
0 Pr𝑤 ((𝑥, 𝑟 ′𝑤))𝑑𝑥/Pr𝑤 (𝜃 ′𝑤).

Let 𝑑max be the maximum depth of the diffusion critical tree
and Δ𝜎 be the largest possible difference in score function 𝜎 when
applied to two global profiles that differ only on a single valuation,
for all possible outcome 𝑜 ∈ 𝑂 . We have the following theorem.

theoRem 3.1. Recursive DPDM REC is IC, IR and 𝜖𝑑maxΔ𝜎-DP.

4 LAYERED DPDM
Following the idea of market division, we propose layered DPDM
LAY in this section. Different from REC, LAY divides the market by
buyers’ distances to seller, i.e., LAY allocates a probability to each
layer of the tree, which is shared by the buyers on this layer. For
any buyer, once she is invited, her layer is fixed. Also, the buyer(s)
whom she invites is on the next layer, and thus has no competition
with her.

Specifically, LAY executes the same operations as in REC, where
the only difference is in Step (2). In Step (2), given a critical diffu-
sion tree 𝑇𝜃 ′ and an infinite decreasing sequence 𝛾 = (𝛾1, 𝛾2, . . .),
where

∑
𝛾𝑖 = 1, LAY assigns a probability Pr𝐿ℓ = 𝛾ℓ to each layer

𝐿ℓ , 1 ≤ ℓ ≤ 𝑑max, of the tree and then assigns a winning probability
to buyers on layer 𝐿ℓ . The following theorem shows the incentive
and privacy properties of LAY.

theoRem 4.1. Layered DPDM LAY is IC, IR and 𝜖Δ𝜎-DP.

Next we analyse the expected social welfare of LAY. We con-
sider a hypothetical scenario where the exponential mechanism
is applied to the whole social network where the seller knows all
buyers and the auction information is diffused to all buyers with-
out any incentive. We call such a mechanism as exponential mech-
anism with diffusion (EMD). EMD has the optimal expected social
welfare among all DPDMs and thus is used as the benchmark.

theoRem 4.2. Given a global profile 𝜃 , layered DPDM LAY has
ELAY [𝑠𝑤LAY (𝜃 )] ≥ 𝛾𝑑max

EEMD [𝑠𝑤EMD (𝜃 )].

CoRollaRy 4.3. For 𝛾 = ( 𝑎−1𝑎 , 𝑎−1
𝑎2

, . . . ), where 𝑎 > 1, the ex-
pected social welfare of layered DPDM LAY is ≥ 𝑎−1

𝑎𝑑max
EEMD [𝑠𝑤EMD (𝜃 )].

5 EXPERIMENT
We evaluate the performances of REC and LAY, in terms of social
welfare under different privacy levels and valuations on three real
world social network datasets. We also analyse the effect of se-
quence 𝛾 = ( 𝑎−1𝑎 , 𝑎−1

𝑎2
, . . .) on the performance of LAY. We use

three benchmarks: IDM [7], EMD and EMWD. EMWD: Apply the
exponential mechanism only to the seller’s neighbours. The ex-
pected social welfare of EMWD can be seen as the lower bound.

The experiment results show that: Overall, when comparing to
IDM, the difference in social welfare of the DPDMs decreases with
𝜖 increases. Then, among DPDMs, EMD performs best in most
cases, followed by REC and LAY. Particularly, REC performs very
well. The deviation of REC from EMD is at most 2.62%. Figure 1
shows the average social welfare of REC, LAY and three bench-
marks under normally distributed valuation and 𝛾 with 𝑎 = 2.

Figure 1:Average social welfare of LAY, REC, EMD, EMWDand IDM
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