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ABSTRACT
State uncertainty poses a major challenge for decentralized coor-
dination. However, state uncertainty is largely neglected in multi-
agent reinforcement learning research due to a strong focus on
state-based centralized training for decentralized execution (CTDE)
and benchmarks that lack sufficient stochasticity like StarCraft
Multi-Agent Challenge (SMAC). In this work, we propose Attention-
based Embeddings of Recurrence In multi-Agent Learning (AERIAL)
to approximate value functions under agent-wise state uncertainty.
AERIAL uses a learned representation of multi-agent recurrence,
considering more accurate information about decentralized agent
decisions than state-based CTDE. We then introduceMessySMAC, a
modified version of SMAC with stochastic observations and higher
variance in initial states, to provide a more general and configurable
benchmark. We evaluate AERIAL in a variety of MessySMAC maps,
and compare the results with state-based CTDE.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) is a popular approach to
solving general Dec-POMDPs with remarkable progress in recent
years [16, 17]. State-of-the-art MARL is based on centralized train-
ing for decentralized execution (CTDE), where training takes place in
a laboratory or a simulator with access to global information [2, 4].
For example, state-based CTDE exploits true state information to
learn a centralized value function in order to derive coordinated poli-
cies for decentralized decision making [9, 10, 13, 16, 18]. Due to its
effectiveness in the StarCraft Multi-Agent Challenge (SMAC) as the
current de facto standard for MARL evaluation, state-based CTDE
has become very popular and is widely considered an adequate
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approach to general Dec-POMDPs, leading to many increasingly
complex algorithms [5, 6].

However, merely relying on state-based CTDE and SMAC can be
a pitfall in practice as state uncertainty is largely neglected. Since
the real-world is generally messy and only observable through
noisy sensors, state uncertainty is an important aspect of general
Dec-POMDPs to be considered though [3, 5, 7]:

From an algorithm perspective, purely state-based value functions
are insufficient to evaluate and adapt multi-agent behavior, since all
agentsmake decisions on a completely different basis, i.e., individual
histories of noisy observations and actions. True Dec-POMDP value
functions consider more accurate closed-loop information about
decentralized agent decisions though [8]. Furthermore, the optimal
state-based value function represents an upper-bound of the true
optimal Dec-POMDP value function thus state-based CTDE can
result in overly optimistic behavior in general Dec-POMDPs [5].

From a benchmark perspective, SMAC has very limited state un-
certainty due to deterministic observations and low variance in
initial states [1]. Therefore, SMAC scenarios only represent sim-
plified special cases rather than general Dec-POMDP challenges,
being insufficient for evaluating generality of MARL [5].

2 METHODS
2.1 Attention-Based Embeddings of Recurrence
We propose Attention-based Embeddings of Recurrence In multi-
Agent Learning (AERIAL) to approximate true optimal Dec-POMDP
value functions according to [8]. Our setup uses a factorization
operator Ψ like QMIX or QPLEX according to [11, 13, 14, 16]. All
agents process their local observation-action histories 𝜏𝑡,𝑖 via RNNs.

To consider more accurate closed-loop information about de-
centralized agent decisions, we exploit all individual recurrences by
replacing the true state 𝑠𝑡 in CTDE with the joint memory repre-
sentation ht = ⟨ℎ𝑡,𝑖 ⟩𝑖∈D of all agents’ RNNs. Since the individual
recurrences encoded by memory representations ℎ𝑡,𝑖 ∈ ht are not
conditionally independent in general, we additionally process ht
with a transformer to automatically consider the latent dependen-
cies of all memory representations ℎ𝑡,𝑖 ∈ ht through self-attention
[15]. The resulting approach, called AERIAL, is depicted in Fig. 1.

2.2 SMAC with State Uncertainty
MessySMAC is a modified version of SMACwith observation stochas-
ticity, where the observation values are negated with a probabil-
ity of 𝜙 ∈ [0, 1), and initialization stochasticity, where 𝐾 random
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Figure 1: Illustration of the AERIAL setup. Left: Recurrent agent network structure with memory representations ℎ𝑡−1,𝑖 and ℎ𝑡,𝑖 .
Right: Value function factorization via factorization operator Ψ using the joint memory representation ht = ⟨ℎ𝑡,𝑖 ⟩𝑖∈D of all
agents’ RNNs instead of true states 𝑠𝑡 . All memory representations ℎ𝑡,𝑖 are detached from the computation graph (indicated by
the dashed gray arrows) and passed through a simplified transformer before being used by Ψ for value function factorization.

Figure 2: Left: Screenshot of two SMACmaps.Middle: PCA vi-
sualization of the joint observations in original SMACwithin
the first 5 steps of 1,000 episodes using a random policy (with
𝐾 = 0 initial random steps). Right: Analogous visualization
for MessySMAC (with 𝐾 = 10 initial random steps). For visual
comparability, the observations are deterministic here.

steps are initially performed before officially starting an episode.
MessySMAC represents a more general Dec-POMDP challenge
which enables systematic evaluation under various state uncer-
tainty configurations according to 𝜙 and 𝐾 .

Fig. 2 shows the PCA visualization of joint observations in two
maps of SMAC (𝐾 = 0) and MessySMAC (𝐾 = 10) within the
first 5 steps of 1,000 episodes using a random policy. While the
observations of the initial state (dark purple) in original SMAC are
very similar and can be easily distinguished from subsequent steps,
the separability in MessySMAC is much harder due to significantly
higher entropy, indicating higher state uncertainty.

3 EXPERIMENTS
To evaluate the robustness of AERIAL against various state uncer-
tainty configurations in MessySMAC1, we manipulate the obser-
vation negation probability 𝜙 and the number of initial random
steps 𝐾 as defined in Section 2.2. We compare the results with
QPLEX and QMIX as the best performing state-of-the-art baselines in
MessySMAC according to the findings of [12]. We present summa-
rized plots, reporting the count of maps used in [12], where each
approach performs best compared to the others.

The results w.r.t. observation and initialization stochasticity are
shown in Fig. 3. AERIAL performs best in most maps, especially
when 𝜙 ≥ 15% and 𝐾 ≥ 10. State-based CTDE approaches like
QPLEX and QMIX are notably less effective when observation and
initialization stochasticity increase.

(a) observation stochasticity (b) initialization stochasticity

Figure 3: The average number ofmaps best out of 6 for AERIAL,
AERIAL (no attention), and the best MessySMAC baselines
for 𝜙 and 𝐾 w.r.t. the maps used in [12] (20 runs per configu-
ration). The legend at the top applies across all plots.

1Our code is available at https://github.com/thomyphan/messy_smac.
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