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ABSTRACT
The successes of reinforcement learning in recent years are un-

derpinned by the characterization of suitable reward functions.

However, in settings where such rewards are non-intuitive, difficult

to define, or otherwise error-prone in their definition, it is useful to

instead learn the reward signal from expert demonstrations. This

is the crux of inverse reinforcement learning (IRL). While eliciting

learning requirements in the form of scalar reward signals has

been shown to be effective, such representations lack explainability

and lead to opaque learning. We aim to mitigate this situation by

presenting a novel IRL method for eliciting declarative learning re-

quirements in the form of a popular formal logic—Linear Temporal

Logic (LTL)—from a set of traces given by the expert policy.
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1 INTRODUCTION
Learning from demonstrations has become a viable approach to

learning in environments where domain experts or performant

agents can provide traces of (un)desirable behavior. One important

embodiment of this form of learning is known as inverse reinforce-
ment learning [14] (IRL), whereby an apprentice agent learns the

reward function being optimized by a given expert policy or beha-

vior. Please refer to our full paper [1] for more detail.

Linear Temporal Logic (LTL).We focus on (a subset of) LTL [13]

as the specification language due to its succinctness [2, 9] and

relevance in the AI [5, 7], formal methods [2, 10], control theory [3,

15], and machine learning [6] communities. Recently, it has gained

popularity [4, 6, 11] in expressing learning objectives in model-

free reinforcement learning (RL). The key computational problem
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for the LTL-based IRL is the following: given a pair S = (𝑃, 𝑁 )
of samples consisting of positive traces 𝑃 and negative traces 𝑁

(both are sets of finite words), produce the highest-ranking LTL

specification consistent with the sample where rank is informed by

some user-tunable notion of simplicity over the LTL specifications.

2 QUANTIFYING EXPRESSIVE PARSIMONY
An alphabet Σ is a non-empty, finite set of symbols. A finite word 𝑤
over Σ is a finite sequence 𝑎1𝑎2 ...𝑎𝑛 of symbols from Σ.

Given an LTL formula 𝜑 and a finite word𝑤 , we design a valu-

ation function 𝑉 (𝜑,𝑤) that quantifies the parsimony of 𝜑 in ex-

plaining 𝑤 . We use the valuation function to rank the formulae.

Intuitively, a pair scores high if all of the subformulae of the formula

𝜑 contribute in accepting 𝑤 in 𝐿(𝜑). However, we do so in a nu-

anced fashion by geometrically attenuating the effect of parsimony

with the length of the word. For example, G(𝑝 ∨ 𝑞) should score

well along with word ({𝑝}{𝑞})3 but should not do well with word

({𝑝})6, since the subformula 𝑞 did not contribute to the acceptance.

Similarly, G(𝑝 ∨ 𝑞) should score better along with word ({𝑝}{𝑞})3
than ({𝑝})5{𝑞}.

Let us present a valuation function first. Let F represent the set

of NNF GF-fragment formulae over P. We interpret LTL formulae

over finite words and define the quantitative semantics in terms of

a valuation mapping 𝑉 : F × Σ∗ → R+ ∪ {0}, where Σ = 2
P
. The

valuation mapping is defined over a word𝑤 ∈ Σ∗ inductively:

𝑉 (𝑝,𝑤) =

{
1 if 𝑝 ∈ 𝑤 (1)
0 otherwise

𝑉 (¬𝑝,𝑤) =

{
1 if 𝑝 ∉ 𝑤 (1)
0 otherwise

𝑉 (𝜑∧𝜓,𝑤) = 𝛽 ·𝑉 (𝜑,𝑤) ·𝑉 (𝜓,𝑤)

𝑉 (𝜑∨𝜓,𝑤) = 𝛽 · 𝑉 (𝜑,𝑤) +𝑉 (𝜓,𝑤)
2

𝑉 (G𝜑,𝑤) =


𝛽
|𝑤 |∑
𝑖=0

𝛼𝑖𝑉 (𝜑,𝑤𝑖 ) if 𝑉 (¬𝜑,𝑤𝑡 )=0, ∀𝑡

0 otherwise

𝑉 (F𝜑,𝑤) =

{
𝛽𝛼𝑡𝑉 (𝜑,𝑤𝑡 ) 𝑡=min{ 𝑗 | 𝑉 (𝜑,𝑤 𝑗 )>0}
0 if 𝑉 (𝜑,𝑤𝑡 ) = 0, ∀𝑡
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Here, 𝑤 𝑗 is a shorthand for 𝑤 [ 𝑗 :]. If 𝑤 |= 𝜑 , then 𝑉 (𝜑,𝑤) is non-
zero. This scheme is parameterized by two discount factors: the

temporal discount factor 𝛼 and the nesting discount factor 𝛽 .

3 LEARNING ALGORITHMS
As our main contribution, we propose learning algorithms to solve

the following problem. Given a sample S=(P,N) over finite words,
compute an LTL formula 𝜑 in the GF-fragment that best describes S
and is consistent with S. That is, 𝜑 has the highest score, based on
the valuation described above, among all formulae such that for all
𝑤 ∈ 𝑃 ,𝑤 |= 𝜑 and for all𝑤 ′ ∈ 𝑁 ,𝑤 ′ ⊭ 𝜑 .

To achieve the goal of ranking formulae based on a quantitat-

ive notion of satisfiability, we propose the techniques of constraint
system optimization, optimized pattern matching (Section 5.2 [1]),

and hybrid pattern matching. In the first one, we get a sample and

a depth 𝑑 as input. We encode the syntax tree of this unknown

formula of depth 𝑑 along with constraints to compute the score

of each node in the tree. The second one makes use of a formula

template pattern provided by the user, but has unknown proposi-

tional variables. We encode constraints which allow mapping these

variables to unique variables occurring in the sample. The third one

is a “hybrid” approach, a middle ground incorporating both of the

above techniques. We use an optimizing SMT solver to solve the

constraints to find the best formula for the sample with the highest

score according to the valuation function.

Furthermore, we also developed an alternative greedy search,

called compositional ranking, which bypasses constraint solving

and optimizations, by pruning the search space of formulae. We

begin by enumerating all formulae of depth zero, i.e., all literals

in our system as obtained after parsing input traces. We consider

all compositions of these literals with the operators present. After

enumerating the literals, we perform an “F-check” : for any 𝜑 , the
F-check tests whether, in any input sample, F𝜑 holds. If a formula

passes an F-check, it is retained to produce formulae of higher

depth, else it is removed.

4 EXPERIMENTS
Wehave implemented the preceding algorithms in a tool calledAnon.

In this section, we present the results of Anon on a set of traces

sampled from a grid-world environment running under OpenAI

Gym. Anon is implemented in C++. For the optimization, it takes

a set of positive traces, a (possibly empty) set of negative traces,

and a formula template (which can simply be 𝜑 (𝑑), a search depth

of 𝑑 with no specification) or a combination, while the compos-

itional ranking takes as input the traces along with a maximum

search depth. Our implementation uses SMT solver Z3 [8] for the

optimizations. All our queries to Z3 are quantifier-free. For optim-

ization, Anon returns a formula with maximal score according to

our scheme, while for compositional ranking, it returns a list of all

satisfying formulae in the search space, sorted by score. In our ex-

periments, we used a discount factor 𝛼 = 𝑒−1 and also used 𝛽 = 0.8

to decay each time we build deeper formulae in order to bias the

ranking towards simpler formulae. We evaluated the performance

of Anon on a 64-bit Linux system with an AMD Renoir Ryzen 5

(4500U) laptop CPU. We set 1000 seconds as timeout. We compare

with Texada[16] and the SAT based tool Traces2LTL [12].

Constraint Comp. Traces2LTL

Optimization Ranking

Mean ILE 0.031 0.037 0.112

Input size 10
3

2 × 10
5

10
3

Non-Markovian IRL.We apply learning techniques to generate

a reward function over an MDP defined as a grid world to ob-

tain a non-markovian reward decision processes(NMRDP). After

generating a randomized 10 × 10 grid environment labeled with

propositional variables, we uniformly sample the grid taking ac-

tions compatible with an input automaton. This ensures that the

generated traces satisfy a given formula. We use the same LTL

properties as the previous case. We allow the MDP to randomly

simulate for at least 100 steps, after which we wait for it to reach

an accepting state. Through this method, we generated traces of

length varying between 100 and 150, with 1000 positive and 1000

negative traces for each formula, amounting to a total trace length

of at least 10
5
across all positive and negative inputs. However,

for constraint system optimization and Traces2LTL [12], due to

timeouts, a smaller subset was randomly selected from the traces.

For our experiments, given an NMRDP𝑀 in the form of a grid-

world, we can compute the optimal policy for three different De-

terministic Rabin Automaton (DRA), objectives by computing three

product MDPs (Section 6.3 [1]). The first DRA objective is what we

are trying to learn. We will denote the optimal policy here as 𝜋∗
true

computed on𝑀 ×𝐴true, where 𝐴true is the DRA representation of

the LTL objective we are trying to learn. Then, we have the policy

𝜋∗
QL

computed on 𝑀 × 𝐴QL, where 𝐴QL is the DRA learnt using

Anon. Finally, we have the policy 𝜋∗
T2L

computed on 𝑀 × 𝐴T2L,

where 𝐴T2L is the DRA learnt using Traces2LTL [12]. We will take

these three policies to generate our results in the form of the in-

verse learning error (ILE). We compute these value functions using

uniformly random sampling of trajectories from every state in

the NMRDP. We can then take a simple ratio (MeanILE in Table

above) of the number of trajectories satisfied by 𝐴true, and divide it

with the total number of trajectories, and report an average over

multiple runs and inputs. In particular, we will compute two ILE

values, comparing | |𝑉𝜋∗
true

−𝑉𝜋∗
QL

| |2 and | |𝑉𝜋∗
true

−𝑉𝜋∗
T2L

| |2. Our ex-
periments demonstrate that the former is smaller than the latter,

thereby providing evidence that our approach generalizes better

for non-Markovian IRL than a competing one adapted to the IRL.

5 CONCLUSION
In this paper, we presented a novel scheme to quantitatively evalu-

ate LTL formulae. Our evaluation schema is designed such that the

score received by a word is proportional to how well it represents

the formula. Thus, words which are “good representatives” score

higher than words which merely satisfy the formula (and hence

qualify to be “poor representatives”). One of our contributions is to

use this schema to mine LTL formulae from the traces of reactive

systems. Our approach presents a viable solution to non-Markovian

inverse reinforcement learning (IRL) in settings where the reward

signal can be captured as LTL formulae.
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