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ABSTRACT
Explaining the outcome of an election is a crucial task to address,
especially in the case of complex voting rules. For those without a
background in social choice, understanding the result of an election
with a complex voting rule can be difficult. One possible way of ex-
plaining a voting rule is by using a decision tree structure, allowing
the reader to follow the reasoning behind the outcome.

This work proposes a methodology for explaining voting rules
using decision-tree-based classifiers. Using simple features, the
classifiers can be trained to a high accuracy while maintaining a
human-readable size. We test this framework with well-established
voting rules – Copeland, Kemeny-Young, Ranked Pairs and Schulze
– to generate explanations for each election’s outcome. We experi-
ment with different decision tree algorithms on a synthetic dataset
to generate explanations for the election outcome. We find that
Copeland and Schulze under three candidates can be learned per-
fectly using an optimized decision tree algorithm, while cases of
other rules have high accuracy experimentally.
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1 INTRODUCTION
Nowadays, voting is applied for decision-making in every corner of
life, ranging from picking the school mascot to making high-stakes
decisions made by multiple supercomputers, and it has become
an essential part of many complex systems. While voting can ag-
gregate individual preferences and make collective decisions, it
is also important to convince the participants that the outcome
of the voting successfully reflects their wishes as a whole. This
is a relatively easy task for simple rules like plurality. However,
when the complexity of the voting rule grows, explaining the voting
outcome can be much more challenging. Without expertise in the
area, it’s hard for untrained individuals to understand the technical
details and insights of voting rules as complicated as Schulze [14].
Therefore, to convince the voters, an explanation of the voting
outcome should be created from simple features, for example, the
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position of a candidate in the rank and the competition between
two candidates.

The main question we aim to answer in this paper is as follows:
Can we generate explanations for voting rules via simple
features?

Past literature [3–5, 8, 12, 13] has studied the axiomatic approach
for explaining voting outcomes. The axiomatic approach explains
the voting outcome as a chain of simple axioms [8]. While this
approach is logically solid, the explanations became larger and less
effective as the size of the voting profile grows. Suryanarayana et.
al. [15] proposed a featured-based explanation method via crowd-
sourcing and algorithmic generating. Nevertheless, the effective-
ness of their method is measured subjectively via surveys of par-
ticipants without an objective guarantee, e.g. correct or perfect
explaining the result. The development of machine learning pro-
vides a powerful perspective and tool for analyzing voting rules.
Multiple works have demonstrated that deep models such as MLP
or GNN can be used to estimate and emulate the behavior of a
voting rule [2, 7]. However, these deep models are equally or even
more complex than the voting rule itself and still need to improve
in terms of interpretability.

This work focuses on explaining voting rules via decision tree
models. The decision tree model has several advantages. It is pow-
erful enough to learn and characterize a voting rule via a series of
conditions on different features, which brings a correctness and
completeness guarantee.

2 EXPERIMENTS
2.1 Experiment Settings
Voting Rules. A voting rule chooses a set of winners from a set
of candidates according to a voting profile. A set of candidates is
defined as 𝐶 , with |𝐶 | = 𝑚. A vote 𝑉 is a linear ordering of these
candidates, namely 𝑉 ∈ 𝐿(𝐶) and |𝑉 | = 𝑛, where 𝐿(𝐶) denotes all
the possible orderings. A voting profile 𝑃 is composed of 𝑛 votes,
thus 𝑃 ∈ 𝐿(𝐶)𝑛 . Throughout this work, we use 𝑚 to denote the
number of candidates and 𝑛 to denote the size of the profile. A
voting rule 𝑟 : 𝐿(𝐶)𝑛 → 2𝐶 \ {∅} maps a profile to a set of winners
from the candidates. We run our experiments on four voting rules:
Copeland, Ranked Pairs, Schulze, and Kemeny Young. (See [6] for
their formal definition)
Feature Extraction. We extract features we refer to as pairwise
margins from the voting scenarios as inputs to our decision trees. A
pairwise margin is defined as the binary difference between every
possible pair of pairs of candidates, i.e. the difference between the
pairwise victories of two pairs. For example, if |𝐴 ≻ 𝐵 | = 3 and
|𝐵 ≻ 𝐶 | = 2, the pairwise margin feature is |𝐴 ≻ 𝐵 | > |𝐵 ≻ 𝐶 | is
encoded as 1, while |𝐵 ≻ 𝐶 | > |𝐴 ≻ 𝐵 | is encoded as −1.
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Figure 1: GOSDT tree predicting A’s victory for the Copeland rule,𝑚 = 3.

Decision Tree Algorithms.We consider 4 impelementations of
decision tree algorithms, namely XGBoost [9], scikit-learn [11],
Generalized Optimized Sparse Decision Tree (GODST) [10], and
Hierarchical Shrinkage [1].
Voting Scenario. We conduct our experiment with varying values
of𝑚 and 𝑛 and to determine how different candidates and voters
influence the learning process. We set 𝑛 to be even valued so that
scenarios with ties are included in the training set. Each profile
was generated by randomly shuffling every possible ordering of the
candidates. Our we used 10, 000 profiles for each experiment. We
train the trees for different values of𝑚 ∈ [3, 5], and 𝑛 ∈ [10, 100]
incremented by 10. All of our experiments were conducted on a
system with 2 AMD EPYC 7313 16-Core Processors with 256G RAM
running Ubuntu 20.04.6 LTS.

Copeland KY RP Schulze
XGBoost 1.0 0.99 1.0 1.0
GOSDT 1.0 0.99 1.0 1.0

Scikit-Learn 0.82 0.96 0.95 0.95
HS Decision Tree 0.81 0.96 0.95 0.95

Table 1: Average accuracy score of best trees learned bymodel
for𝑚 = 3, 𝑛 = 100

2.2 Training results
Learning for Different Voting Rules. As shown in Table 1,
Copeland, Schulze, and Ranked Pairs can be effectively learned
by the decision tree models in the 𝑚 = 3 setting. However, the
Kemeny-Young rule posed some challenges, with the resulting de-
cision trees covering most of the cases but not failing to achieve
a perfect score. This may be due to the limitation of our feature
setup, which is more related to the WMG settings and leaves room
for future investigation.
Working with a Larger Voting Setup. We also considered larger
voting scenarios with 𝑚 > 3 and 𝑛 > 100. We find that with
larger 𝑚, the decision trees end up being much more complex
and that it is difficult to randomly generate a training dataset that
covers all possible corner cases that can occur in these settings. One

possible remedy for this is to brute-force generate every possible
combination of votes. However, number of possible combinations
grows exponentially, which can pose a computational challenge.
We also find that the value of 𝑛 does not have a significant impact
on the learning process past a certain threshold. This is due to the
fact that there are a finite number of possible WMG settings for the
WMG based voting rules, so once the number of voters grows past
a certain threshold, the possible combinations of pairwise margin
features stays the same.
Comparing Different Tree Algorithms.While most models had
a high accuracy score for voting rules that satisfy the Condorcet
criterion, only XGBoost and GOSDTwere able to learn a perfect rule
that scored 100% accuracy on the test dataset. Upon examining the
tree structure, we find that GOSDT indeed produces smaller trees
than the classic CART algorithmwhile still being correct. Compared
to the 24 nodes present in the XGBoost tree for the Copeland rule,
the GOSDT tree, as can be seen in Figure 1, outputs a tree with only
16 nodes while achieving the same perfect performance.

3 CONCLUSION
We propose a framework for training decision trees to learn the
outcome of a voting rule and serve as an explanation. We train
different decision tree models on synthetic voting profile data for
different voting rules, and compare the performance and efficiency
of different decision tree mining algorithms.

From our experiments, we find that voting rules that incorporate
rankings into their mechanism (i.e., satisfy the Condorcet crite-
rion) can be well estimated by decision tree models and produce a
human-readable diagram. The number of voters in a profile does not
impact the performance of the trees while increasing the number
of candidates requires a tree with a greater depth.

One direct extension of this work is generating simple decision
trees for votes with multiple alternatives. Another future direction
is to create new explainable voting rules based on decision trees.
We have demonstrated that decision trees can act as proxies for
voting rules. If we reverse this process, we can design new voting
mechanisms that are both explainable and axiomatically desirable.
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