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ABSTRACT
The safe operation of an autonomous robotic system is a complex
endeavor, with decision-making being a pivotal element. Formal
analysis of decision-making logic can be done using model check-
ing or other formal verification approaches. However, the non-
deterministic nature of realistic environments can make these ap-
proaches impractical and troublesome. Constraint-based planning
approaches have been shown to be capable of generating policies
for a system to reach its goals while abiding safety constraints.

We extend such a constraint-based approach, Tumato, to support
non-deterministic outcomes of actions. Actions have one specific
intended result, yet can be modeled to have alternative outcomes
that may realistically occur. The adapted Tumato solver generates
a policy that enables the system to reach its goals in a safe manner
even when alternative outcomes of actions occur. Furthermore, we
introduce a purely declarative way of defining safety in Tumato,
increasing its expressiveness and facilitating the specification of
actual safe behavior. Finally, we add cost or duration values to
actions, enabling the solver to restore safety when necessary in the
most preferred way.
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1 INTRODUCTION
Autonomous robotic systems are becoming increasingly popular
in both industry and households. The number and complexity of
tasks that they are expected to execute are expanding. Generating
behavior that is both productive (goal-oriented) and safe is far from
trivial. It requires taking into account the robot’s available actions,
information about the environment, and desired goals, as well as
additional well-defined safety constraints. If a plan for such safe and
productive behavior can be generated, it is sound by construction.

We investigate a constraint-based approach to deal with fore-
seeable non-deterministic transitions while guaranteeing safety.
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For this purpose, we extend Tumato, a constraint-based planning
framework by Hoang Tung Dinh et al. [2]. Specifically, we support
the explicit declarative specification of safety conditions as well as
account for foreseeable non-deterministic transitions. We will fully
elaborate on this extension and its language in a separate paper.

The intended approach combines classical planning using states,
actions, and goals with constraint programming to explicitly en-
force safety. The set of Constraint Satisfaction Problems (CSPs) [12]
yielding from the specification can be solved offline. The resulting
solution maps every state to the actions that have to be executed in
that state. If such a sound and complete (and hence productive, safe,
and robust) policy exists, it will be found by the constraint solver.
The obtained policy can safely be used at run-time without requir-
ing online re-planning. If no such policy exists, the troublesome
state is provided as feedback to the user.

2 GENERATING SAFE ROBOT BEHAVIOR
Traditionally, the behavior of robots has been defined manually.
Finite State Machines (FSMs) are most often used to represent a
robot’s behavior [6, 10], even in present times. However, FSMs are
known not to cope well with the increasing complexity of the be-
havior. Furthermore, one has to rely on simulation and verification
approaches to guarantee that the behavior effectively meets the
requirements. This problem can partly be solved by automatically
generating the behavior based on a model of the system, along with
a representation of the desired requirements.

Different specification languages have been proposed, each with
corresponding planners. Linear Temporal Logic (LTL) [5] is often
used in robotics. Techniques exist to generate FSMs based on (frag-
ments of) LTL [9, 14]. Since all contingencies can be taken into
account, the generated behavior will be sound and complete. The
main drawback of LTL approaches is their computational complex-
ity. Two other examples are Temporal Action Logic (TAL) [3, 4] and,
more generic, Planning Domain Definition Language (PDDL) [7].
Both rely on replanning at run-time to cope with contingencies.
They do not guarantee completeness of the behavior since the re-
planning could fail due to an unrealizable specification. This lack
of completeness would only be detected at run-time.

Hoang Tung Dinh et al. [2] obtain sound and complete behavior
via constraint programming. The behavior specification enables
enforcing safe behavior via reaction rules, allowing the specifica-
tion of reactive behavior. While this planning approach assumes
a deterministic environment, preliminary experiments show that
it can deal with uncertainty to a certain extent for some systems.
We aim to achieve the level of robustness necessary to deal with
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robotic systems in practice. The constraint programming approach
we investigate builds upon the original work on Tumato [2].

To a certain extent, robustness can be obtained by explicitly
dealing with non-determinism. Planning with non-deterministic
models is (one of the aspects) covered in the book Automated Plan-
ning and Acting byMalik Ghallab et al. [8]. Following that approach,
the planning can try to use the non-deterministic effects of actions
to reach the goal. Unlike this work, we opt to define one intended
effect for each action, as well as a number of alternative (less likely)
outcomes. This approach is more closely related to the behavior of
actions in practical planning problems.

Before dedicating ourselves to this constraint-based approach,
we have surveyed existing frameworks, combining safe and robust
planning [13]. The use of Markov Decision Processes (MDPs) [11]
for probabilistic planning and, to a smaller extent, Simple Temporal
Networks (STNs) [1] for temporal scheduling was investigated.
Further, we are aware of more recent and more practical work on
safe planning and control in robotics. For the conciseness of this
section, however, we have focused on the above-mentioned (more
formal) pillars.

3 CURRENTWORK
As mentioned in Section 1, the specification of a system contains
the information about the environment, the actions the robot can
execute, the goal of the system, and a set of safety rules. The output
of the solver is a policy, mapping every state to the action that has
to be executed in that state. Since this is a complete policy, it can be
used at run-time without the need for online re-planning.

Since the environment, and hence the effects of actions, are often
not deterministic in practical robotic applications, the plan must
be sufficiently robust to deal with this kind of uncertainty. Ideally,
all contingencies are taken into account. A first step is indeed to
pursue a complete policy. For each state in which the system could
be, the policy must provide the actions to execute next. Wemaintain
this strong feature of Tumato’s original approach. In a second step,
we take the uncertainty into account by allowing the effects of
actions to be modeled in a non-deterministic way. In our approach,
we assume that each action has one intended outcome, called the
nominal effect of the action. Additionally, each action can have a
number of alternative effects, which could emerge instead of the
nominal one, but they are not intentional. An action with one set of
alternative effects is shown in Figure 1. For the productivity aspect
of planning, only the nominal effect is relevant. When dealing with
safety, also the alternative effects must be taken into account.

Figure 1: A code snippet showing the action deliver_workpiece

To guarantee safety, we enable specifying declarative safety con-
ditions explicitly as State Rules. One example is shown in Figure 2.

In the original version of Tumato, to obtain a similar result, one
has to list all state-action combinations that could lead to unsafe
states separately, which is error-prone and inflexible when the
specification of the system evolves.

Figure 2: A code snippet showing one State Rule

Finally, if the system arrives in an unforeseen state (due to an
external force), the planner will make sure that the policy contains
instructions on how to get back on (safe) track to the goal imme-
diately. If multiple such instructions are possible, the planner is
capable of selecting the preferred one based on a metric such as
cost, duration, or risk.

In our work, the driving use case is an Autonomous Mobile
Robot (AMR) operating in a highly automated demo factory. The
AMR, depicted in Figure 3, can navigate across the factory and
dock to different workstations or machines to pick up and deliver
workpieces. Since human agents and AMR share the factory floor,
adequate safety guarantees are required.

4 PROBLEMS AND FUTUREWORK

Figure 3: The AMR

Despite the promising combination
of uncertainty and safety with the
constraint-based planning approach,
challenges remain open for further
investigation.

The new safety rules currently en-
force that the next state (or rather,
any foreseeable outcome of the exe-
cuted actions) is safe. When multiple
sets of actions are available to main-
tain safety, the planner considers
them equally valid. When multiple
sets of actions exist to restore safety,
the planner is capable of choosing
the best one based on a value, such
as duration or cost, assigned to each
action. When no actions are avail-
able to restore safety immediately,
the planner will notify the user, indi-
cating for which state safety can not be obtained. Although this is
a desirable approach, the case study revealed another interesting
challenge. Future research could explore how allowing multiple
successive (sets of) actions in unsafe states could be required to re-
store safety. The same values that get assigned to actions should be
applied to obtain the preferred solution. The concrete semantics of
this extension are also to be defined by this future research. Further,
in practice, different safety constraints relate to different severities.
In the same way that actions can be assigned a specific value, also
the safety rules could be weighted to enable the constraint solver
to find the best overall solution. Finally, an empirical study will be
conducted concerning the practical use of the adapted planner.
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