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ABSTRACT
For intelligent agents to become fully autonomous, they need to
perceive and adapt to the changes in environmental dynamics. In
addition, they need to devise a strategy to acquire new knowledge
while retaining the past learned ones. Humans can acquire, retain
and transfer knowledge over their lifespan. In a similar vein, intel-
ligent agents are becoming capable of acquiring and transferring
knowledge but not retaining it. Towards reaching these goals, we
have proposed algorithms that address multiple aspects of machine
intelligence, from robot perception, allowing robots to accurately
model human intent and predict human motion, to knowledge
retention, allowing robots to retain past knowledge without for-
getting. Our proposed algorithms have attained state-of-the-art
performances for robot perception and overcoming catastrophic
forgetting in perception-based tasks. Our current and ongoing work
builds upon our completed works to explore knowledge retention
in more challenging domains, particularly robot control, and inves-
tigate multi-agent collaboration as a precursor for human-robot
collaboration.
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1 INTRODUCTION
Recent advances in machine intelligence and learning have signifi-
cantly enhanced robot perception and decision-making, enabling
their adoption across a variety of applications from healthcare and
manufacturing settings to autonomous vehicles [5, 7, 10, 23, 24]. De-
spite significant advances in robot learning, robots’ capabilities and
actions are often limited in scope and require strong assumptions
about the environment. As such, robots are mostly confined to their
proverbial cage, limited by their inability to model the stochastic
nature of dynamic environments [26].

For robots to become fully autonomous and reliable, they need
to perceive and adapt to the changes in environmental dynamics
[4, 11, 20, 28]. Along this line, progress has been made in robot

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

perception in detecting changes and generalizing to new environ-
ments [8, 9, 12, 13]. However, adapting to dynamic environments
remains an open challenge for robot decision-making, and closed-
loop control [6]. Furthermore, robots have to adapt and interact
with their environment using a continuous stream of observations,
which requires that representations be learned in a continual man-
ner [17]. However, continual learning does not suit current learning
paradigms, which involve training Deep Neural Networks with the
assumption that the training distribution is stationary and that the
data samples are independent and identically distributed (i.i.d.) [14].

2 OURWORK TO DATE
Toward reaching our goal of learning robust representations for
robots, our works have furthered the state-of-the-art in motion pre-
diction [25, 27, 28, 30] to allow robots to understand and anticipate
human behavior, robot control [31] to interleave anticipation and
prediction with planning and control and continual learning, to al-
low robots to acquire knowledge efficiently without forgetting [29].

2.1 Motion Prediction:
Human motion prediction is widely considered one of the essential
parts of robotic intelligence that would enhance robot perception.
Towards this end, we have made several architectural contributions.
Firstly, we proposed a novel sequence learning framework that is
scalable and interpretable, allowing us to forecast over long-term
horizons [27]. We extensively evaluated our framework on single-
agent, multi-agent, and human-robot collaboration datasets and
have significantly outperformed all other evaluated approaches.
In our latest work, IMPRINT, we focused on utilizing the multi-
modality of robot sensing to obtain a holistic representation of
the environment [30]. In IMPRINT, we explicitly modeled a) the
interactional dynamics of human and robot team members; and b)
the multimodal context from different data modalities and fused
them adaptively to predict human motion in team settings. We
extensively evaluated IMPRINT across various benchmarks from
multi-agent human-human and human-robot collaboration datasets.
In Table 1, we present our results for human-robot collaboration,
where we predict human motion conditioned on robot motion. Our
results suggest that IMPRINT outperformed all other approaches.

2.2 Robot Control:
While forecasting future motion allows robots to perceive their
environment better, they still need to perform actions that will
impact the environment. Recent advances in deep RL have enabled
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Table 1: MSE (in cm2) of different multi-agent motion predic-
tion methods on the KTH-HRC Dataset (Lower is better).

Approaches Frames
5 10 20 30 35 40

Zero-Velocity [19] 0.11 0.34 1.18 2.38 3.07 3.81
Seq2Seq [19] 0.14 0.36 1.09 2.17 2.81 3.49

Seq2Seq-SPL [1] 0.17 0.42 1.20 2.33 2.98 3.66
Scalable + Interpretable [26] 0.06 0.20 0.72 1.61 2.21 2.91

IMPRINT (ours) 0.06 0.18 0.63 1.36 1.85 2.42

robot agents to achieve remarkable performance on tasks rang-
ing from robotic locomotion to manipulation [3, 15, 16, 21, 22].
However, these algorithms have been developed and trained in en-
vironments where the goal state is static, and only the robot itself
can bring changes into the environment [18]. For robots to reliably
take action, they need to perceive and predict any environmen-
tal changes and accordingly take action. Our proposed algorithm,
LASSO [31], allows the robot to learn a robust representation of
its environment by forecasting future states and minimizing the
distance between the current state and the desired goal state. Using
state space forecasting on top of the hindsight experience replay
buffer, our algorithm allows the robot to learn the expected future
states of the environment. Compared to strong baselines (SAC and
DDPG) LASSO performed favorably across multiple manipulation
tasks, as shown in Fig. 1.

2.3 Continual Learning:
Despite significant improvements in robot perception and control,
robots are seldom expected to be trained only once and never re-
quire retraining. Instead, robots are expected to interact and learn
from their environment using a continuous stream of observations,
which requires that representations be learned in a continual man-
ner. However, Deep Neural Networks are trained with the assump-
tion that the training distribution is stationary and that the data
samples are independent and identically distributed (i.i.d.) from a
stationary distribution. Current optimization strategies for training
these networks focus on learning a representation from current
data and do not account explicitly for past observed data, resulting
in catastrophic forgetting when the network forgets representation
salient to the past task/data distribution. To mitigate this while
maintaining performance, we proposed CoRaL, a Continual Repre-
sentation Learning approach for overcoming Catastrophic Forget-
ting that unifies Representation Learning with Continual Learning
(CL). Our approach tackles CL problems from two aspects: learning
effective representations that can be retained, refined, and trans-
ferred in incremental settings; and encouraging the model to retain
its past responses using a memory buffer. The results in Table 2 un-
derline CoRaL’s effectiveness in addressing catastrophic forgetting,
as it consistently outperformed all evaluated CL algorithms.

3 ONGOING AND FUTUREWORK:
Our work to date has established a foundation for the three thrusts
of my thesis: Motion Prediction, Robot Control, and Continual
Learning. The goal of my ongoing and future research is to develop
algorithms that are at the intersection of these thrusts. Robot control
at present is centered around having a single robot interacting with
the environment. However, robots are expected to work in groups,
potentially with other robots or even humans. An obvious use-
case of this is in the manufacturing industry, where we expect

Table 2: Performance comparison (averaged across 10 runs)
of various CL methods on different scenarios (Accuracy in %)

Method IL-Task IL-Class

S-CIFAR10 S-Tiny-ImageNet S-CIFAR10 S-Tiny-ImageNet
JOINT 98.31 ± 0.12 82.04 ± 0.10 92.20 ± 0.15 59.99 ± 0.19
SGD 61.02 ± 3.33 18.31 ± 0.68 19.62 ± 0.05 7.92 ± 0.26

DER [2] 91.40 ± 0.92 40.22 ± 0.67 61.93 ± 1.79 11.87 ± 0.78
DER++ [2] 91.92 ± 0.60 40.87 ± 1.16 64.88 ± 1.17 10.96 ± 1.17

CoRaL (Ours) 92.01 ± 0.32 41.37 ± 0.91 65.24 ± 1.09 14.06 ± 0.57

robots to perform overly repetitive and potentially dangerous tasks
and humans to perform the more “dexterous” tasks or tasks that
require a higher level of decision-making. Another use case in the
manufacturing industry could be robots collaborating to perform
assembly tasks, which could improve efficiency and productivity.

In line with these requirements, my future work will focus on
scaling robot control from single to multiple robots. My research
will focus on developing algorithms that can create collaborative
strategies for robots. We plan on taking a hierarchical approach to
collaborative policy learning for each robot, where robots perceive
their environments and decide what action category to take, say
“Pick an object,” “Screw the gear,” or “Handover an object to another
robot.” This is followed by a low-level action at the robot’s joint
space. Such a hierarchical structure will allow the algorithms to be
modular, explainable, and potentially more generalizable.

In a concurrent vein, we are actively working on closing the
simulator-to-real gap in robotics, where algorithms that are trained
in simulation do not generalize to the real world. To achieve this, we
have collected a large-scale dataset of human-robot collaboration
tasks comprising one robot and two humans. To the best of our
knowledge, this is a first-of-its-kind effort, as our findings suggest
a need for more human-robot teams datasets. The data is collected
and aggregated frommultiple modalities, ranging from RGB, Depth,
Egocentric view, Eye-gaze, Skeleton, and finally, robot data, thus
providing a rich array of sensing.We plan to use the data collected to
develop learningmodels to predict humanmotion and develop robot
policies. We plan to release the dataset along with our findings.

The contributions of this research are composed of three parts, all
geared to scenarios involving multiple humans. The first part aims
to improve the state-of-the-art in robot perception by developing
frameworks that allow robots to anticipate human motion while
being scalable and interpretable. The second part aims to interleave
robot perception with control by developing algorithms that can
be trained end-to-end and built on top of our completed human
motion prediction work. Finally, the third part aims to develop
training schemes that allow robots to learn without forgetting.

Static SlideStatic PickAndPlace

Figure 1: Performance comparison of all evaluated bench-
marks
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