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ABSTRACT
Multi-agent reinforcement learning (MARL) is a powerful tool for

training automated systems acting independently in a common

environment. However, it can lead to sub-optimal behavior when

individual incentives and group incentives diverge. Humans are

remarkably capable at solving these social dilemmas. It is an open

problem in MARL to replicate such cooperative behaviors in selfish

agents. In this work, we draw upon the idea of formal contracting

from economics to overcome diverging incentives between agents

in MARL. We propose an augmentation to a Markov game where

agents voluntarily agree to binding state-dependent transfers of

reward, under pre-specified conditions. Our contributions are theo-

retical and empirical. First, we show that this augmentation makes

all subgame-perfect equilibria of all fully observed Markov games

exhibit socially optimal behavior, given a sufficiently rich space of

contracts. Next, we complement our game-theoretic analysis with

experiments running deep RL on the contracting augmentation

for various social dilemmas. We discuss some practical issues with

learning in the contracting augmentation, and provide a training

methodology that leads to high-welfare outcomes, Multi-Objective

Contract Augmentation Learning (MOCA). We test our methodol-

ogy in static, single-move games, as well as dynamic domains that

simulate traffic, pollution management and common pool resource

management.
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1 INTRODUCTION
We study the problem of how to get selfishly motivated agents to act

pro-socially through the lens of multi-agent Reinforcement Learn-

ing (MARL). Consider the Cleanup domain, depicted in Figure 1.

Agents get reward from eating apples that only grow if a nearby

river is unpolluted. In a pro-social solution to Cleanup, agents need
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Figure 1: We evaluate our method in the Cleanup do-
main [11]. Left: A screenshot of the environment. The differ-
ent agents correspond to the pink, yellow, and purple tiles.
Agents get reward for eating apples (green) but apples will
only grow if the river (blue) is clean of pollution (brown).
Agents can clean up pollution, but aren’t directly rewarded
for cleaning. This creates a social dilemma where no agents
clean because they don’t expect to benefit from cleaning di-
rectly. Right: An illustration of the solution that our con-
tracting augmentation facilitates. In the Cleanup domain,
one agent commits to “pay” the other to clean the river. As
a result, the agents are able to coordinate on policies that
maximize the total reward across both agents.

to work together: one cleans while the other eats apples. However,

self-interested agents cannot sustain this solution. Cleaning has no

direct benefit, so selfish agents focus exclusively on eating apples.

A social dilemma ensues.

Prior work has considered modifying MARL domains with the

goal of mitigating such social dilemmas. One idea is to allow agents

to transfer some of their reward to others in exchange for helpful

actions, such as cleaning the river: gifting [19]. Other approaches

allow agents to make commitments that they will take particular

actions in the future [10]. Both approaches have limitations: gifting

cannot change the Nash equilibria of a game, and hence cannot

change the fundamental incentive structure of the game [39, Propo-

sition 1]. Moreover, (binding) contracts in the sense of Hughes et al.

[10] are only ever enacted when all agents are made better off in

the original reward of the game. No agent will ever consent to a

binding contract cleaning trash in Cleanup. Further, since binding

contracts are action-level contracts, the system designer would

have to manually encode a “clean trash” policy, instead of relying

on a reward signal to incentivise them to clean.

This article studies contracts as zero-sum modifications of the

environment reward. More specifically, contracts transfer rewards
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𝐶 𝐷

𝐶 −1,−1 −3,0
𝐷 0,−3 −2,−2
(a) Prisoner’s Dilemma

𝐶 𝐷

𝐶 −1,−1 −1.5,−1.5
𝐷 −1.5,−1.5 −2,−2

(b) After Contract

Figure 2: (a) Prisoner’s Dilemma (b) Prisoner’s Dilemma af-
ter signing a contract in which a defector transfers 1.5 re-
ward to a cooperator. With this contract in force, cooperat-
ing becomes a dominant action for both players.

between agents depending on states and actions. Contracts are pro-

posed by agents, and can be vetoed by any single agent—participation

is voluntary. Even upon acceptance, agents may choose any action,

only their rewards are changed by the contract.

In the Cleanup domain, an agent could propose to pay an amount

𝑟𝑐𝑙𝑒𝑎𝑛 of reward for each polluted river square that is cleaned.

The proposing agent is ‘charged’ a reward penalty of −𝑟𝑐𝑙𝑒𝑎𝑛 . The
proposing agent has an incentive to propose this contract because

the expected reward from eating apples will be larger than the

expected payment to others for growing them. Similarly, the other

agent prefers this contract to the competitive outcome, where no

apples grow.

To make this concrete, consider the classic Prisoner’s Dilemma

[36].The tables in Figure 2 show the payoffs for the unmodified

game (Figure 2a) and the modified incentives (Figure 2b) under the

following contract:

Any agent who defects is fined 1.5 units of reward by
the other agent.

If both defect, both pay, and the payments cancel. In this modified

game, cooperation is dominant, and hence (𝐶,𝐶) is the only Nash

equilibrium.

Would the agents agree to this contract if proposed? If it is re-

jected, they subsequently play the game in Figure 2a which has

a unique Nash equilibrium of (𝐷, 𝐷), yielding a reward of −2 for
both agents. However, if it is accepted, they subsequently play the

game in Figure 2b which has a Nash equilibrium of (𝐶,𝐶), yielding
a reward of −1. Thus, agents want to accept the contract and sub-

sequently play the socially optimal outcome. Hence, a possibility

to commit to a state-action dependent reward transfer, to sign a
formal contract for short, mitigates a social dilemma, even among

selfish agents.

Contributions. We provide three main contributions.

(1) We formalize Formal Contracting as a generic augmentation

of Markov games (i.e., non-cooperative MARL);

(2) We prove that this augmentation makes socially optimal

behavior an SPE, and that every SPE of the augmented game

is socially optimal;

(3) We provide a multi-objective training procedure (MOCA),

which performs close to, or better than, a joint controller

after a fixed number of time periods in complex dynamic

domains such as Cleanup and Harvest [11]. Using a state-

of-the-art deep reinforcement learning algorithms without

MOCA also yields results close to optimal in several domains.

Outline. We provide preliminaries and define our augmentation

in section 2. In section 3, we provide our main theoretical result

showing that formal contracting mitigates social dilemmas in all

fully observedMarkov games, and outline its proof. We describe our

evaluation methodology and introduce MOCA in section 4. Experi-

mental results are in section 5. We outline related work in section 6.

In section 7, we discuss the real-world application and enforcement

of contracts, fairness concerns, and avenues for future work. Ap-

pendices contain proofs, additional statements and experiments, a

formal definition of a more general contracting augmentation, and

hyperparameter settings for our experiments.

2 FORMAL CONTRACTING
2.1 Definitions

Full-InformationMarkov Games. Wedefine an𝑁 -agent (complete-

information) Markov game as a 6-tuple, 𝑀 = ⟨𝑆, 𝑠0,A,𝑇 ,R, 𝛾⟩,
where

• 𝑆 is a state space;

• 𝑠0 ∈ 𝑆 is the initial state;

• A = 𝐴1 × 𝐴2 × · · · × 𝐴𝑛 is the space of action profiles a =

(𝑎1, 𝑎2, . . . , 𝑎𝑛) for 𝑛 agents;

• 𝑇 : 𝑆 × A→ Δ(𝑆) is a transition function;

• R : 𝑆 × A → [−𝑅max, 𝑅max]𝑛 is a (bounded) reward function

mapping state-action profiles to reward vectors for the 𝑛 agents;

and

• 𝛾 ∈ [0, 1) is a discount factor.
Agents choose policies 𝜋𝑖 : 𝑆 → Δ(𝐴𝑖 ), 𝑖 = 1, 2, . . . , 𝑛. We write

𝝅 B (𝜋1, 𝜋2, . . . , 𝜋𝑁 ) to denote a policy profile. For a policy profile

𝝅 , we denote by 𝑉 𝝅
𝑖
(𝑠0) B E[

∑∞
𝑡=0 𝛾

𝑡𝑅𝑖 (𝑠𝑡 , a𝑡 )] the value to agent

𝑖 ∈ [𝑛] B {1, 2, . . . , 𝑛}. In the value expression, the expectation

is with respect to the generating process 𝑠𝑡 ∼ 𝑇 (𝑠𝑡−1, a𝑡−1) and
𝑎𝑡,𝑖 ∼ 𝜋𝑖 (𝑠𝑡 ), 𝑡 = 1, 2, . . . . A subscript −𝑖 denotes a partial profile
of policies or actions or policies excluding agent 𝑖 , e.g., 𝝅−𝑖 B
(𝜋1, 𝜋2, . . . , 𝜋𝑖−1, 𝜋𝑖+1, . . . , 𝜋𝑛).

Optimal Policy Profiles. Denote the welfare of a policy profile

by𝑊 𝝅 (𝑠0) B
∑𝑛
𝑖=1𝑉

𝝅
𝑖
(𝑠0). We refer to a policy profile that maxi-

mizes welfare as jointly optimal: 𝝅∗ ∈ argmax𝝅𝑊 𝝅 (𝑠0). A policy

profile 𝝅 is Pareto-optimal if there is no policy profile 𝝅 ′ such that

𝑉 𝝅
𝑖
(𝑠0) ≤ 𝑉 𝝅 ′

𝑖
(𝑠0) for all 𝑖 = 1, 2, . . . , 𝑛, with a strict inequality for

at least one agent. Intuitively, in such profiles, there are no "win-

wins": no agent can attain higher reward without at least one other

agent losing reward.

Stable Policy Profiles and Equilibria. In social dilemmas, social and

individual incentives diverge. In our game-theoretic analysis, we use

an equilibrium notion to capture outcomes of selfish incentives. One

potential solution concept is Nash equilibrium. A policy profile is

Nash equilibrium if unilateral deviation is suboptimal for all agents.

Formally, a policy profile 𝝅 is a Nash equilibrium if for any agent

𝑖 ∈ [𝑛] and any policy 𝜋 ′
𝑖
: 𝑆 → Δ(𝐴𝑖 ), 𝑉 𝝅

𝑖
(𝑠0) ≥ 𝑉

(𝜋 ′𝑖 ,𝝅−𝑖 )
𝑖

(𝑠0).
While this solution concept is common, it has its drawbacks.

For example, in Cleanup, a policy profile in which agents never

clean under some contract even if it is in their best interest, and

another agent not proposing it, might be a Nash equilibrium, as

no agent would benefit unilaterally from changing their behavior.
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The “threat” of one of the agents to not clean, however, is non-

credible, as, when the contract is enforced, they would rather clean.

Such non-credible threats are well-known in Game Theory [25, Sec-

tion 5.5], and can be expected from RL agents if they approximate

sequentially rational agents.

To avoid non-credible threats, we model selfish incentives in

MARL with subgame-perfect equilibria (SPE). Subgame perfection

requires that for any state 𝑠 , there cannot be a profitable devia-

tion to another policy, for any agent. This is stronger than a Nash

equilibrium, which only requires this to hold at the initial state 𝑠0.

Definition 2.1 (Subgame-Perfect Equilibrium). A policy profile 𝝅
is a subgame-perfect Nash equilibrium or subgame-perfect if for all
states 𝑠 ∈ 𝑆 , agents 𝑖 = 1, 2, . . . , 𝑛 and policies 𝜋 ′

𝑖
: 𝑆 → Δ(𝐴𝑖 ),

𝑉 𝝅
𝑖 (𝑠) ≥ 𝑉

(𝜋 ′𝑖 ,𝝅−𝑖 )
𝑖

(𝑠).

The Economics literature also often refers to SPE in Markov games

as Markov Perfect Equilibria (MPE) [20].

Our game-theoretic analysis shows that a sufficiently rich con-

tracting augmentation of Markov games forces socially optimal

behavior in SPE and our experiments show that such equilibria are

learned in decoupled MARL. The intuition behind our result is that

all SPE for a contracting-augmented game are welfare maximiz-

ing if the contract space is rich enough to penalize all deviations

from some welfare-maximizing policy profile. We say that the state

space 𝑆 is sufficient to detect deviations from a policy profile 𝝅 , or
has detectable deviations from 𝝅 if for any distinct agents 𝑖 ≠ 𝑗 and

any state 𝑠 ∈ 𝑆 , the 𝑁 + 1 sets

supp𝑇 (𝑠, 𝝅 (𝑠)) and supp𝑇 (𝑠, (𝑎′𝑖 , 𝝅−𝑖 (𝑠)))

are mutually disjoint. Here, supp𝑇 (𝑠, a) denotes the support of the
transition function.

2.2 The Contracting Augmentation
Before we define our contracting augmentation, we first define con-
tracts. They are state-action-dependent reward transfers, in addition
to an acceptance transfer.

Definition 2.2 (Contract). A contract is a function 𝜽 : (𝑆 ×𝐴) ∪
{acc} → R𝑁 whose range consists of zero-sum vectors, i.e.

𝑁∑
𝑖=1

𝜃𝑖 = 0

for any (𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ range(𝜃 ). We denote a generic set of

contracts by 𝚯.

A contract will be added to the reward vector that agents get,

influencing the incentives in social dilemmas. The central definition

of this article is the contract augmentation.

Definition 2.3 (𝚯-Augmented Game). Let𝑀 = ⟨𝑆, 𝑠0,A,𝑇 ,R, 𝛾⟩ be
a full-information Markov game and 𝚯 be a set of contracts. The

𝑖-proposing, 𝚯-augmented game is 𝑀𝚯 = ⟨𝑆 ′, (𝑖, 0),A′,𝑇 ′,R′, 𝛾⟩,
with the following components.

Figure 3: The Contracting Augmentation. Top: Agents can
propose contracts, state dependent, zero-sum, additive aug-
mentations to their reward functions. Agents can accept or
decline contracts. Left: In case of declination, the interaction
between agents happens as before. Right: In case of accep-
tance of the contract, the reward of the agents is altered ac-
cording to the rules of the contract.

States. The augmented state space is

𝑆 ′ = ( [𝑛] ∪ 𝑆) × ({0} ∪ 𝚯) .
States have the following meanings:

• (𝑖, 0): Agent 𝑖 has the opportunity to propose a contract

𝜽 ∈ 𝚯;
• (𝑖, 𝜽 ): 𝜽 ∈ 𝚯 awaits acceptance or rejection by all agents;

• (𝑠, 0): The game is in state 𝑠 ∈ 𝑆 with a null contract, 0(𝑠, 𝑎) =
0, for all 𝑠 ∈ 𝑆, a ∈ A, in force;

• (𝑠, 𝜽 ): The system is in state 𝑠 with contract 𝜽 ∈ 𝚯 in force.

Actions. The action spaces for the agents are

𝐴′𝑖 = 𝐴𝑖 ∪ 𝚯 ∪ {acc}

which corresponds to actions in the game (𝐴𝑖 ), proposal actions (𝚯)

and the acceptance action ({acc}).

Transitions. There are deterministic transitions, given by

𝑇 ′((𝑖, 0), (𝜽 , a−𝑖 )) = (𝑖, 𝜽 ), for any a−𝑖

𝑇 ′((𝑖, 𝜽 ), a) =
{
(𝑠0, 𝜽 ) if a = acc
(𝑠0, 0) otherwise.

for any contract 𝜽 ∈ 𝚯 and any action profile a ∈ A. Here, we
denoted acc B (acc, acc, . . . , acc) the profile of unanimous accep-

tance of a contract.

Transitions in states (𝑠, 0) and (𝑠, 𝜽 ) are as in the underlying

game𝑀 ,

𝑇 ′((𝑠, 𝜽 ), a) = 𝑇 (𝑠, a)
for any 𝑠 ∈ 𝑆 , 𝜽 ∈ 𝚯 and 𝑎 ∈ 𝐴.
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Rewards.
R′((𝑠, 𝜽 ), a) = R(𝑠, a) + 𝜽 (𝑠, 𝑎),

R′((𝑖, 𝜽 ), acc) = 𝜽 (acc) .
for 𝜽 ∈ 𝚯 and 𝑠 ∈ 𝑆 . All other rewards are zero. The first line

means that depending on a state-action profile pair, reward is trans-

ferred between the agents. The second line refers to reward being

transferred on signing a contract.

In the contracting augmentation, once enforced, the rewards

of agents are directly changed. Note that agents maximize their

reward as modified under the contract, so there is no concept of

“breaking” a contract. The incentives or punishments that align

agents’ behavior with pro-social goals are encoded in the reward

function.

3 GAME-THEORETIC ANALYSIS
The following is our main theoretical result: formal contracting

with a sufficiently rich sets of contracts mitigates social dilemmas.

Formally, we show that any subgame-perfect equilibrium of any

fully-observed Markov game is jointly optimal.

Theorem 3.1. Let 𝑀 = ⟨𝑆, 𝑠0,A,𝑇 ,R, 𝛾⟩ be a full-information
Markov game. For any sufficiently rich contracting space

𝚯 ⊇ {(𝑆 × A) ∪ {acc} → [−𝑅max/(1 − 𝛾), 𝑅max/(1 − 𝛾)]},
all subgame-perfect equilibria 𝝅 of𝑀𝚯 are jointly optimal and there
is a jointly optimal policy profile 𝜋∗ of𝑀 such that 𝝅 (𝑠, 𝜽 ) = 𝝅∗ (𝑠)
for the contract 𝜽 that agent 𝑖 chooses in 𝝅 .

If there is a socially optimal policy profile 𝜋∗ of 𝑀 that has de-
tectable deviators, there is a contract space 𝚯 of dimension at most
|𝑆 |2 such that the above conclusion holds.

The theorem shows that, under the assumption of richness, so-

cial dilemmas are mitigated in equilibrium. Under detectability, a

contract space of much small dimensionality (smaller by a factor

of |𝐴1 | × |𝐴2 | × · · · × |𝐴𝑛 | compared to the contract space needed

in general games) is rich enough to mitigate dilemmas. For a full

proof of the theorem, consult ??.

Proof Sketch. Consider any subgame-perfect equilibrium 𝝅
of 𝑀𝚯

. We call the values 𝑉 𝝅
𝑗
(𝑠0, 0) the non-acceptance value for

agent 𝑖 , and𝑊 𝝅∗ (𝑠0) the jointly optimal welfare in the game 𝑀 .

We prove this statement in four steps:

First, we show an upper bound on the value for the proposing

agent, 𝑉 𝝅
𝑖
(𝑖, 𝜽 ). The proposing agent cannot get more value than

the optimal welfare in𝑀 minus the aggregate non-acceptance value

for agents 𝑗 ∈ [𝑛] \{𝑖}, since otherwise at least one agent will reject
the proposed contract

𝑉 𝝅
𝑖 (𝑖, 𝜽 ) ≤𝑊

𝝅∗ (𝑠0) −
∑

𝑗 ∈[𝑛]\{𝑖 }
𝑉 𝝅
𝑗 (𝑠0, 0) .

Next, show that there is a contract 𝜽 ∗ such that this bound is

attained,

𝑉 𝝅
𝑖 (𝑖, 𝜽

∗) =𝑊 𝝅∗ (𝑠0) −
∑

𝑗 ∈[𝑛]\{𝑖 }
𝑉 𝝅
𝑗 (𝑠0, 0) . (1)

This step involves two observations: First, if agents 𝑗 ∈ [𝑛] \ {𝑖}
accept any contract 𝜽 ∗ for which (1) holds, agent 𝑖 will choose one

such contract, as it yields the highest payoff among all contracts.

One can observe that agents 𝑗 ∈ [𝑛] \ {𝑖} are indifferent between
accepting and rejecting 𝜽 ∗ (i.e.𝑉 𝝅

𝑗
(𝑠0, 𝜽 ) = 𝑉 𝝅

𝑗
(𝑠0, 0)). Hence, there

could be an equilibrium where all contracts 𝜽 ∗ are rejected. This
case, where (1) holds, requires more care, but we show in the full

proof in ?? that such subgame-perfect equilibria do not exist, as

agent 𝑖’s best response is undefined in this case.

Moreover, the proposer needs to be able to infer which agents

deviated from socially optimal play, in order to accurately punish

deviation.Without any further assumption, this requires knowledge

of the current state and the actions of all players. However, under
detectability, the state reached after actions are taken by players is

sufficient for deciding punishment, and therefore the contract can

be represented in |𝑆 |2 dimensions.

Finally, we observe that any contract 𝜽 ∗ that is accepted and for

which (1) holds, is played only in a subgame-perfect equilibrium

that is jointly optimal. Hence, the subgame-perfect equilibrium 𝝅
is jointly optimal. □

Fairness. One striking observation in the proof of Theorem 3.1

is that agents 𝑗 ∈ [𝑛] \ {𝑖} are indifferent between accepting the

contract 𝜽 ∗ and not accepting it. Hence, the contract leads to an

improvement in welfare, but no agents but agent 𝑖 gets any benefit

from this improvement. In many decentralized learning tasks, this

is not of concern, for example if a robot fleet needs to coordinate

on locations. In others, this property is clearly unfair. We discuss

ways to compensate this unfairness in section 7.

4 EXPERIMENTAL METHODOLOGY
We now evaluate the performance of the contracting augmentation.

First, we introduce the baseline methods that we use to evaluate

our approach. Then, we introduce our experimental domains. Fi-

nally, we provide details on MOCA, our training procedure for

contracting.

4.1 Evaluation
We evaluate MOCA by comparing to the following baselines.

• Joint Training: a centralized algorithm with joint action space

A = ×𝑁
𝑖=1

𝐴𝑖 chooses actions to maximize welfare;

• Separate Training: Agents selfishly maximize their reward;

• Gifting: Agents can “gift” [19] another agent at every timestep

by directly transferring some of their reward;

• Vanilla Contracting: Run an off-the-shelf deep RL on the contract-

augmented versions of the respective domains.

We train all domains with 2, 4, and 8 agents, using Proximal Policy

Optimization [32] with continuous state and action spaces with

Gaussian sampling in ray rllib’s [18] implementation (hyperparam-

eter choices can be found in ??). In each domain, we train gifting

agents with a lower bound of 0 and an upper bound on transfer

value in contracts. This allows the same magnitude of transfers

in gifting and contracts, for fair comparison. In one of the games,

Emergency Merge, we reduced the gifting values to 10 per timestep,

as this improved gifting’s performance. On the Prisoner’s Dilemma

and the Public Goods game, we trained agents for 1M environ-

ment steps, and the complex dynamic games are trained for 10M

environment steps.
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4.2 Games
We test on several classes of games. We use Prisoner’s Dilemma

and a Public Goods game as static, simultaneous-move games, and

Harvest, Cleanup, and Emergency Merge as dynamic domains.

Prisoner’s Dilemma. First, we study the Prisoner’s Dilemma, men-

tioned earlier. To scale this to multiple agents, we follow the follow-

ing scheme for payoffs: in the 𝑛-agent game, if all agents cooperate,

they each get reward 𝑛, and if all defect, they all get reward 1. How-

ever, if some defect and some cooperate, the ones that cooperate

get reward 0 and the ones that defect get reward 𝑛 + 1. Again, the
socially optimal outcome is the one where all agents cooperate, but

only Nash equilibrium is where all agents defect. We run an addi-

tional timestep after the matrix game is played for gifting actions

to take place.

Public Goods. We study the following public goods game [13].

Agents choose an investment 𝑎𝑖 ∈ [0, 1], and get reward 𝑅𝑖 (a) =
1.2
𝑁

∑𝑁
𝑗=1 𝑎 𝑗 −𝑎𝑖 , i.e. they are given their share of the public returns,

the investment returning 20%, minus their own investment level.

At social optimum, all agents choose 𝑎𝑖 = 1 to get optimal joint

reward. However, selfish agents are not incentivized to invest at

this high level, as they would like to free-ride on the other agents’

efforts.

Harvest. In Harvest, from Hughes et al. [11], agents move along

a square grid to consume apples, gaining a unit of reward. Apples

grow faster if more apples are close by, which leads to incentives

to overconsume now, leading to an intertemporal dilemma. We

choose engineered features to limit the amount of computational

resources needed. In particular, agents receive their position and

orientation, the coordinates and orientation of the closest other

agent, the position of the nearest apple, the number of apples close

to the agent, the number of total apples, and the number of apples

eaten by each agent in the last timestep. We don’t allow agents

to use a punishment beam following Lupu and Precup [19]. The

environment runs for 1,000 timesteps per episode.

Cleanup. In Cleanup, also from [11], agents similarly move along

a square grid to consume apples and gain one unit of reward. Apples

only spawn if a nearby river contains a number of waste objects

lower than a threshold. Removing a waste object is a costless, but

also rewardless, task. Apple-eating agents can free-ride on other

agents, which leads to degraded performance. The observation

space used for agents is simplified to limit computational require-

ments, and agents are passed their position and orientation, the

position and orientation of the closest agent, the positions of the

closest apple and waste object, and the number of current apples

and waste objects. The environment runs for 1,000 timesteps per

episode.

Emergency Merge. A set of 𝑛 − 1 cars approaches a merge, an

ambulance behind them, compare Figure 4. The ambulance incurs

a penalty of 100 per timestep that it has not reached the end of a

road segment past the merge. The cars in front also want to get

to the end of the road segment, but incur a penalty of only 1 per

timestep. They are limited to one-fourth of the velocity that the

ambulance can go. We assume access to controllers preventing

cars from colliding (stopping cars short of crashing into another

Figure 4: A depiction of the emergency merge domain.

car) and managing merging, and so the actions 𝑎𝑖 ∈ [−0.1, 0.1]
only control the forward acceleration of each vehicle. A dilemma

arises as cars prefer to drive to the merge fast, not internalizing the

strong negative effect this has on the ambulance. The environment

resets after 200 rounds or when cars crash, whichever is earlier.

Note that here, due to the asymmetry of agent capabilities and

rewards, attaining optimal social welfare cannot be done via Pareto

improvement within the original game.

4.3 Contract Spaces
We consider contract spaces of small dimension for different do-

mains.

• Prisoner’s Dilemma. Contracts are parameterized by a transfer

𝜃 ∈ [0, 𝑛] for defecting, which is distributed to the other agents

in equal proportions.

• Public Goods. Contracts are parameterized by a transfer 𝜃 ∈
[0, 1.2], agents transfer 𝜃 (1 − 𝑎𝑖 ), which is distributed to the

other agents in equal proportions.

• Harvest. Contracts are parameterized by 𝜃 ∈ [0, 10]. When an

agent takes a consumption action of an apple in a low-density

region, defined as an apple having less than 4 neighboring

apples within a radius of 5, they transfer 𝜃 to the other agents,

which is equally distributed to the other agents.

• Cleanup. Contracts are parameterized by 𝜃 ∈ [0, 0.2], which
correspond to a payment per garbage piece cleaned, paid for

evenly by the other agents.

• Emergency Merge. The ambulance can propose a per-unit sub-

sidy of 𝜃 ∈ [0, 100] to the cars at the time of ambulance crossing.

Each car is transferred 𝜃 times its distance behind the ambu-

lance at time of merge by the ambulance. If a car is ahead of the

ambulance at time of reward, it pays the ambulance 𝜃 times its

distance ahead of the ambulance.

4.4 Training
The contracting augmentation yields a Markov game, for which

one could directly train agents with deep reinforcement learning

(we will call this vanilla contracting). However, as can be observed

from Figure 5, and Figure 6, this implementation of contracting

does not outperform joint training in problems with more complex

dynamics, or higher-dimensional state and action spaces. To fix this,

we propose an algorithm inspired by multi-objective reinforcement

learning, compare [1],Multi-Objective Contract Augmentation Learn-
ing (MOCA). We present it in algorithm 1. MOCA consists of two

phases: first, the algorithm draws random contracts (which, in the

language of multi-objective reinforcement learning can be viewed

as different “objectives”). This can be used to estimate 𝑉 𝝅
𝑖
(𝑠0, 𝜽 ),
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𝑖 = 1, 2, . . . , 𝑛 for the initial state 𝑠0 and any contract 𝜽 , i.e. the
values for agents when contract 𝜽 ∈ 𝚯 is in force. This allows it

to learn estimates of the utility agents will get under a particular

contract. Due to random sampling, these estimates are not biased

by contract exploration, which may be an issue when using deep

reinforcement learning directly.

In a second phase, we freeze play following (𝑠0, 𝜽 ) for any con-

tract 𝜽 and the policy at states (𝑖, 0) and (𝑖, 𝜽 ). We do so by choosing

a contract repeatedly from the policy 𝜋𝑖 (𝑖, 0), and use as a proxy for
acceptance the expected probability of acceptance,

∏𝑛
𝑗=1 𝜋 𝑗 (𝑖, 𝜽 ).

In order to help exploration of the contract space in this stage,

we sample 𝝂 agents from the space of non-proposing agents, and

only use these agent’s accept-reject probabilities in determining

contract acceptance. Here, the introduced 𝝂 becomes a tunable hy-

perparameter, for which 𝝂 = 2 obtained strong performance across

all domains, which we report in section 5. We update the weights

for the actions of all agents at 𝜋𝑖 (𝑖, 0) and 𝜋 𝑗 (𝑖, 𝜽 ), for 𝑗 = 1, 2, . . . , 𝑛.

Finally, the algorithm returns the so-obtained policy profile.

Algorithm 1: Multi-Objective Contract-Augmentation

Learning (MOCA)

Data: Contract Space 𝚯 including the null contract 0,
Markov Game𝑀 , probability distribution 𝑃 (𝚯)

Result: Policy Profile 𝝅
𝝅 ← initialize_policies();
for 𝑡 = 1 to 9

10
num_episodes do

𝜽 ∼ 𝑃 (𝚯);
train_subgame_episode(𝝅 (𝑠0, 𝜽 ))

Freeze 𝜋 |𝑆×Θ;
for 𝑖 = 1 to 1

10
num_episodes do

𝜽 ∼ 𝜋𝑖 (𝑖, 0);
if rand() < ∏𝑛

𝑗=1 𝜋 𝑗 (𝑖, 𝜽 ) then contract← 𝜽 ;

else contract← 0;
R← sample_episode_reward(𝝅 , contract);
train_with_rewards(𝝅 ,R);

return 𝝅 ;

We evaluate the performance of the final trained algorithm on

rollouts. The choice of length of the two periods (e.g. the
9

10
th for

the first phase) is arbitrary.

5 RESULTS
We first present a sample of our experiments with our baselines,

which motivate the need for MOCA (algorithm 1), in Figure 5. Then,

we discuss overall trends from all conducted experiments, Figure 6.

Vanilla Contracting. Consider first Figure 5. we observe that, in
Prisoner’s Dilemma and Cleanup, the baseline implementation of

contracting is sufficient to achieve optimal or near-optimal perfor-

mance, as can be seen by contracting either matching or surpassing

the social welfare of training all agents jointly, and vastly surpassing

the welfare of both gifting and separate training (both of which con-

verge to socially suboptimal Nash equilibriumwelfare). However, in

more complex domains, such as Cleanup, this ceases to be the case.

One potential reason for this is that, in these domains, learning the

best responses to contracts becomes much more challenging, and so

estimates of value for given contracts are less reliable early in train-

ing. Therefore, the proposing agent may benefit from additional

exploration of the space of contracts, the main feature of MOCA.

As seen in Figure 6, MOCA again attains higher social welfare

than joint training, separate training, and gifting. However, since

intermediate levels of reward are not directly comparable with the

baselines (since contracts are randomly sampled in the first stage

of training, and are not run for the same number of timesteps in

the second stage), MOCA is omitted from Figure 5. For this, results

are presented in Figure 6 with bar plots summarizing welfare at the

end of training, for all evaluated methods.

MOCA. Now, we take a closer look at the full results in Figure 6.

In the simpler domains (left two columns), MOCA, like vanilla

contracting, attained social welfare is vastly higher than for sepa-

rately trained agents and agents trained with gifting. In Prisoner’s

Dilemma, contracting reaches joint optimality for 2, 4, and 8 agents.

A smaller action space (and hence easier exploration) is a potential

reason reason for why contracting can perform even better than
joint training, since the action space for joint training grows expo-

nentially in the number of agents. In Public Goods, especially for

higher number of agents, joint training interestingly outperforms

MOCA, but not vanilla contracting. One possible reason for this is

that, uniquely in our suite of environments, learning best responses

to each contract is challenging, while the socially optimal policy

is itself trivial to execute. Therefore, early in training, it is likely

that socially optimal play is learned as a response to some of the

contracts, particularly for those 𝜃 which are near-optimal. There-

fore, biasing contract exploration early on is good for performance.

In complex environments, since the socially optimal contracts are

harder to execute, early biasing of contract exploration is unlikely to

be well-informed, and so converging onto a poor contract proposal

algorithm is likely in vanilla contracting at scale.

In the more complex domains (right three columns of Figure 6),

MOCA in almost all cases attains at least the level of social welfare

as joint training, and often far exceeds it. The one exception to

this trend is Harvest with two agents: this has low performance for

contracting and joint training, with separate training having the

highest social welfare among the methods tested. The reason for

this is that Harvest with 2 agents is not a strong social dilemma,

since the grid is wide enough that agents will not interact. Notably,

this trend even applies in cases where the vanilla contracting fails

(particularly in Harvest and Cleanup), motivating MOCA. In the

merge domain, MOCA, contracting with a standard PPO training,

and joint training, all perform similarly, given the fact that this is

a substantially lower-dimensional, and simpler in terms of best-

response policies, than Harvest or Cleanup.

6 RELATEDWORK
We review related work in Computer Science and Economics.

Social Dilemmas. Our work intends to mitigate social dilemmas

in games. In addition to classical static social dilemmas such as

Prisoner’s Dilemma (compare [36]), a public goods game (compare

[13]) and Stag Hunt [28], we also consider more complex social

dilemmas such as the Harvest and Cleanup domains of [11]. Coop-

eration and prosociality in complex domains are of keen interest
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# agents Pris. Dilemma Public Goods Harvest Cleanup Merge

Figure 5: Welfare throughout training the benchmark algorithms (including a vanilla implementation of contracting using
off-the-shelf deep reinforcement learning algorithms). In simple static domains, contracting achieves welfare that is close to
joint optimality, but more complex domains (i.e. 4- and 8-agent Cleanup), biased policy exploration due to the difficulty of
learning best-responses has a greater effect. Therefore, vanilla contracting suffers in performance. For each figure, the 𝑥-axis
plots number of environment steps (e.g. all agents taking an action is one step), and error is one standard deviation over 5
independent runs.

# agents Pris. Dilemma Public Goods Harvest Cleanup Merge

Figure 6: Experimental results including MOCA. Every plot is the mean social reward per episode at the end of training (1M
plays of the static domains, 5M timesteps for the dynamic domains) for each of the 5 algorithmic setups tested. Cells vary
across number of agents present (2, 4, 8), environments (Prisoner’s Dilemma, Public Goods, Harvest, Cleanup, Emergency
Merge) with each cell comparing different algorithms (joint, gifting, separate, vanilla contracting, MOCA). Error bars denote
one standard deviation over five independent runs. For simpler games in the left two columns, MOCA attains higher social
reward than both gifting and separate training. However, it fails to match joint training in Public Goods, since this is a domain
with simple environment dynamics where learning to respond to contracts is difficult, so early best responses are more likely
to be informative, and biasing towards these early on is likely to help performance. For all of themore complex domains in the
right 3 columns, contracting leads to higher social reward than gifting and separate training, and always at least matches that
of joint training, except for 2-agent Harvest, where sufficient resources are available to make this a very mild social dilemma,
as the higher welfare resulting from separate training compared to joint training shows. In Emergency Merge, both vanilla
contracting and MOCA contracting significantly outperforms separate training. In several domains, contracting outperforms
joint training, which is a result of the large action space of the joint problem.
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to MARL researchers, with related challenges including dilemmas

like Gathering and Wolfpack [17], the StarCraft challenge [30], or

more recently with MARL results in Diplomacy [16].

Augmentations of Markov Games. We relate to the study of aug-

mentations of Markov games to enhance pro-social behavior. Gift-

ing [19, 39] is as augmentation expanding agents’ action spaces to

allow for reward transfers to other agents. [39] prove that gifting is

unable to change the set of Nash equilibria of the underlying game.

Our approach differs from gifting in that contracting forces com-

mitment to a given modification of reward before taking an action

in the original game, and that this commitment is binding for the

length of time the contract is in force. This improves total welfare

by allowing to support play that is not a Nash equilibrium in the

original game, as we demonstrate theoretically and experimentally.

Commitment Mechanisms. A large class of prior work has con-

sidered different forms of agent commitments. [33] proposes the

contract net protocol, which allocates tasks among agents and com-

mits them to complete a particular task. [10] is a recent study in

this line of work. The paper considers multi-agent zero-sum games

in which agents may give other agents the option to commit to

taking a particular action. As we discuss in the introduction, [10]’s

contracts—which we will call binding contracts as opposed to our

concept of formal contracts—might be insufficient to induce the

desired joint behavior, as agents will only commit to actions which

improve their own individual welfare over the basic game, leading

to Pareto optima, which may not be jointly optimal. [27] considers

the idea of commitments, without transfers, in evolutionary game

theory. The paper [21] lets an auxiliary agent propose a Pareto-

optimal equilibrium in a game. [31] proposes to allow agents to

be able to decommit from a task and paying a side payment. Our

approach can be seen as “soft commitment” in which agents always

only incur a cost in terms of reward when taking different actions,

but are not forced to take a particular action. [34] considers in

2-player games the proposal of commitment and side payments,

and reaches social cooperation. We provide a general approach

that only considers reward transfer without the need to commit

to actions. The idea of negotiations between rounds to arrive to a

commitment to an actions, was considered in [3]. Formal contract-

ing does not have the dynamic structure of a negotiation and lets a

proposing agent make a take-it-or-leave-it offer. Also related is a

literature on the emergence and learning of social norms [14, 38]

and conventions [15], which do not require an explicit consent by

agents, in contrast to the present paper.

Stackelberg Learning. Another related paradigm to ours is Stack-

elberg Learning. In such models, typically, a special agent, the

principal, optimizes incentives for other agents in a bi-level opti-

mization problem. Stackelberg learning has received a lot of atten-

tion in strategic Machine Learning [8, 22, 41] and has been used to

learn large scale mechanisms such as auctions [2, 5]. Also, [40]’s ap-

proach to learning to incentivize other learning agents may be seen

as a Stackelberg Learning. In contrast to Stackelberg Learning, the

focus of formal contracts is that no additional agents—Stackelberg

leaders—are introduced into an environment, but proposing agents

are part of the environment.

Organizational and Contract Economics. Formal contracts have

been considered as an alternative to relational contracts in the fields

of organizational Economics, see [7] and [6, 5.2.3]. The setting of

an agent proposing state-dependent reward transfers has received

considerable attention in contract economics, compare the literature

following [23], and mechanism design, compare [12, 24, 37]. In our

proof of Theorem 3.1, we use a forcing contract, which has been

used in several important papers in the field of mechanism design,

see, for example, [9].

7 DISCUSSION
We discuss that the assumption that a single agent proposes a

contract is crucial for our results, and its fairness implications, in

subsection 7.1. Finally, we discuss approaches to scaling formal

contracting to more complex domains in subsection 7.2.

7.1 Limitations for Formal Contracting
One crucial assumption in our analysis is that a single agent pro-

poses contracts. Game-theoretic analysis, given in ?? shows that if
two or more agents may propose in a game, SPEs may be socially

suboptimal. The intuition is that an agent 𝑖 may choose a contract

to affect the state distribution in a way that gives them a rejection

reward when 𝑗 proposes a contract, hence increasing their reward

when contracting. Our game-theoretic analysis also showed that

unfair outcomes might result from contracts. As hence proposal

by different agents and joint optimal behavior are incompatible,

system designers that would like to ensure fairness need to design

contracts in a way that limit the number of transfers that can be

made, potentially at the expense of welfare.

7.2 Scaling Formal Contracting
The clearest avenue for future work is in scaling contracts to more

realistic domains. Here, we outline three ways to do that.

First, contracts in this work were hand-engineered with relevant

internal logic, in order to make the transfers a useful signal. For this

approach to scale, a complexity tradeoff must be managed: Con-

tracts need flexible enough to extract enough relevant information

to incentivize welfare-optimal play, while being simple enough for

MARL agents to allow fast learning of which contracts to choose

resp. accept. General techniques allowing to choose contracts would

greatly improve the scalability of the method.

Manually managing this tradeoff is undesirable. In particular, not

all domains might have social inefficiencies that are as transparent,

or have features that make it hard for a system designer to design

good contract spaces. Therefore, learning which aspects of a state

are useful for contracting will allow us to scale the approach to

more realistic scenarios while keeping contract space sizes low.

Even with a fixed contract space, sample efficiency may be im-

proved. MOCA took a first step into improving contract learning,

by decreasing the bias in estimated𝑉 𝝅
𝑖
(𝑠0, 𝜽 ) values. MOCE outper-

formed benchmarks in all, even complex, dynamic, environments

that exhibited a social dilemma. Increasing sample efficiency will

allow using formal contracting to mitigate social dilemmas in even

more complex domains. One potential way to increase the sample

efficiency of the first phase of MOCA is to leverage more of the liter-

ature on multi-task reinforcement learning methods [4, 26, 29, 35].
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