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ABSTRACT
We investigate deceptive planning, the problem of generating a plan

such that an observer is unable to determine its ultimate goal. Most

work in this area has focused on path and/or motion planning. How-

ever planning problems can be quite varied and challenging. We

present domain-independent approaches for deceptive plan gener-

ation utilising the concepts of landmarks, centroids, and minimum
covering states. We introduce new, domain-independent metrics

to evaluate a plan’s deceptivity as a ratio between its deceptive

quantity and cost; and we extensively evaluate the performance of

our proposed approaches over widely different planning domains

providing guidelines as to when to use each approach.
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1 INTRODUCTION
The ability to deceive is a marker for human intelligence. It has

been a central focus forArtificial Intelligence (AI) since Turing’s “Im-

itation Game” [51], that is, even before the term AI was coined [36].

Deception is often misunderstood. Although its first associations

may be with crime and double-dealing, it is arguably only by know-

ing how and why particular actions have the potential to deceive

that we can ensure they are performed in such a way as to be cor-

rectly understood [28, 31]. Moreover, deception in human affairs

is also a social lubricant [56] whilst, in a security context, it is of-

ten regarded as synonymous with “privacy-preservation” [9, 29].

Unsurprisingly then, given deception’s multiplicity of uses in the

human sphere, the more we interact with AI systems in our daily

lives—as team members, personal assistants, driving aids, etc.—the

more we expect them to be capable not only of detecting deception

but also of deceiving/preserving privacy on our behalf.

In this paper, we investigate deceptive planning, which involves

the generation of a plan such that an observer is unable to deter-

mine the plan’s purpose or assumes that its purpose is other than it

is. Much previous work in this area has centred on motion planning
and path-planning [e.g., 12, 32]. Even works whose definitions of
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deception relate more broadly to classical planning (as defined in

[15, Chapter 2]) ultimately provide examples and/or describe exper-

iments that relate primarily to a path or motion-planning domain

[e.g., 28, 35]. Planning problems, however, are more varied and

challenging than the above examples suggest.

We offer new approaches to the generation of deceptive plans

across a range of problems, utilising the concept of relevant states
such as landmarks [22], centroids and minimum covering states [42].
Our core contributions is a range of domain-independent approaches
to deceptive planning. We introduce deceptive metrics, which incor-

porate a novel definition of deceptive actions and quantify decep-

tion’s effectiveness as a ratio between its deceptive quantity (i.e.,

number of deceptive actions) and cost. We provide empirical evalua-

tion of our approaches across multiple planning domains using two

state-of-the-art online goal recognition approaches: mirroring [53]

and mirroring with landmarks [55]. We analyse and compare ap-

proaches that provide exceptional deception, but are unrealistic for

real world implementation owing to their excessive plan costs, with

others that offer relatively good deception but are more economical.

We also examine the impact of domain-specific factors, such as a

limited number of landmarks, on the deceptiveness of plans.

In Section 2, we set out the technical background to our work.

In Section 3, we present novel metrics for the evaluation and com-

parison of deceptive plans and twelve distinct approaches utilising

the concepts of landmarks, centroids and minimum covering states.
In Section 4, we provide an experimental evaluation and, in Section

5, we conclude the paper with discussion.

2 BACKGROUND AND RELATEDWORK
We begin by setting out the technical framework on which we rely,

then contextualise our work in relation to deceptive AI, landmarks,

centroids and minimum covering states.

2.1 Technical Framework
We define our problems using the classical planning formalism [17,

46], assuming an environment which is discrete, fully observable,
and deterministic [15, Chapter 2]. A planning domain D is defined

as ⟨𝐹,𝐴⟩ where: 𝐹 is a set of fluents (i.e., environment properties);

and𝐴 is a set of actions where every action 𝑎 ∈ 𝐴 has a positive cost,
denoted as 𝑐𝑜𝑠𝑡 (𝑎), and its own set of preconditions, add and delete

lists: 𝑃𝑟𝑒 (𝑎), 𝐴𝑑𝑑 (𝑎), 𝐷𝑒𝑙 (𝑎). We define a state 𝑆 as a finite set of

positive fluents 𝑓 ∈ 𝐹 that follows the closed world assumption
so that if 𝑓 ∈ 𝑆 , then 𝑓 is true in 𝑆 . We also assume a simple

inference relation |= such that 𝑆 |= 𝑓 iff 𝑓 ∈ 𝑆 , 𝑆 ̸ |= 𝑓 iff 𝑓 ∉ 𝑆 , and

𝑆 |= 𝑓1 ∧ ... ∧ 𝑓𝑛 iff {𝑓1, ..., 𝑓𝑛} ⊆ 𝑆 . An action 𝑎 ∈ 𝐴 is applicable
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to a state 𝑆 if and only if 𝑆 |= Pre(𝑎), and generates a new state 𝑆 ′

such that 𝑆 ′ ← (𝑆 ∪ Add (𝑎))/Del(𝑎).
A planning problem P is defined as ⟨D, 𝑆𝐼 ,𝐺⟩ where: D is a

planning domain as described above; 𝑆𝐼 ⊆ 𝐹 is the initial state; and
𝐺 ⊆ 𝐹 is a goal state. A solution to the planning problem P is a plan
𝜋 = [𝑎1, ..., 𝑎𝑛] that maps 𝑆𝐼 into a state 𝑆 |= 𝐺 , that is, in which

the goal state 𝐺 holds. The main purpose of a planning problem

is often to find a plan 𝜋 with minimal cost (or length, where all

actions have cost equal to 1). The cost of a plan 𝜋 = [𝑎1, 𝑎2, ..., 𝑎𝑛]
is 𝑐𝑜𝑠𝑡 (𝜋) = Σ 𝑐𝑜𝑠𝑡 (𝑎𝑖 ) and we say that a plan 𝜋∗ is optimal if there
exists no other plan 𝜋 for P such that 𝑐𝑜𝑠𝑡 (𝜋) < 𝑐𝑜𝑠𝑡 (𝜋∗).

To evaluate the deceptivity of our plans, we use goal recognition
(GR), the task of inferring an agent’s unobserved goal from its

observed behaviour [37, 54]. GR is a well-established branch of

AI with many real world applications such as assisting the elderly

and disabled through recognition of their intent [16], daily living

activity GR [18], recognition of fellow team members’ behaviours

[23] and recognition of an adversarial agent’s intent [14]. While

traditionally GR has been executed using plan libraries against

which observed actions are matched [10], recent approaches accept

a model of the domain as input and solve the GR problem using

state-of-the-art planning [43, 44].

In this paper, we rely on model-based GR (plan recognition as
planning) as defined in [44]. A GR problem P𝐺𝑅 is formally de-

fined as ⟨D, 𝑆𝐼 ,G,𝑂𝑏𝑠⟩ where: D = ⟨𝐹,𝐴⟩ and 𝑆𝐼 are a plan-

ning domain and initial state, as above; G is the set of possible

goals, which includes the real “hidden” goal 𝐺𝑟 (i.e., 𝐺𝑟 ∈ G),1 and
𝑂𝑏𝑠 = [𝑜1, ..., 𝑜𝑛] is a sequence of observations 𝑜𝑖 ∈ 𝐴. 𝑂𝑏𝑠 repre-
sents a valid (i.e., achievable, given the initial state 𝑆𝐼 ) but partial
sequence of actions. That is, observable actions may be missing.

The solution to a GR problem P𝐺𝑅 is identification of that goal

𝐺 ∈ G which the GR system determines to be the real goal 𝐺𝑟 .

Contemporary GR techniques include planning and adapted heuris-

tic functions [43, 44], standard planning graphs [13], top-K plan-

ning [50], landmarks [38, 39], learning and symbolic planning [2],

linear programming [47] and mirroring [53, 55].

2.2 Deceptive Planning
Deceptive planning has been described as an inversion of the GR

problem [6, 32]. While the aim of GR is to identify an agent’s goal

by observing a sequence of its actions, the objective of a deceptive

planner is to generate a sequence of actions such that an observer

is unable to determine the agent’s goal.

Philosophers broadly agree that, from the deceiver’s point of

view, deception involves the deliberate fostering or maintenance of

false belief in the mind of the deceived [8]. Notions of belief and

intentionality, however, are problematic in the context of machine

behaviour, which has led some practitioners [e.g., 34, 48]) to prefer

a definition based not on intent but on behaviour. An agent is

deceptive “if its behaviour has the potential to mislead” [34, p.5].
Bell and Whaley’s general theory of deception [5] sets out two

fundamental strategies. Every deception, they say, involves dissim-
ulation (hiding the true) but it is by use of simulation (showing

the false) that an observer can be made to believe something that

is not true, a concept amplified in recent work on extended goal

1
Note that the real goal𝐺𝑟 is unknown to the GR system in its role as the observer.

recognition [33, 35]. In our work, we attempt to capture a similar

intuition. While other planning paradigms typically treat ambiguity

as deception [e.g., 12, 28, 34], we suggest that from the observer’s
point of view, an ambiguous action—one that leaves the observer

believing (correctly) that the real goal is one of a set of possible

goals—is essentially truthful. Only when an action does not imply

the real goal do we regard it as having the potential to mislead.

Much of the AI literature on deceptive planning focuses on path

or motion-planning. In their study of deceptive robotic motion, Dra-

gan et al. [12] propose three fundamental strategies: exaggeration,
which over-emphasises actions that imply a false goal; switching
between a false goal and the real goal, and ambiguity, the most

economical of the methods but one which, under our definition,

is not strictly deceptive at all. In the context of grid-based path-

planning, Masters and Sardiña present multiple deceptive strategies,

dependent for their implementation on the output of a probabilistic

GR system [32]. They present measurements for deception at three

levels of granularity: a step, density, a metric used to minimise the

number of truthful steps in a path, and extent which—employing a

concept of path completion—calculates how close to goal an agent

can approach while remaining deceptive. In the context of path-

planning, relative to a particular GR system, they identify a radius of
maximum probability, within which deception cannot be achieved.

Approaching the problem of Goal Obfuscation in a Classical Plan-
ning setting but from a security perspective, Kulkarni et al. point

out the limitations of dependence on any one particular GR system

when the approach actually to be used by the observer is unknown.

Their approach depends on ambiguity: an identical plan is gener-

ated no matter which goal is targeted, deviating only at the last

possible moment to achieve their real intended objective [27].

Here, we demonstrate that, even without relying on ambiguity,

it is possible to achieve domain-independent deceptive planning.

2.3 Landmarks
Landmarks are fluents (or actions) that must be achieved (or exe-

cuted) at some point in all valid plans that achieve a goal state from

an initial state [22]. Landmarks are often partially ordered based

on the sequence in which they must be achieved. Given a planning

problem P = ⟨D, 𝑆𝐼 ,𝐺⟩, a formula 𝜙𝑙 is a landmark for P iff 𝜙𝑙 is

true at some point in all valid plans that achieve 𝐺 from 𝑆𝐼 .

Extracting landmarks and deciding their ordering has been shown

to be PSPACE-complete [22], the same complexity as that for de-

termining a plan’s existence [7]. Therefore, most landmark extrac-

tion algorithms [22, 26, 49] extract only a subset of landmarks

for a given planning problem. Nevertheless, landmarks have been

successfully employed to develop planners [45], planning heuris-

tics [20], GR [38, 39], counter-planning [41], and action selection

in transparency planning [30]. Here, we use landmarks to develop

domain-independent approaches to deceptive planning. We denote

a set of landmarks for a goal 𝐺 as L(𝐺). Figure 1a exemplifies the

concept of landmarks in a grid navigation problem: a domain

where an agent can move between adjacent cells but may some-

times need to access a specific key to enter a restricted cell. In this

example, from the initial cell (denoted by the robot) an agent must

first pick-up the key, then open the lock, in order to achieve 𝐺 .

By achieving landmarks associated with goals other than 𝐺𝑟 , an

observer can be made to believe that some other goal is real.
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(a) (b) (c)

Figure 1: grid navigation example with unit costs and 4-
way navigation. (a) Key and padlock are landmarks required
to achieve 𝐺 ; (b) Relevant states (one example of each): C
minimises average cost of reaching the goals,M minimises
maximum cost,Mmax maximises minimum cost, and Cmax
maximises the average cost; (c) Changes with 𝐺𝑟 omitted.

2.4 Centroids and Minimum Covering States
Pozanco et al. [40, 42] introduced the concept of relevant states in

planning: centroids and covering states. Figures 1b and 1c illustrate

how they apply in the context of a grid navigation problem.

Within a planning domain D, a centroid C is a state that min-

imises the average cost of achieving each in the set of possible goals

G. Thus, referring to Figure 1b, the average cost to an agent of

achieving the three goals 𝐺0, 𝐺1 or 𝐺2 is at its lowest (1 + 3 + 5)/3
when the agent is located at C. Similarly, amax centroid state Cmax
maximises the average cost of achieving the set of goals G. A min-

imum covering stateM, meanwhile, is a state that minimises the

maximum cost of achieving each goal in G (in Figure 1b,M is 3

steps from each goal). Conversely, a max minimum covering state

Mmax maximises the minimum cost of achieving each goal in G.
Note that many states may meet the criteria for a relevant state:

Figure 1b provides one example of each.

While landmarks can be used to deceive (by directing the ob-

server’s attention towards a false goal), centroids and minimum

covering states can be used to confuse (by generating a condition

where the observer does not knowwhat to believe). The approach is

related to that taken in [27]: by reference to any one of the relevant

states, an identical initial plan would be generated no matter which

goal the agent was targeting. Using relevant states, however, we can

adapt the strategy to achieve a stronger deception by eliminating

the real goal from the set on which the relevant states are based, as

illustrated in Figure 1c. Under this approach, the observer is still

confused but their attention is directed away from the real goal.

3 DOMAIN-INDEPENDENT DECEPTION
Let us first formally define the problem, which builds on [32] and

the GR problem P𝐺𝑅 set out in Section 2.1.

Definition 3.1. A domain-independent deceptive planning problem
P𝐷 is a tuple ⟨D, 𝑆𝐼 ,𝐺𝑟 ,G⟩ where:
• D = ⟨𝐹,𝐴⟩ is a planning domain, 𝐹 is a set of fluents, and𝐴 is
a set of actions. Every action 𝑎 ∈ 𝐴 has a positive cost: 𝑐𝑜𝑠𝑡 (𝑎);
• 𝑆𝐼 is the initial state;
• 𝐺𝑟 is the real goal that the agent aims to achieve and deceive
from the observer;
• G is the set of possible goals, including the real goal (𝐺𝑟 ∈ G).

The solution to P𝐷 is a plan 𝜋 = [𝑎1, ..., 𝑎𝑛] that maps 𝑆𝐼 into

a state 𝑆 |= 𝐺𝑟 , that is, a state in which the goal state 𝐺𝑟 holds.

The main purpose of deceptive planning is to generate a plan 𝜋

(i.e., deceptive behaviour) that achieves the intended real goal 𝐺𝑟

without revealing that intended goal to observers.

3.1 Quantifying Deceptiveness
The quantification of deception presents a dilemma: successful de-

ception often leads away from the real goal but it must achieve its
goal. To resolve the issue, we present a metric that considers both

the cost and quantity of actions in the generated plan. Our formula-

tion builds upon the concept of truthful and deceptive steps [32].
Masters and Sardiña [32] define a truthful step over path-planning

as a step at which the probability of the real goal is greater than

the probability of any other goal. We diverge from their original

definition and rely instead on the principle of rationality to define a

truthful action as one that must be included in an optimal plan that

maps the current state into a state at which the real goal 𝐺𝑟 holds.

To formalise this concept, given a plan 𝜋 = [𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛],
we represent each action relative to the plan that incorporates it

such that 𝜋1 = 𝑎1, 𝜋
2 = 𝑎2, etc. On execution, each plan yields

a trace, being an alternating sequence of states and actions 𝜎 =

[𝑆1, 𝑎1, 𝑆2, 𝑎2, ..., 𝑆𝑛]. Now, let the set of all optimal plans that map

the current state 𝑆 into the real goal 𝐺𝑟 be given by Π∗
𝑆,𝐺𝑟

. With

this in hand, a truthful action is given by Definition 3.2.

Definition 3.2. Given a known current state 𝑆 , an action 𝑎 is truth-
ful iff 𝑎 = 𝜋1 for 𝜋 ∈ Π∗

𝑆,𝐺𝑟
. Otherwise, the action is deceptive.

Note that 𝑆 in Definition 3.2 represents not the problem’s initial
state but a plan’s current state. This requires that Π∗

𝑆,𝐺𝑟
be recom-

puted after every action. If the first action in a plan is non-optimal

but the recalculated plan from 𝑆2 to the 𝐺𝑟 is optimal, the plan has

only a single deceptive action according to 3.2: if an action is part

of an optimal plan to achieve the real goal from the current state,
then that action is truthful. Thus, we use the principle of rationality

to determine whether or not an action is deceptive.

One advantage of our definition is that it does not depend on

observations, probabilities or the performance of any particular

GR approach. Furthermore, whereas under the definition in [32],

only when the real goal is unambiguously targeted is an action

regarded as truthful, under our model, an action may be truthful

simultaneously for multiple goals. That is, an action may increase

ambiguity and confuse an observer but we argue it may be truthful

nevertheless. If the observer can identify the real goal (whether

singly or as one of a set) then they have not been deceived.

With these concepts properly in place, we can now specify a

metric to capture how much of a given plan is deceptive. Under

Definition 3.3, if all actions in the plan are deceptive, the deceptive

quantity is 1; if none are deceptive, deceptive quantity is 0.

Definition 3.3. The deceptive quantity of a plan 𝜋 is the ratio
between the number of deceptive actions in a plan and the total
number of actions in the plan. We denote the deceptive quantity of a
plan 𝜋 as d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋), and formally define it as follows:

d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋) =
|𝐴d |
|𝜋 |

where 𝐴d is the set of all deceptive actions in 𝜋 .
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Observe that deceptive quantity performs a similar function to

deceptive density in [32]. There, however, definitions are formu-

lated relative to a deceiver wishing to minimise the number of

truthful actions that may be observed. Our definition is relative

to the observer and evaluates how often they may be deceived.

Intuitively, the greater the deceptive quantity of a plan, the greater

its “quality”; that is, the more likely it is to deceive.

We want to deceive but we also want to achieve our goal. As a

counterbalance, therefore, we next present a metric to quantify the

deception cost of a plan; that is, how much of a plan’s overall cost

goes towards paying for its deceptive actions.

Definition 3.4. The deception cost of a plan 𝜋 that maps 𝑆𝐼 to𝐺𝑟

is a ratio between its additional cost
(
relative to an optimal plan 𝜋∗ ∈

Π∗ (𝑆𝐼 ,𝐺𝑟 )
)
and the total cost of the plan. We denote the deceptive

cost of a plan 𝜋 as d𝐶𝑜𝑠𝑡 (𝜋), and formally define it as follows:

d𝐶𝑜𝑠𝑡 (𝜋) =
𝑐𝑜𝑠𝑡 (𝜋) − 𝑐𝑜𝑠𝑡 (𝜋∗)

𝑐𝑜𝑠𝑡 (𝜋)
A plan with zero deceptive actions (i.e., where all actions occur

in an optimal plan and are therefore truthful, c.f., Definition 3.2)

has a deception cost of 0. If, however, a plan includes deceptive

actions and costs twice as much as an optimal plan, then half its

cost is paying for deception and its deception cost is, properly, 0.5.

Finally, by combining the metrics defined above, we can now

provide a score that quantifies the effective deceptivity of a plan.

Definition 3.5. The deception score of a plan 𝜋 is the ratio between
its deceptive quantity and its deception cost. We denote the deception
score of a plan 𝜋 as d𝑆𝑐𝑜𝑟𝑒 (𝜋) and formalise it as follows:

d𝑆𝑐𝑜𝑟𝑒 (𝜋) =
{ d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋 )

d𝐶𝑜𝑠𝑡 (𝜋 ) 𝑐𝑜𝑠𝑡 (𝜋) > 𝑐𝑜𝑠𝑡 (𝜋∗)
0 𝑐𝑜𝑠𝑡 (𝜋) = 𝑐𝑜𝑠𝑡 (𝜋∗)

The deception score increases with the number of deceptive ac-

tions that occur in 𝜋 , but is always constrained by their cost. It tells

us how much “bang”, if you will, we are getting for our buck and

so provides a means of evaluating and comparing the efficacy of

different deceptive approaches, which we set out next. Note that

the special case in which if the cost of the plan with the deceptive

actions and the cost of the optimal plan are the same, the deception

score will be zero. Due to our definition of truthful steps, we would

not expect this to happen, since even if a plan is ambiguous between

goals, the actions will not be defined as deceptive as long as the

plan does not deviate from the optimal plan.

3.2 Deceptive Approaches
We now present a baseline and three approaches to deceptive plan-

ning, each relying on a different concept for plan generation: land-
marks, centroids and minimum covering states. We take as input a

deceptive planning problem P𝐷 and, as output, return a plan 𝜋 (i.e.,

a deceptive behaviour). To illustrate our approaches, we provide

examples based on grid navigation. In this domain, agents can

move between (non-diagonal) adjacent cells but may need to collect

keys to unlock padlocks to achieve certain restricted cells.

Simulation Deceptive Planning
Our baseline approach is simulation, inspired by a widely used

deceptive path-planning technique [25, 32] adapted here to work

over non path-planning domains. Under this approach, a plan is

(a)

1

23

4

5

6

7

8

(b)

Figure 2: grid navigation example to exemplify the
landmark-based approaches. (a) Coloured keys can unlock
padlocks of the same colour; (b) An optimal plan for 𝐺𝑟 .

generated such that it appears to be targeting not 𝐺𝑟 , but an alter-

native goal closest to the real goal in terms of cost.
2
This approach,

as referenced in [32], is one of the two fundamental techniques

described in Bell and Whaley’s general theory of deception which

posits that deception can only be achieved by simulation (“showing

the false”) or dissimulation (“hiding the true”) [5].

Landmarks-Based Deceptive Planning
We demonstrate our landmark-based approaches over the sample

problem displayed in Figure 2a. In this example, some cells can

only be achieved by using specific keys, e.g., to achieve the goal

𝐺𝑟 from the initial state (indicated by the robot), the agent must

first pick up the orange, blue, purple and red keys, and open the

corresponding padlocks (in a specific order). Figure 2b shows an

optimal plan 𝜋∗ to achieve 𝐺𝑟 from the initial state. The numbers

on the cells correspond to the order in which the robot picks up

keys and unlocks padlocks: first the red key, then the orange key,

etc. Note that the robot does not need to pick up the green key or

unlock the green padlock to achieve𝐺𝑟 . The cost of an optimal plan

is 𝑐𝑜𝑠𝑡 (𝜋∗) = 24, assuming a unified cost of 1 for every action.

In this example, the Landmarks are the locations of keys that
must be picked up to achieve the goals and, for each goal, this may

constitute a partial or complete set of the existing keys: L(𝐺𝑟 ) =
[ , , , ];L(𝐺1) = [ , , , ];L(𝐺2) = [ , ].
Most Similar Landmarks Goal Approach. The first landmarks-

based approach generates a deceptive plan to achieve an alternative

goal that has the most similar landmarks to the real goal 𝐺𝑟 . Once

that goal has been achieved, an optimal plan to 𝐺𝑟 is pursued. We

denote this approach as DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 . We define the goal with the

most similar landmarks as:𝐺N = max𝐺𝑖 ∈G\{𝐺𝑟 } L(𝐺𝑟 ) ∩L(𝐺𝑖 ).
In landmark-based strategies, an inherent benefit of two goals being

close together is that more landmarks are likely to be shared.

Figure 3a shows the plan adopted by an agent following the

DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 approach on the grid navigation example. SinceL(𝐺𝑟 )
and L(𝐺1) share the most landmarks, [ , , ], a plan is gen-

erated such that L(𝐺1) is achieved first, then L(𝐺𝑟 ) is pursued
(requiring the robot to backtrack in order to retrieve ).

Adopting our metrics, the cost of the plan 𝑐𝑜𝑠𝑡 (𝜋) = 48 (again

assuming a unified cost of 1 over all actions) and deceptive actions

|𝐴d | = 14. Since the optimal plan had a cost of 24, the deception

2
In navigational domains, it is convenient to think in terms of cost-distance. The

closest goal in terms of cost-distance is the one that can be reached at the lowest cost.
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Figure 3: Examples of plans generated by our landmark-based deceptive approaches: (a) Similar Landmarks DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 ; (b)
Shared landmarks DL𝑆ℎ𝑎𝑟𝑒𝑑 ; (c) Combined Landmarks DL𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ; (d) Most Common Landmarks DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛 ;

cost d𝐶𝑜𝑠𝑡 (𝜋) = 0.5, the deception quantity d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋) = 0.29

and the plan’s overall deception score d𝑆𝑐𝑜𝑟𝑒 (𝜋) = 0.58.

Shared Landmarks Approach. Our second landmarks-based ap-

proach again begins by finding the alternative goal that shares

the most landmarks with the real goal but then deviates from the

DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 approach by creating a plan to achieve, not goal that
has been identified, but rather the shared landmarks themselves.

Only then does the agent continue to pursue the remaining land-

marks of𝐺𝑟 . The shared landmarks are achieved according to their

cost-distance from the initial state, i.e., closer shared landmarks are

achieved first. This approach is denoted as DL𝑆ℎ𝑎𝑟𝑒𝑑 .
Figure 3b illustrates the plan adopted by an agent following the

DL𝑆ℎ𝑎𝑟𝑒𝑑 approach on the grid navigation example. As shown,

the agent achieves the landmarks shared by L(𝐺𝑟 ) and L(𝐺1),
[ , , ], then the landmarks exclusive to L(𝐺𝑟 ), [ ]. Since

shared landmarks are ordered by cost-distance from the initial state,

the order of landmark achievement is [ , , , ]. Once all

landmarks have been achieved, the real goal is pursued optimally.

When analysing the deceptiveness of this plan, we find that

the cost of the plan is lower, 𝑐𝑜𝑠𝑡 (𝜋) = 30, and deceptive actions

|𝐴d | = 4. The deception cost, calculated in relation to the cost of an

optimal plan, is thus also lower, d𝐶𝑜𝑠𝑡 (𝜋) = 0.2. Deception quantity

d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋) = 0.13 (i.e., 13% of the plan is deceptive) and the

overall deception score is higher: d𝑆𝑐𝑜𝑟𝑒 (𝜋) = 0.67. We are getting

more deception for less cost.

To amplify, in the DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 approach, 50% of the cost goes to-

wards achieving a plan that is 29% deceptive: the average deceptive

step is 1.72% of the total plan cost. In the DL𝑆ℎ𝑎𝑟𝑒𝑑 approach, 20%

of the cost goes towards achieving a plan that is 13% deceptive: the

average deceptive step costs only 1.54% of the total plan cost.

Combined Landmarks Approach. Here, we further exploit the
power of landmarks. In this case, we divide them into three cate-

gories: shared, closest exclusive and real exclusive.

(1) Shared landmarks L⊕ must be achieved for both the real

goal 𝐺𝑟 and an alternative goal 𝐺N , being the goal with

which𝐺𝑟 shares themost landmarks:L⊕ = L(𝐺𝑟 )∩L(𝐺N);
(2) Closest Exclusive Landmarks LN⊗ must be achieved for

𝐺N but not 𝐺𝑟 : LN⊗ = L(𝐺N) \ L⊕ ;
(3) Real Exclusive Landmarks, L𝑟⊗ must be achieved for 𝐺𝑟

but not 𝐺N : L𝑟⊗ = L(𝐺𝑟 ) \ L⊕ .

The order of achievement is L⊕ → LN⊗ → L𝑟⊗ . By adopting

this strategy, we aim to increase deceptiveness by achieving the

landmarks common to most goals first and those unique to the real

goal last. Within categories, landmarks are again ordered based

on their cost-distance from the initial state. Figure 3c shows the

plan adopted by an agent when following this approach. Over this

domain,L⊕ is [ , , ],LN⊗ is [ ] andL𝑟⊗ is [ ]. The or-

der in which landmarks are to be achieved is [ , , , , ],

based first on the order of categories, then on the ordering of each

landmark’s cost-distance from the initial state.

When analysing the deceptiveness of the plan under this ap-

proach, which we denote DL𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , we find that 𝑐𝑜𝑠𝑡 (𝜋) = 36

and deceptive actions |𝐴d | = 7. The deception cost d𝐶𝑜𝑠𝑡 (𝜋) = 0.33

and deception quantity is d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋) = 0.19. This gives us an

overall score of d𝑆𝑐𝑜𝑟𝑒 (𝜋) = 0.58, the same as the DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 ,

slightly less effective than our shared landmarks approachDL𝑆ℎ𝑎𝑟𝑒𝑑 .
Most Common Landmarks Approach. Our last landmark-based

approach relies on identifying the most landmarks common to all
possible goals G. Under this approach, denoted DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛 ,

we achieve the landmarks of the real goal𝐺𝑟 ordered in such a way

that the most common landmarks among all candidate goals are

achieved first. Where landmarks have the same commonality, the

landmark closer to the initial state is achieved first.

Figure 3d shows the plan taken by an agent when it follows the

DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛 approach. Here, L(𝐺𝑟 ) is [ , , , ]. We

first analyse the landmarks to identify their commonalities across

all possilbe goals (including the real goal).

• Landmark is common to 𝐺𝑟 , 𝐺1 and 𝐺2 (3 goals);

• Landmark is common to 𝐺𝑟 and 𝐺1 (2 goals);

• Landmarks is common to 𝐺𝑟 , 𝐺1 and 𝐺2 (3 goals); and

• Landmark is common to 𝐺𝑟 (1 goal).

Under DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛 , a plan is generated to achieve and

first, since they are required by the most goals. Their sub-

ordering is determined by their cost-distance from the initial state.

The plan then achieves and finally before the real goal is pur-

sued optimally. Here, plan cost 𝑐𝑜𝑠𝑡 (𝜋) = 34 and deceptive actions

|𝐴d | = 6. Thus, the deception cost d𝐶𝑜𝑠𝑡 (𝜋) = 0.29 and decep-

tion quantity d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝜋) = 0.18. This gives the DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛

approach our second highest overall deception score d𝑆𝑐𝑜𝑟𝑒 = 0.6.
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Relevant States Based Deceptive Planning
We now present deceptive planning approaches which rely on

centroids and minimum covering states [41]. We extract these rele-
vant states using the searching algorithm proposed by Pozanco et

al. [42], which searches through all reachable states by computing

the cost of a plan to every possible goal by calling a planner. The

relevant state (whether centroid or minimum covering state) is then

found by looking for the best cost among all generated states by

the searching algorithm.

Given a problem, P𝐷 , we extract centroids and minimum cover-

ing states with respect to three different set of goals:

(1) The set of possible goals, G, as originally defined in P𝐷 ;
(2) A set of goals excluding the real goal, i.e., G𝑁𝑜𝐺𝑟

= G \𝐺𝑟 ;

(3) A set of goals comprising only the real goal 𝐺𝑟 and the

goal closest to the initial state 𝑆𝐼 , that is, G𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐺+𝐺𝑟
=

min𝐺∈G ℎ(𝑆𝐼 ,𝐺) ∪𝐺𝑟 , where ℎ is a heuristic function that

estimates the cost between two states. This combination

enables us to get greater separation at minimal cost.

Centroid-Based Deceptive Planning. The three goal sets defined
above allow us to extract four different centroid states using the

same extraction algorithm, without any modification. These states

are detailed below and are illustrated on the grid navigation ex-

ample depicted in Figure 4a:

• A centroid C for G (pink cell );

• A max centroid Cmax for G (dashed pink cell );

• A centroid C for G𝑁𝑜𝐺𝑟
(ignoring the real goal 𝐺𝑟 ), denoted

as C𝑁𝑜𝐺𝑟 ∈G (light-blue cell );

• A centroid C for G𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐺+𝐺𝑟
(considering the closest goal

from 𝑆𝐼 ), denoted as C𝐶𝑙𝑜𝑠𝑒𝑠𝑡 (dashed light-blue cell );

Our centroid-based approaches generate deceptive behaviours

by computing an optimal plan 𝜋∗ from the initial state 𝑆𝐼 to one

of the centroid states mentioned above, and another optimal plan

𝜋∗ from such a state to the real goal 𝐺𝑟 . As a result, we have four

different approaches that rely on centroids, as follows: DC, DCmax,
DC𝑁𝑜𝐺𝑟 ∈G , and DC𝐶𝑙𝑜𝑠𝑒𝑠𝑡 . The deceptive behaviours generated
by centroid-based approaches are plans that tend to approach most

of the possible goals, i.e., plans that tend to have actions that aim

to minimise or maximise the distance to the possible goals.

Figure 4a shows deceptive plans for the four centroid-based

approaches. In this example, the cost of an optimal plan to achieve

𝐺𝑟 is 𝑐𝑜𝑠𝑡 (𝜋∗) = 6 (assuming a unified cost of 1). When analysing

the deceptiveness of the plans for the four different centroid-based

approaches, we have the following values for our deceptive metrics:

• DC: |𝐴d | = 1, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0.2, d𝐶𝑜𝑠𝑡 = 0.25, d𝑆𝑐𝑜𝑟𝑒 = 0.8;

• DCmax : |𝐴d | = 0, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0, d𝐶𝑜𝑠𝑡 = 0, d𝑆𝑐𝑜𝑟𝑒 = 0;

• DC𝑁𝑜𝐺𝑟 ∈G : |𝐴d | = 1, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0.2, d𝐶𝑜𝑠𝑡 = 0.25, d𝑆𝑐𝑜𝑟𝑒 = 0.8;

• DC𝐶𝑙𝑜𝑠𝑒𝑠𝑡 : |𝐴d | = 1, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0.2, d𝐶𝑜𝑠𝑡 = 0.25, d𝑆𝑐𝑜𝑟𝑒 = 0.8;

Note that DC, DC𝑁𝑜𝐺𝑟 ∈G , and DC𝐶𝑙𝑜𝑠𝑒𝑠𝑡 have different decep-
tive plans but the same scores under our metrics. As for DCmax, the
results are 0 for all metrics because the Cmax for this problem is an

intermediate state along an optimal plan to achieve𝐺𝑟 . Recall that,

under our model, a confusing plan is not strictly a deceptive plan:
our DCmax strategy results in a plan from 𝑆𝐼 that passes through

Cmax to the 𝐺𝑟 , an optimal plan from 𝑆𝐼 to 𝐺𝑟 : it disguises the real

goal without eliminating it from an observer’s consideration.

(a) (b)

Figure 4: grid navigation example. (a) Centroids deceptive
plans; (b) Minimum Covering states deceptive plans.

Minimum Covering States Based Approaches. We extract dif-

ferent minimum covering states using the goal sets defined above:

• A minimum covering stateM for G;
• A max minimum covering stateMmax for G;
• Aminimum covering stateM forG𝑁𝑜𝐺𝑟

, denotedM𝑁𝑜𝐺𝑟 ∈G ;
• A minimum covering stateM for G𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐺+𝐺𝑟

, denoted as

M𝐶𝑙𝑜𝑠𝑒𝑠𝑡 ;

Theseminimum covering states are depicted in Figure 4b as:

M using G (brown cell );Mmax using G (dashed brown cell );

M𝑁𝑜𝐺𝑟 ∈G using G𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐺+𝐺𝑟
(yellow cell ); M𝐶𝑙𝑜𝑠𝑒𝑠𝑡 using

G𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐺+𝐺𝑟
(dashed yellow cell ).

Similar to the centroids-based approaches, our minimum cov-

ering states-based approaches compute an optimal plan 𝜋∗ from
the initial state 𝑆𝐼 to one of the minimum covering states set out

above, and another optimal plan 𝜋∗ from that state to the real goal

𝐺𝑟 . Thus, we have four different minimum covering states-based

strategies, as follows: DM, DMmax, DM𝑁𝑜𝐺𝑟 ∈G , and DM𝐶𝑙𝑜𝑠𝑒𝑠𝑡 .

Theseminimum covering states-based approaches generate plans

that tend to make the observer’s recognition task more difficult due

to the fact that the plans achieve intermediate states that are not

fully optimal for any of the possible goals.

Figure 4b shows deceptive plans for the four minimum covering

states-based approaches. The cost of an optimal plan to achieve

𝐺𝑟 for this problem is 𝑐𝑜𝑠𝑡 (𝜋∗) = 6 (assuming a unified cost of

1). When analysing the deceptiveness of the plans for these four

approaches under our metrics:

• DM: |𝐴d | = 0, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0, d𝐶𝑜𝑠𝑡 = 0, d𝑆𝑐𝑜𝑟𝑒 = 0;

• DMmax : |𝐴d | = 0, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0, d𝐶𝑜𝑠𝑡 = 0, d𝑆𝑐𝑜𝑟𝑒 = 0;

• DM𝑁𝑜𝐺𝑟 ∈G : |𝐴d | = 2, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0.2, d𝐶𝑜𝑠𝑡 = 0.4, d𝑆𝑐𝑜𝑟𝑒 = 0.5;

• DM𝐶𝑙𝑜𝑠𝑒𝑠𝑡 : |𝐴d | = 0, d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0, d𝐶𝑜𝑠𝑡 = 0, d𝑆𝑐𝑜𝑟𝑒 = 0;

As before, the zero scores under our metrics occur when relevant

states are part of an optimal plan for𝐺𝑟 . This implies that the plans

may confuse but will not strictly deceive an observer. Note, however,

that the example domain is grid-based which means there are very

many alternative optimal plans from 𝑆𝐼 to𝐺𝑟 . The domain is useful

for illustration purposes (i.e., to demonstrate how each strategy

works) but is not necessarily an ideal domain within which to

demonstrate each strategy’s effectiveness.

4 EXPERIMENTS AND EVALUATION
We now set out our methodology and results from the experimental

evaluation of the deceptive strategies enumerated above.
3

3
GitHub https://github.com/AdrianPrice/Domain-Independent-Deception
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4.1 Domains, Benchmarks, and Planning Setup
We evaluated our approaches over three widely different domains

to demonstrate the generality and breadth of their applicability; the

blocksworld domain: a domain that consists of a set of blocks with

letters, a table, and a robot hand, where the goal is to find a plan that

achieves a final configuration of blocks that corresponds to a certain

word; the logistics domain, a domain that contains airports, trucks

and air-planes, where the goal is to access and transport packages

between locations; and finally, the grid navigation domain, an

adapted path-planning domain with additional properties (keys

and padlocks) and actions, as used to illustrate our approaches

throughout the paper.

Most existing planning algorithms rely on search-based problem

solving using heuristic functions [4], e.g., Fast-Downward [19], one
of the most well-known planners, a planner that employs different

searching algorithms and a variety of planning heuristics.

For each domain, we constructed 10 deceptive planning prob-

lems of increasing difficulty. Each problem had 3 possible goals G,
including the real goal 𝐺𝑟 ∈ G.

We computed optimal plans for all approaches using the A*
search algorithm from the Pyperplan planning library [1] with

an admissible heuristic (i.e., LMCut heuristic [20]) and extracted

landmarks using the algorithm proposed by Hoffman et al. [22],

also included in Pyperplan. For extracting centroids and minimum
covering states, we used the sub-optimal search algorithm proposed

by Pozanco et al. [42], which uses the Fast-Downward [19] planner
with an inadmissible heuristic (Fast-Forward heuristic [21]).

4.2 Goal Recognition of Deceptive Plans
We evaluated the deceptiveness of our strategies not only using

our own metrics but also by testing their ability to confound two

state-of-the-art online4 GR systems using: Mirroring (M), a model-

based recognition approach inspired by the method of GR used

by humans [52]; and Mirroring with Landmarks (M+L), an online

recognition approach which combinesMirroring with a generalised

notion of landmarks [55]. In this way, we assess both the impact

of our strategies and the usefulness of our model. In particular, we

wished to evaluate the stability and performance of our landmarks-

based deception approaches against a landmarks-aware GR system.

4.3 Experimental Evaluation
The results of our experimental evaluation are presented in Table 1.

The first row, 𝜋∗, presents the results obtained over the optimal plan
(hence a deception score of 0) for 𝐺𝑟 . The second row presents the

results obtained over our baseline approach denoted as simulation.

The remaining rows present our different deception generation ap-

proaches in three categories: landmarks-based, centroid-based, and
minimum-covering states. The columns show average results over

each of evaluation metric, again in three categories each corre-

sponding to a different domain: blocks world, logistics, and

grid navigation.

Though not designed as optimal algorithms, we evaluated the

relative efficiencies (generation time and cost) of our approaches,

in addition to the degree of deceptivity they provide. Deception is

4
In online goal recognition, observations are provided incrementally, and the aim is to

recognise the agent’s intended goal𝐺𝑟 as soon as possible.

measured by d𝑆𝑐𝑜𝑟𝑒 and by the extent to which our plans deceived

the two online GR approaches, Mirroring and Mirroring with Land-
marks. To evaluate performance against the GR systems, we used

an established metric which measures the ratio of the real intended
goal that was Not Ranked First, ¬R1𝑠𝑡 [52]5, i.e., in howmuch of the

plan were the recognition algorithms deceived in that the real goal

was not ranked first (as the recognised one by the GR approach).

We begin by looking at the results obtained over the grid nav-

igation domain, which mostly corresponds to traditional path-

planning domains, in which the goal is to navigate from one loca-

tion to the other. In terms of overall deception score (d𝑆𝑐𝑜𝑟𝑒 ), the
best result obtained is a ratio of 0.5 effective plan deceptivity. This is

obtained by the baseline, commonly used path-planning deceptive

approach, simulation but also by two of our landmarks-based ap-

proaches,DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 andDL𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 . In terms of goal recognition,

by the Mirroring approach M, again simulation achieved the high-

est performance, effectively generating the most deceptive plan.

However, when using the state-of-the-art recognition approach

M+L, which combines Mirroring and landmarks for recognition,
both landmark-based approaches achieve greater deception.

We now analyse the results over the blocks world domain.

In terms of overall deception score, d𝑆𝑐𝑜𝑟𝑒 , the results are similar

to the previous domain. The best result obtained was a ratio of

0.52 effective plan deceptivity, again obtained by the approaches

DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 and simulation. However, when examining the effec-

tive recognition of the Mirroring approach M, DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 achieved

the best performance over the M+L recognition approach.

Finally, we analyse the results obtained over the logistics do-

main, arguably the most complex, real-world domain, containing

different properties such as airports, trucks and air planes, and the

aim is to get and transport packages between locations. In such

complex domains, there are typically fewer optimal plans than

the simpler path-planning domains. Over these types of domains,

our deceptive approaches shine with the best d𝑆𝑐𝑜𝑟𝑒 achieved by

DM𝐶𝑙𝑜𝑠𝑒𝑠𝑡 (0.85), DC𝐶𝑙𝑜𝑠𝑒𝑠𝑡 (0.83) and DC (0.81). In terms of goal

recognition, again theDL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 and simulation approach achieved

the highest performance, although the DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 proved to be, in

this domain, much more efficient in terms of generation time.

Figure 5 allows us to see a clear trade off between plan cost and

deception. Each graph shows how for each domain, and each decep-

tiveness evaluation metric, the cost of the plan (x-axis), influences
the deceptiveness (y-axis) of that plan. Each approach category has

its own shape representing it, with squares representing the baseline

simulationapproach and 𝜋∗, circles representing the landmark-
based approaches, triangles for the centroid approaches, and stars

for the minimum covering state approaches.
The three deceptiveness evaluation metrics used in Figure 5 are

d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 , M¬R1𝑠𝑡 and M+L¬R1𝑠𝑡 . Across all domains and all

deceptiveness evaluation metrics there is a clear positive trend,

that is, the more expensive a plan is, the more deceptive it is. It

is important to note though, when choosing a deceptive planning

approach for a real world case, there is more that goes into that

thought then just deceptive quality. In the real world, there are often

cost constraints enforced so that plans, including deceptive plans,

5
Vered and Kaminka [52] defines Ranked First as the number of times a GR approach

ranked the the intended goal𝐺𝑟 as the most likely intended goal, indicating the general

accuracy of the approach.
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grid navigation blocks world logistics

M M+L M M+L M M+L
Time (s) 𝑐𝑜𝑠𝑡 (𝜋 ) d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 d𝐶𝑜𝑠𝑡 d𝑆𝑐𝑜𝑟𝑒 ¬R1𝑠𝑡 ¬R1𝑠𝑡 Time (s) 𝑐𝑜𝑠𝑡 (𝜋 ) d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 d𝐶𝑜𝑠𝑡 d𝑆𝑐𝑜𝑟𝑒 ¬R1𝑠𝑡 ¬R1𝑠𝑡 Time (s) 𝑐𝑜𝑠𝑡 (𝜋 ) d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 d𝐶𝑜𝑠𝑡 d𝑆𝑐𝑜𝑟𝑒 ¬R1𝑠𝑡 ¬R1𝑠𝑡

𝜋 ∗ 0.876 6.8 0 0 0 0.72 0.31 7.52e-3 8.0 0 0 0 0.54 0.33 0.58 13.7 0 0 0 0.44 0.40

simulation 4.18 14.0 0.26 0.51 0.50 0.92 0.83 0.0561 17.7 0.27 0.55 0.52 0.87 0.79 2.64 21.3 0.27 0.36 0.72 0.90 0.91

DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 4.46 15.6 0.26 0.56 0.50 0.88 0.85 0.38 21.9 0.31 0.63 0.52 0.89 0.79 1.38 22.3 0.29 0.39 0.72 0.90 0.91

DL𝑆ℎ𝑎𝑟𝑒𝑑 4.09 6.8 0 0 0 0.72 0.31 0.39 13.0 0.18 0.38 0.45 0.61 0.40 0.57 17.5 0.14 0.21 0.70 0.64 0.40

DL𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 5.29 15.8 0.26 0.57 0.50 0.88 0.84 0.38 25.6 0.33 0.69 0.50 0.80 0.67 0.97 27.9 0.37 0.50 0.72 0.81 0.86

DL𝑀𝑜𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛 4.39 6.8 0 0 0 0.72 0.31 0.37 17.2 0.23 0.53 0.45 0.67 0.37 0.63 17.8 0.15 0.23 0.69 0.45 0.40

DC𝐶𝑙𝑜𝑠𝑒𝑠𝑡 75.0 6.8 0 0 0 0.72 0.31 2.53 10.4 0.09 0.23 0.30 0.61 0.32 150.0 18.4 0.23 0.26 0.83 0.65 0.56

DC𝑁𝑜𝐺𝑟 ∈G 57.3 11.6 0.19 0.41 0.40 0.85 0.73 2.99 12.6 0.16 0.37 0.35 0.60 0.57 151.0 22.9 0.29 0.40 0.74 0.83 0.78

DC 9.53 10.8 0.16 0.37 0.30 0.79 0.69 2.68 10.8 0.15 0.26 0.35 0.60 0.42 124.0 16.7 0.12 0.18 0.81 0.48 0.41

DCmax 4.85 11.2 0.17 0.39 0.35 0.80 0.67 7.69 12.8 0.18 0.38 0.35 0.70 0.50 13.8 15.8 0.08 0.13 0.64 0.45 0.35

DM𝐶𝑙𝑜𝑠𝑒𝑠𝑡 17.7 8.2 0.06 0.17 0.10 0.85 0.75 7.75 12.0 0.14 0.33 0.35 0.65 0.41 65.9 16 0.13 0.15 0.85 0.69 0.54

DM𝑁𝑜𝐺𝑟 ∈G 15,0 10.8 0.18 0.37 0.40 0.79 0.56 11.7 11.2 0.14 0.29 0.35 0.60 0.47 56.5 16.1 0.10 0.15 0.74 0.45 0.34

DM 8.77 11.0 0.15 0.38 0.30 0.76 0.52 7.22 14.6 0.18 0.45 0.35 0.60 0.42 36.8 15.4 0.09 0.11 0.70 0.51 0.44

DMmax 5.79 11.8 0.16 0.42 0.35 0.79 0.63 13.3 14.4 0.19 0.44 0.35 0.72 0.47 35.4 15.2 0.08 0.10 0.53 0.51 0.44

Table 1: Deception and recognition results over all deceptive planning approaches. The columns show the generation Time (in
seconds) for each approach (including landmark/relevant states extraction times), average plan cost 𝑐𝑜𝑠𝑡 (𝜋), deception quantity
d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 , deception cost d𝐶𝑜𝑠𝑡 , deception score d𝑆𝑐𝑜𝑟𝑒 , and the deceptive ratio ( ¬R1𝑠𝑡 ) of the plan obtained with Mirroring (M)
and Mirroring+Landmarks (M+L) recognition approaches.

Figure 5: Plan cost plotted against d𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 , M ¬R1𝑠𝑡 and
M+L ¬R1𝑠𝑡 values for all domains, showing a trend that the
higher the plan cost, the higher the deception.

are completed (i.e𝐺𝑟 is achieved) in a feasible amount of time. It can

be clearly seen that while simulation,DL𝑆𝑖𝑚𝑖𝑙𝑎𝑟 andDL𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

are often the most deceptive approaches, these approaches come

at the cost of a very expensive plan. For deceptive plans involving

hundreds or thousands of actions, it may make these approaches

infeasible to be used for such large scale domains due to the massive

overhead of the extra cost and relevant state approaches, centroids
or minimal covering states, should be preferred.

Another important factor is the time taking to compute a valid

plan. The Time column in Table 1 shows the average time taken

to generate the deceptive plans. This time includes, for landmark-
based approaches, the extraction of landmarks, and for centroid and

minimum covering state approaches, the extraction of the respective

states. While all approaches are orders of magnitude slower than

the time it takes to generate the optimal plan, landmark-based
approaches are faster to generate when compared to the centroid
and minimum covering state based approaches. This is due to the
fact that for any planner (such as Pyperplan), computing a plan

involves searching through an, often, extensive state-space until

finding a node where all predicates from the goal state (G) are true

[15]. When computing a plan for the landmark-based approaches, G
is often only a single predicate long, making the task of traversing

the state-space simplistic in terms of time. While that simple search

may need to be repeated multiple times (scaling with the amount

of landmarks extracted), compared with the centroid and minimum
covering state approaches, that not only take a sizeable amount of

time to extract, but also require traversing deep into a state-space

to satisfy a G which may contain many predicates, landmark-based
approaches are much more scalable for larger planning problems.

5 CONCLUSIONS
In this paper, we have presented two novel approaches to the

domain-independent deceptive planning problem and have sug-

gested multiple potential strategies for each, all capable of achieving

high levels of deception under different conditions.

We introduced newmetrics to evaluate a plan’s deceptivity, quan-

tifying its effectiveness (i.e., ability to deceive) from the point of

view of a human observer, as a ratio between the number of decep-

tive actions that occur during the course of a plan and their cost.

We showed the applicability of our approaches over three planning

domains and evaluated their efficiency and performance using plan

cost and generation time as well as our proposed metrics and the

ability of our plans to deceive two state-of-the-art GR systems.

Our results highlight the advantages of each deception approach

against domain complexity. While for path-planning and grid nav-

igation domains, the simulation approach performs well, our

landmarks-based approaches perform on par and have an advantage

over more complex domains such as blocks world and logistics.

While for the most complex, logistics, our centroid and minimum
covering states based approaches performed best.

As future work, we intend to use a recent algorithm [24] for

extracting centroids and minimum covering states, as well as using

and adapting operator counting [11], and reconsidering the role of

confusion and goal obfuscation techniques [3] in the generation of

domain-independent deceptive plans.
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