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ABSTRACT
We introduce the problem of adapting a stable matching to forced
and forbidden pairs. Specifically, given a stable matching M1, a
setQ of forced pairs, and a set P of forbidden pairs, we want to find
a stable matching that includes all pairs from Q , no pair from P ,
and that is as close as possible toM1. We study this problem in four
classical stable matching settings: Stable Roommates (with Ties)
and Stable Marriage (with Ties).

As our main contribution, we employ the theory of rotations
for Stable Roommates to develop a polynomial-time algorithm
for adapting Stable Roommates matchings to forced pairs. In
contrast to this, we show that the same problem for forbidden pairs
is NP-hard. However, our polynomial-time algorithm for the case
of only forced pairs can be extended to a fixed-parameter tractable
algorithm with respect to the number of forbidden pairs when both
forced and forbidden pairs are present. Moreover, we also study
the setting where preferences contain ties. Here, depending on
the chosen stability criterion, we show either that our algorithmic
results can be extended or that formerly tractable problems become
intractable.
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1 INTRODUCTION
Alice was recently hired as a tech lead and the company gave her
the possibility to select her own team of software developers. After
doing so, as it is a company-wide policy to use pair programming,
Alice faces the problem of grouping her developers into pairs. Be-
cause Alice is a fan of stable matchings, she organizes this by asking
each software developer for his or her preferences over the other
developers. Subsequently, she computes and implements a stable
matching (i.e., a matching where no two developers prefer each
other to their assigned partner). Unfortunately, after a couple of
weeks, Alice notices that Bob and Carol, who currently work to-
gether, like each other a little bit too much so that they spend most
of their time not working productively. Thus, she wants to assign
both of them to a different partner. In contrast, Alice learns that
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Dan and Eve, who currently do not work together, have quite com-
plementary skill sets. She believes that both of them would greatly
benefit from working with each other. Now, she faces the problem
of finding a new stable matching that respects her wishes. However,
as she observed that most pairs initially needed some time to find
a joint way of working, she wants to minimize the number of new
pairs, i.e., she wants the new matching to be as close as possible to
the current one.

More formally, the problem can be described as follows. Alice is
given a stable matchingM1 of some agents with preferences over
each other, a set Q of forced pairs (those pairs need to be included
in the new matching) and a set P of forbidden pairs (none of these
pairs is allowed to appear in the new matching), and she wants
to find a new stable matching respecting the forced and forbidden
pairs which is as close as possible to M1. We initiate the study of
the decision variant of this problem, where we are additionally
given an integer k and the symmetric difference between the old
and the new matching shall be upper-bounded by k , in the fol-
lowing classical stable matching settings: Stable Roommates and
its bipartite variant Stable Marriage, both combined with strict
preferences or preferences containing ties. We refer to the resulting
problems as Adapt Stable Roommates/Marriage [with Ties]
to Forced and Forbidden Pairs.1 For all six problems arising
this way, we either present a polynomial-time algorithm or prove
its NP-hardness. Moreover, we provide a complete picture of the
problems’ parameterized computational complexity2 with respect
to the problem-specific parameters |P |, |Q |, and k .

We now present some further application scenarios where match-
ings need to be adapted to forced or forbidden pairs. First, related to
our initial toy example, in companies where on each day workers
work in pairs, forced and forbidden pairs can be time-dependent.
Assume that the company has some “default” assignment that is
used on most days. On some days, however, the workers might
need to do different tasks than usual and certain combinations
of workers might not be able to work together because both of
them lack some skill or a certain qualification, making some pairs
forbidden on certain days. Second, forbidden pairs can also arise
over time when assigning papers to reviewers, a task which might
be modeled as a Stable Marriage instance. After assigning the
papers to reviewers, it sometimes turns out that some reviewers
have a conflict of interest (COI) with the paper they are supposed

1We consider two notions of stability if preferences contain ties, i.e., weak and strong
stability. In weak stability, an agent pair {a, b } is blocking a matching if both strictly
prefer each other to their current partner, whereas in strong stability it is sufficient if
a strictly prefers b to its partner and b is indifferent between a and its partner.
2Our results here are mostly along the parameterized complexity classes FPT andW[1].
A problem is fixed-parameter tractable (in FPT) with respect to some parameter t if
there is an algorithm solving every instance I of the problem in f (t ) · |I |O(1) time
for some computable function f . Under standard complexity theoretical assumptions,
problems that are W[1]-hard for some parameter do not admit an FPT algorithm with
respect to this parameter.
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SM/Strongly SM with Ties Weakly SM/SR with Ties SR Strongly SR with Ties

Forced P (Pr. 1) NP-h. and W[1]-h. wrt.
k+number of ties for

one pair (Pr. 2)

P (Th. 2) P (Th. 3)
Forbidden P (Pr. 1) NP-h. (Th. 1) NP-h. (Th. 1)

Forced and Forbidden P (Pr. 1) FPT wrt. #forbidden pairs inM1 (Th. 2) FPT wrt. #forbidden pairs inM1 (Th. 3)

Table 1: Overview of our results. “k” denotes the allowed size of the symmetric difference between the old and new matching.

to review resulting in “forbidden” pairs. Then, a natural objective is
to change as few assignments as possible to circumvent the newly
discovered COIs. Third, minimally adapting stable matchings to
forced or forbidden pairs might become necessary in centralized
matching markets where some time passes between the compu-
tation of the matching and its implementation [7, 22] as during
this time certain pairs can become either unavailable or forced. For
instance, in New York’s school choice market, after the matching of
students to schools was announced, around 10% of students decide
to pay some (private) school to secure one of their seats instead of
going to their assigned school Feigenbaum et al. [15] (which could
be modeled as a forced pair). Moreover, students may also realize
that they cannot attend their assigned school.

Related Work. Since the introduction of the Stable Marriage
problem by Gale and Shapley [18], numerous facets of stable match-
ing problems have been extensively studied in computer science
and related areas (see, e.g., the monographs of Gusfield and Irv-
ing [21], Knuth [26], and Manlove [29]). Our problem combines
two previously studied aspects of stable matching problems: forced
and forbidden pairs, and incremental algorithms.

Dias et al. [11] initiated the study of stable matching problems
with forced and forbidden pairs. The classical task here is to decide
whether there is a stable matching including all forced pairs and no
forbidden pair.3 While this problem can be solved in polynomial
time if the preferences do not contain ties both in the roommates
and marriage context [11, 16], the problem is NP-complete in the
presence of ties for weak stability for marriage and roommates in-
stances, even if there is only one forced and no forbidden pair [30] or
one forbidden and no forced pair [9]. Motivated by the straightfor-
ward observation that a stable matching including all given forced
pairs and no forbidden pairs might not exist, Cseh andManlove [10]
studied the problem of finding a matching minimizing the number
of “violated constraints” (where a violated constraint is either a
blocking pair or a forced pair not contained in the matching or a
forbidden pair contained in the matching).

Our problem also has a clear “incremental” dimension in the
sense that we want to make as few changes as possible to a stable
matching to achieve a certain goal. Many authors have studied such
incremental problems in the context of various stable matching
scenarios [1, 3, 4, 6, 15, 17, 19, 31]. In the works of Bhattacharya
et al. [1], Boehmer et al. [3, 4], Bredereck et al. [6], Gajulapalli et
al. [17], and Feigenbaum et al. [15], the focus lied on problems
related to adapting matchings to change: We are given a (stable)
matching of agents, then some type of change occurs (e.g., some
agents revise their preferences or some agents get added or deleted)
and a new (stable) matching shall be found. Here, as in our problem,
3Note that our problem reduces to the classical problem associated with forced and
forbidden pairs if we set the allowed distance between M1 and the matching to be
found to infinity.

it is often assumed that changing a pair in the matching is costly
so the new matching should be as close as possible to the old one.
As a second type of incremental problems, Marx and Schlotter [31]
and Gupta et al. [19] analyzed the computational complexity of
problems where one is given a stable matchingM and the task is to
find a larger (almost) stable matching which is close toM . On amore
general note, this paper fits into the stream of works on incremental
combinatorial problems [1, 5, 8, 12, 23] where one aims at efficiently
adapting solutions to changing inputs and requirements (in our
case the requirement is that certain pairs are forbidden or forced),
a core issue in modern algorithmics.

Our Contributions. We initiate the study of adapting stablematch-
ings to forced and forbidden pairs. We consider this problem in
six different settings and provide a complete dichotomy for the
problems’ (parameterized) computational complexity with respect
to the problem-specific parameters |P |, |Q |, and k . See Table 1 for
an overview of our results.

In the first (short) part of the paper (Section 3), we consider the
bipartite marriage setting. We prove that adapting to forced and
forbidden pairs is polynomial-time solvable for Stable Marriages
without ties and in case of ties in combination with strong stability
(Proposition 1). However, in case ties in the preferences are allowed
and we are searching for weakly stable matchings, we obtain NP-
hardness and W[1]-hardness with respect to the summed number
of ties and the allowed difference k between the old and the new
matching (Proposition 2). These hardness results hold even if there
is only one forced and no forbidden pair or if there is only one
forbidden and no forced pair. As Stable Roommates generalizes
Stable Marriage, these hardness results also hold for Weakly
Stable Roommates with Ties.

In the second (main) part of the paper (Section 4), we focus
on the Stable Roommates problem. Here, we first prove that in
contrast to the bipartite setting, Adapt Stable Roommates to
Forced and Forbidden Pairs is NP-hard, even if there are only
forbidden pairs (Theorem 1). In contrast to this, the problem is
fixed-parameter tractable with respect to the number of forbidden
pairs (contained in the given matching; Theorem 2). In particular,
if there are only forced pairs, then the problem is polynomial-time
solvable. To the best of our knowledge, this is the first problem
which is tractable for forced but intractable for forbidden pairs.4
The FPT-algorithm for adapting a Stable Roommates matching
to forced and forbidden pairs is our main technical contribution.
Our algorithm relies on exploiting the structure of the rotation
poset for Stable Roommates instances in a clever way: For this, we
observe that for most pairs there is a necessary (and a prohibited)
rotation that needs to be part of (cannot be part of) a set of rotations
4Note that any problem involving only forced pairs can be reduced to a problem involv-
ing only forbidden pairs by setting for each forced pair {a, b } all pairs containing a
except for {a, b } to be forbidden.
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corresponding to a stable matching containing the pair. Using this,
we can modify the set of rotations corresponding to the given
matching to minimally change it to include all forced pairs. In fact,
using some additional information, it is also possible to exclude
forbidden pairs by modifying the rotation set. Note that as each
forbidden pair in P requires a change in the matching M1, this
algorithm also constitutes a fixed-parameter tractable algorithm
for the allowed difference k between the old and the new matching.
Lastly, we describe how our algorithm can be modified to also
work for the Strongly SR with Ties problem by exploiting the
more intricate structure of the rotation poset for this problem using
similar ideas as for Stable Roommates (Theorem 3). Note that we
do not consider the notion of super stability in the presence of ties
in the following, as all our results for the problem variants without
ties translate to super stability.5

The proofs (or their completions) of all results marked by (⋆)
can be found in our full version [2].

2 PRELIMINARIES
In Stable Roommates (SR), we are given a setA = {a1, . . . ,a2n } of
agents where each agent has a subset Ac(a) ⊆ A \ {a} of agents it
finds acceptable. We assume that acceptability is symmetric, i.e., a ∈

Ac(a′) for some a,a′ ∈ A implies that a′ ∈ Ac(a). Moreover, each
agent a ∈ A has (strict) preferences ≻a over all agents it accepts,
i.e., a total order over the agents Ac(a). For agents a,a′,a′′ ∈ A,
agent a prefers a′ to a′′ if a′ ≻a a′′.

For a set A of agents, we use
(A

2
)
to denote the 2-element subsets

of A; abusing notation, we will call these 2-element subsets pairs
although they are unordered. AmatchingM is a set of pairs {a,a′} ∈(A

2
)
with a ∈ Ac(a′) and a′ ∈ Ac(a), where each agent appears in

at most one pair. An agent a is matched in some matchingM ifM
contains a pair containing a. If a is not matched in M , then a is
unmatched. A matching is complete if all agents are matched. For an
agent a ∈ A and a matchingM , we denote byM(a) the partner of a
in M , i.e., M(a) = a′ if {a,a′} ∈ M . For two matchings M and M ′

and an agent a matched in bothM andM ′, we say that a prefersM
toM ′ if a prefersM(a) toM ′(a). An agent pair {a,a′} ∈

(A
2
)
blocks

a matching M if (i) a ∈ Ac(a′) and a′ ∈ Ac(a), (ii) a is unmatched
or a prefers a′ to M(a), and (iii) a′ is unmatched or a′ prefers a
to M(a′). A matching which is not blocked by any agent pair is
called stable. An agent pair {a,a′} ∈

(A
2
)
is a stable pair if there

is a stable matching M with {a,a′} ∈ M . For two matchings M
and M ′, we denote by M△M ′ the set of pairs that only appear in
one of M and M ′, i.e., M△M ′ = {{a,a′} |

(
{a,a′} ∈ M ∧ {a,a′} <

M ′
)
∨
(
{a,a′} < M ∧ {a,a′} ∈ M ′

)
}. The main problem studied in

this paper is the following:
Adapt SR to Forced and Forbidden Pairs
Input: A set A of agents with strict preferences over each
other, a stable matchingM1, a set of forced pairs Q ⊆

(A
2
)
, a

set of forbidden pairs P ⊆
(A

2
)
, and an integer k .

Question: Is there a stable matchingM2 withQ ⊆ M2,M2 ∩
P = ∅, and |M1△M2 | ≤ k?

5 Fleiner et al. [16] give a polynomial-time reduction from Super Stable Roommates
with Ties to Stable Roommates which declares some pairs that are not contained in
any super stable matching to be forbidden. By adding these pairs to the given set of
forbidden pairs, our algorithmic results for the case without ties can be adapted.

In SR with Ties, a generalization of SR, each agent a ∈ A
has weak preferences ≿a over all agents it accepts, i.e., ≿a is a
weak order over the agents Ac(a). For agents a,a′,a′′ ∈ A, agent
a weakly prefers a′ to a′′ if a′ ≿a a′′, agent a is indifferent be-
tween a′ and a′′ (denoted as a′ ∼a a′′) if both a′ ≿a a′′ and
a′′ ≿a a′, and a strictly prefers a′ to a′′ (denoted as a′ ≻a a′′) if
a′ ≿a a′′ but not a′′ ≿a a′. We distinguish two different types of
stability in the presence of ties: Under weak/strong stability, an
agent pair {a,a′} ∈

(A
2
)
blocks a matching M if (i) a ∈ Ac(a′) and

a′ ∈ Ac(a), (ii) a is unmatched or a strictly prefers a′ toM(a) and
(iii) a′ is unmatched or a′ strictly/weakly prefers a to M(a′). The
problems Adapt Weakly/Strongly SR with Ties to Forced and
Forbidden pairs are defined analogous to Adapt SR to Forced
and Forbidden Pairs, where instead of strict preferences weak
preferences are given and weak, respectively, strong stability is
required.

In the bipartite variant of SR called Stable Marriage (SM), the
agents are partitioned into two set U andW . Following standard
terminology, we call the elements from U men and the elements
fromW women. For each m ∈ U , we have Ac(m) ⊆ W and for
each w ∈ W we have Ac(w) ⊆ U . Consequently, agents from
one side can only be matched to and form blocking pairs with
agents from the other side. All other definitions from above still
apply. The Adapt (Strongly/Weakly) SM (with Ties) to Forced
and Forbidden Pairs problems are defined analogously to the
respective variants for SR (the only difference being that the given
instance is “bipartite”, i.e., the set of agents can be split into two
sets accepting only agents from the other set).

3 STABLE MARRIAGE
In this section, we study the problem of adapting stable matchings
to forced and forbidden pairs in the bipartite marriage setting.

3.1 (Strongly) Stable Marriage
We start by analyzing the case where agents’ preferences are strict
or when we are interested in strong stability in the presence of ties.
We show that our problem is polynomial-time solvable in these
settings by a simple reduction to the polynomial-time solvable
Weighted (Strongly) Stable Marriage (with Ties) problem,
where we are given an SM instance and a weight function on the
pairs and the task is to compute a minimum-weight stable matching:

Proposition 1. Adapt SM to Forced and Forbidden Pairs and

Adapt Strongly SM with Ties to Forced and Forbidden Pairs

are solvable in O(n ·m logn) time.

Proof. Both problems can be solved using the same approach:
We assume that P ∩ Q = ∅, as otherwise we have a trivial no in-
stance.We define a weight functionw as follows: For each forbidden
pair e ∈ P , we setw(e) := 3·n. For each forced pair e ∈ Q \M1 that is
not part ofM1, we setw(e) := 2−3·n. For each forced pair e ∈ Q∩M1
that is part ofM1, we setw(e) := −3·n. For each pair e ∈ M1\(P∪Q)
that is part ofM1 but neither forced nor forbidden, we setw(e) = 0.
For each remaining pair e , we set w(e) := 2. We compute a
minimum-weight stable matching M∗ in O(n ·m logn) time (see
[13] for strict preferences and [27] for the case of ties with strong
stability). Note thatw(M∗) = 3·n·(|P∩M∗ |−|M∗∩Q |)+2|M∗\M1 | =
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3 ·n(|P∩M∗ |− |M∗∩Q |)+ |M∗△M1 | using that each stable matching
has the same size by the Rural Hospitals Theorem [28, 32] (and thus
|M∗ | = |M1 |) for the second equality. Since |M∗ | ≤ n, it follows that
w(M∗) ≤ −3 · n · |Q | + k if and only if P ∩M∗ = ∅, Q ⊆ M∗, and
|M∗△M1 | ≤ k . □

3.2 Weakly Stable Marriage With Ties
In contrast to the previous polynomial-time solvability result for
strict preferences and for strong stability from Section 3.1, we obtain
strong intractability results if we consider weak stability. Note that
for Weakly SM with Ties already deciding the existence of a
stable matching containing a single forced pair [30] or a single
forbidden pair [9] is NP-complete, implying that Adapt Weakly
SM with Ties to Forced and Forbidden Pairs is NP-complete
already if |P | = 1 or |Q | = 1. We extend this hardness by showing
W[1]-hardness when parameterized by the number of ties plus k .

Proposition 2 (⋆). Adapt Weakly SM with Ties to Forced

and Forbidden Pairs restricted to instances where only agents from

one side of the bipartition have ties in their preferences parameterized

by the number of ties plus k is W[1]-hard, even if |Q | = 1 and P = ∅

or Q = ∅ and |P | = 1.

4 STABLE ROOMMATES
As the strong intractability results for Adapt Weakly SM with
Ties to Forced and Forbidden Pairs from Section 3.2 extend to
AdaptWeakly SR with Ties to Forced and Forbidden Pairs (as
SR with Ties generalizes SM with Ties) in this section we focus
on Adapt (Strongly) SR (with Ties) to Forced and Forbidden
Pairs. We first prove in Section 4.1 that adapting a SR matching to
forbidden pairs is NP-hard even without ties. Afterwards, in our
core Section 4.2, we prove that Adapt SR to Forced and Forbid-
den Pairs parameterized by the number of forbidden pairs that
appear in M1 is fixed-parameter tractable (and thus that adapting
an SR matching to forced pairs is polynomial-time solvable) by
exploiting the rotation poset. Lastly, in Section 4.3, we extend this
result to also work for Adapt Strongly SR with Ties to Forced
and Forbidden Pairs.

4.1 NP-hardness of Adapt SR to Forbidden
Pairs

In this section, we prove that in contrast to the bipartite marriage
setting, Adapt SR to Forced and Forbidden Pairs (without ties)
is already NP-hard (even if we only have forbidden pairs).

Theorem 1. Adapt SR to Forced and Forbidden Pairs is NP-hard,

even if Q = ∅ and P ⊆ M1.

Proof. We reduce from the NP-hard Independent Set prob-
lem [25]. Let (G, ℓ) be an instance of Independent Set. For a ver-
tex v ∈ V (G), we denote by N (v) the set of its neighbors in G. For
each vertex v ∈ V (G), the Adapt SR to Forced and Forbidden
Pairs instance contains ten agents av1 , . . . , a

v
5 , b

v
1 , . . . , b

v
5 . For each

v ∈ V (G), fix an arbitrary strict order of {aw2 | w ∈ N (v)} and
denote this order by [N ∗(v)]. For each v ∈ V (G) the preferences of
the respective ten agents are as follows (see also Figure 1):

av1 : bv1 ≻ bv2 , av2 : bv3 ≻ bv2 ≻ [N ∗(v)] ≻ bv1 ,

av3 : bv2 ≻ bv3 , av4 : bv5 ≻ bv3 ≻ bv4 , av5 : bv4 ≻ bv5
bv1 : av2 ≻ av1 , bv2 : av1 ≻ av2 ≻ av3 , bv3 : av3 ≻ av4 ≻ av2 ,

bv4 : av4 ≻ av5 , bv5 : av5 ≻ av4

Finally, we set M1 := {{avi ,b
v
i } | i ∈ [5],v ∈ V (G)}, P :=

{{av2 ,b
v
2 } | v ∈ V (G)}, and k := 8|V (G)| − 4ℓ. Note that M1 is

stable, as for each v ∈ V (G), agents bv3 , b
v
4 , b

v
5 , and a

v
1 are matched

to their top-choices (so they cannot be part of a blocking pair) and
av2 and bv2 are matched to their most preferred agents that are not
listed above.

(⇒): Let X be an independent set of size ℓ

in G. For a vertex v ∈ V (G), we set Mv :=
{{av1 ,b

v
2 }, {a

v
2 ,b

v
1 }, {a

v
3 ,b

v
3 }, {a

v
4 ,b

v
4 }, {a

v
5 ,b

v
5 }} and M̄v :=

{{av1 ,b
v
1 }, {a

v
2 ,b

v
3 }, {a

v
3 ,b

v
2 }, {a

v
4 ,b

v
5 }, {a

v
5 ,b

v
4 }}. We set M∗ :=⋃

v ∈X Mv ∪
⋃
v ∈V \X M̄v . Then M∗△M1 = {{av1 ,b

v
2 }, {a

v
2 ,b

v
1 },

{av1 ,b
v
1 }, {a

v
2 ,b

v
2 } | v ∈ X } ∪ {{av2 ,b

v
3 }, {a

v
3 ,b

v
2 }, {a

v
4 ,b

v
5 },

{av5 ,b
v
4 }, {a

v
2 ,b

v
2 }, {a

v
3 ,b

v
3 }, {a

v
4 ,b

v
4 }, {a

v
5 ,b

v
5 } | v ∈ V (G) \ X }.

Consequently, we have |M∗△M1 | = 4|X | + 8 · (|V (G)| − |X |) =

8|V (G)| − 4ℓ. AsM∗ clearly does not contain any forbidden pair, it
remains to show thatM∗ is stable.

It is straightforward to verify that no pair {avi ,b
v
j } for i, j ∈ [5]

and v ∈ V (G) is blocking. The remaining acceptable pairs
are {av2 ,a

w
2 } for some {v,w} ∈ E(G). Since X is an independent

set, we may assume without loss of generality that v < X . This
implies that M∗(av2 ) = bv3 ≻av2 aw2 , implying that {av2 ,a

w
2 } does

not blockM∗. Thus,M∗ is stable.
(⇐): Let M∗ be a stable matching with |M∗△M1 | ≤ k =

8|V (G)| − 4ℓ in the constructed instance. First note that the Rural
Hospitals Theorem [21, Theorem 4.5.2] (which states that every sta-
ble matching matches the same set of agents) implies that every sta-
ble matching is complete in the constructed instance. Consequently,
M∗ does not contain a pair of the form {av2 ,a

w
2 } (as otherwise one

of bv1 , . . . , b
v
5 would be unmatched inM∗). Thus, for each v ∈ V (G),

we haveM∗(av2 ) ∈ {bv1 ,b
v
3 } (recall that we forbid the pair {a

v
2 ,b

v
2 }

for all v ∈ V (G)). Note that X := {v ∈ V (G) | {av2 ,b
v
1 } ∈ M∗} is

an independent set: If {v,w} ∈ E(G) for v , w ∈ X , then {av2 ,a
w
2 }

blocksM∗.
It remains to show that |X | ≥ ℓ. For each v ∈ X , we have

{av2 ,b
v
1 } ∈ M∗ (by the definition of X ) and {av1 ,b

v
2 } ∈ M∗ (as

av1 would be unmatched otherwise). Consequently, |
(
M∗△M1

)
∩

{{avi ,b
v
j } : i, j ∈ [5]}| ≥ 4. For each v ∈ V (G) \ X , by the def-

inition of X we have {av2 ,b
v
3 } ∈ M∗. Moreover, note that M∗

contains {av1 ,b
v
1 } (as otherwise bv1 would be unmatched) and

{av3 ,b
v
2 } (otherwise bv2 would be unmatched). Further, M∗ con-

tains {av4 ,b
v
5 } (otherwise {a

v
4 ,b

v
3 }would be blocking) and {a

v
5 ,b

v
4 }

(otherwise av5 and bv4 would be unmatched). Consequently, we
have |

(
M∗△M1

)
∩ {{avi ,b

v
j } : i, j ∈ [5]}| ≥ 8. Summing up, we

get that k = 8|V (G)| − 4ℓ ≥ |M1△M∗ | ≥ 4|X | + 8(|V (G)| − |X |) =

8|V (G)| − 4|X |, which is equivalent to |X | ≥ ℓ. □

4.2 (FPT-)Algorithm for Adapt SR to Forced
and Forbidden Pairs

In this section, we develop an FPT-algorithm for the Adapt SR
to Forced and Forbidden Pairs problem parameterized by the
number of forbidden pairs in M1 (note that this algorithm is a
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(a) Initial matching.
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(b) MatchingMv (v is selected to be part of the
independent set).
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(c) Matching M̄v (v is not selected to be part of
the independent set).

Figure 1: The preferences of agents avi and bvi for some v ∈ V (G) with different matchings highlighted in bold. {av2 ,b
v
2 } is the

forbidden pair. The preferences of the agents are encoded in the numbers on the edges: For an edge {a,a′}, the number x closer
to a denotes the position in which a′ appears in the preferences of a, i.e., a prefers exactly x − 1 agents to a′.

polynomial-time algorithm if no forbidden pairs are present). Our al-
gorithm heavily relies on the rotation poset for Stable Roommates.
Thus, we start this section by defining rotations (Section 4.2.1) and
describing the high-level idea of our algorithm together with prov-
ing some useful facts concerning rotations (Section 4.2.2), before
we present our algorithm (Section 4.2.3).

In the following we assume that all considered stable matchings
(and in particular the initial matchingM1) are complete matchings,
as we can otherwise modify the instance accordingly in O(m) time.6

4.2.1 Rotations: Introduction. We first formally define what a ro-
tation is, then discuss their relationship to Irving’s algorithm, and
lastly identify different types of rotations.

Basic Definitions for Rotations. For an instance of SR, an exposed

rotation is a sequence of agent pairs (ai0 ,aj0 ), . . . , (air−1 ,ajr−1 ) such
that, for each s ∈ [r ], agent ais ranks ajs first and ajs+1 second
(where all indices in this paragraph are taken modulo r ).7 Eliminat-

ing an exposed rotation (ai0 ,aj0 ), . . . , (air−1 ,ajr−1 ) means deleting,
for all s ∈ [r ], all agents which ajs ranks after ais−1 from the prefer-
ences of ajs . The dual φ̄ of a rotationφ = (ai0 ,aj0 ), . . . , (air−1 ,ajr−1 )

is φ̄ = (aj0 ,air−1 ), (aj1 ,ai0 ), (aj2 ,ai1 ), . . . , (ajr−1 ,ajr−2 ). Note that
the dual of the dual of a rotation is again the rotation itself.

Irving’s Algorithm. The theory of rotations is closely connected
to Irving’s algorithm [24]. Irving’s algorithm constructs a stable
matching in an SR instance (if it exists) in two phases. In the first
phase, similar to the Gale-Shapely algorithm for SM, agents make
proposals to each other, which are accepted or rejected. Doing so,
certain parts of the agent’s preferences get deleted. Let P0 be the
6IfM1 is not complete, let B be the set of agents unmatched inM1 . For each agent b ∈

B , we add an agent b′ to the instance which only finds b acceptable and which is
added at the end of the preferences of b . Then, using the Rural Hospitals Theorem
for SR [21], which states that each stable matching in a SR instance matches the same
set of agents, it follows that all stable matchings in the modified instance contain
pairs {{b, b′ } | b ∈ B }. Consequently, the modified instance is equivalent to the
original one.
7 Notably, a rotation has no fixed start point, as we can start with any pair from the
sequence resulting in shifted versions of the same rotation. In the following, we do
not distinguished between these different shifted variants of the same rotation as they
are the same for our purposes.

preference profile of the agents after the termination of Phase 1.
Now Phase 2 consists of eliminating exposed rotations one after
each other until no rotation is exposed anymore (note that after
eliminating a rotation, some agents delete agents from their prefer-
ences, causing the set of exposed rotations to change). If no rotation
is exposed, then either there is at least one agent with empty pref-
erences, implying that no stable matching exists, or every agent
has exactly one other agent left in its preferences, implying that
matching the agents to the remaining agent in their preferences re-
sults in a stable matching. We call a preference profile a stable table
if it can be derived from P0 after successively eliminating exposed
rotations. For an instance of Stable Roommates, the rotations are
sequences of agent pairs which may arise as an exposed rotation
in some execution of Irving’s algorithm (since Irving’s algorithm
may eliminate any exposed rotation, different executions of Irving’s
algorithm may result in different stable matchings and different
exposed rotations)

(Non)-Singular Rotations and Further Definitions. Using the view
of Irving’s algorithm now allows us to identify different types of
rotations. A rotation φ is nonsingular if its dual φ̄ is again a rotation.
Otherwise, the rotation φ is singular. For two rotations φ, ρ, we say
φ ▷ ρ (or φ precedes ρ) if φ must be eliminated before ρ, i.e., before
we arrive at a stable table where ρ is exposed we need to eliminate
φ. A set Z of rotations is closed if whenever ρ ∈ Z and φ ▷ ρ, then
also φ ∈ Z . A set Z of rotations is complete if it contains all singular
rotation and for each nonsingular rotation φ, it contains either φ
or φ̄. An agent pair is called fixed if it is contained in every stable
matching. An agent b is a stable partner of agent a if there is a stable
matching containing {a,b}, i.e., if {a,b} is a stable pair.

Example 1. Consider the following instance of Stable Roommates

(in fact, this is even an instance of Stable Marriage).

m1 : w1 ≻ w2 ≻ w3 w1 : m2 ≻m3 ≻m1
m2 : w2 ≻ w3 ≻ w1 w2 : m3 ≻m1 ≻m2
m3 : w3 ≻ w1 ≻ w2 w3 : m1 ≻m2 ≻m3
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Phase 1 of Irving’s algorithm does not alter the preferences of this

instance. Thus, the above preference profile is P0. In P0, rotations φ1 =
(m1,w1), (m2,w2), (m3,w3) and φ2 = (w1,m2), (w2,m3), (w3,m1)
are exposed. After eliminating φ1, rotations φ2 and φ3 =

(m1,w2), (m2,w3), (m3,w1) are exposed. After eliminating φ2, ro-
tations φ1 and φ4 = (w1,m3), (w2,m1), (w3,m2) are exposed.

φ1,φ2,φ3,φ4 are the only rotations. Note that φ̄1 = φ4 and φ̄2 =
φ3, implying that all four rotations are nonsingular and that no

singular rotation exists. The rotation poset contains only the fol-

lowing two relations: φ1 precedes φ3 and φ2 precedes φ4. Conse-
quently, there are three closed and complete subsets of the rota-

tion poset: {φ1,φ2} (whose elimination results in the stable match-

ing {{m1,w2}, {m2,w3}, {m3,w1}}), {φ1,φ3} (whose elimination re-

sults in {{m1,w3}, {m2,w1}, {m3,w2}}), and {φ2,φ4} (whose elimi-

nation results in {{m1,w1}, {m2,w2}, {m3,w3}}).

We continue by observing the following basic fact about rota-
tions:
Lemma 1 ([21, p. 169 and Lemma 4.2.7]). If rotation φ =

(ai0 ,aj0 ), . . . , (air−1 ,ajr−1 ) is exposed in some stable tableT , then aik
is the last agent in the preferences of ajk in T for each k ∈ [0, r − 1].
Eliminating φ in particular includes deleting the pair {aik ,ajk } for
each k ∈ [0, r − 1].

For our algorithm, we will exploit that it is possible to work on
sets of rotations instead of stable matchings, as there is a bijection
between closed complete subsets of rotations and stable matchings.
In particular, given a closed and complete subset of rotations Z ,
there is an ordering of the rotations from Z such that starting with
P0 we can eliminate the exposed rotations one by one, resulting
in a preference profile where the preferences of each agent a only
contain the partner of a in the matching corresponding to Z (see
also Example 1):
Lemma 2 ([21, Theorem 4.3.2]). There is a bijection between closed

and complete subsets of rotations and stable matchings. The bijection

maps each closed and complete subset Z of rotations to the matching

arising through the elimination of each rotation of Z .

4.2.2 High-Level Idea and Useful Lemmas. The general idea behind
our algorithm for Adapt SR to Forced and Forbidden Pairs is
to successively alter the closed and complete set of rotations Z1
corresponding to the given matching M1 in order to include all
forced and exclude all forbidden pairs. At the core of our algorithm
lies the observation that rotations come with certain identifiable
guarantees how “good” an agent is matched in a resulting stable
matching: For instance, in case we eliminate an exposed rotation
that makes agent c the last agent in the preferences of a (recall
Lemma 1), we know that a is either matched to c or an agent it
prefers to c in the corresponding stable matching. This allows one
to identify, for some agent pair {a,b} certain (prohibited) rotations
that if included in a set of rotations guarantee that the pair can-
not be part of the corresponding stable matching (those rotations
guarantee that a is matched better than b). Conversely, there is
often also a (necessary) rotation that needs to be included in a set
of rotations corresponding to a stable matching containing the pair
(the rotation that ensures that a is matched better than all agents to
which it prefers b). These necessary and prohibited rotations then
allow us to control whether pairs are (not) included in the output

stable matching. For instance, in order to ensure that all forced
pairs are contained in the matching, we alter Z1 to include all nec-
essary and exclude all prohibited rotations of forced pairs (thereby
changing Z1 as little as possible to ensure that all forced pairs get
included). For forbidden pairs, the situation will be slightly more
complicated, as we can either not include the necessary rotation or
include one of the prohibited rotations.

In order to identify necessary and prohibited rotations, we start
by stating a useful characterization under which circumstances and
agent b can become the last agent in the preferences of a in some
stable table due to Gusfield [20]. For this, for an agent pair {a,b}, let
ρa,b be the dual rotation of the rotation containing (a,b) (if there
is a stable table exposing a nonsingular rotation containing (a,b)).
Considering Example 1, we have e.g. ρm1,w2 = φ2.

Lemma 3 ([20, Corollary 5.1]). Let {a,b} be a stable pair such that

there is a stable pair {a,b ′} with a preferring b to b ′. Then, there is a

rotation including (a,b). Moreover, ρa,b is the unique rotation whose

elimination makes b the last choice of a.

Lemma 3 directly implies that in case a closed and complete
subset Z contains ρa,b , agent a cannot be matched worse than b in
the matching corresponding to Z :

Lemma 4. Let {a,b} be a stable pair such that there is a stable

pair {a,b ′} with a preferring b to b ′ and letM be the stable matching

corresponding to a closed and complete subset Z . If ρa,b ∈ Z , then
{a,b} ∈ M or a prefersM(a) to b.

Proof. If we eliminate ρa,b , then by Lemma 3, agent b will
become last in the preferences of a. Thus, a needs to be matched
to b or better in the resulting matching. □

Combining Lemmas 2 and 3 gives a characterization of when a
pair {a,b} is contained in a stable matching:8

Lemma 5. Let {a,b} be a stable pair such that there is a stable

pair {a,b ′} with a preferring b to b ′ and letM be the stable matching

corresponding to a closed and complete subset Z . Then {a,b} ∈ M if

and only if ρa,b ∈ Z and for any stable partner b∗ which a prefers

to b, we have ρa,b
∗

< Z .

Proof. We start by proving the forward direction. Let M be a
stable matching with {a,b} ∈ M corresponding to the closed and
complete subset Z of rotations. Successively eliminating rotations
from Z to arrive at matchingM , at some point b needs to become
the last choice of a. By Lemma 3 for this we need to eliminate
rotation ρa,b , implying that ρa,b ∈ Z . Moreover, note that in case
we eliminate a rotation ρa,b∗ where b∗ is a stable partner of a which
a prefers to b, then by Lemma 3 agent b∗ becomes the last agent
in the preferences of a. As a prefers b∗ to b, this implies that b got
deleted from the preferences of a, a contradiction.

For the backwards direction, assume that ρa,b ∈ Z and ρa,b∗

< Z

for every stable partner b∗ of a which a prefers to b∗. As ρa,b ∈ Z ,
Lemma 4 implies that a is matched at least as good as b in M .
Assume for the sake of contradiction that a is matched to an agent
b∗ it prefers to b inM . However, for b∗ to become the only agent in
8Lemma 5 has been already implicitly used in the literature, e.g., [16, Section 5], but
we are not aware of an explicit formulation or proof of it.
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the preferences of a it in particular needs to become the last agent.
By Lemma 3 this requires ρa,b∗

∈ Z , a contradiction. □

Going back to our initially described intuition, for stable
pairs {a,b} covered by Lemma 5, ρa,b can be interpreted as the
necessary rotation and the rotations ρa,b∗ for all stable partners b∗
which a prefers to b can be interpreted as the prohibited rotations.
To give an example for this, consider again Example 1, and let us
focus on the stable pair {m1,w2}. Agentm1 has a stable partnerw1
it prefers tow2 and a stable partnerw3 to which it prefersw2. Thus,
by Lemma 5, for {m1,w2} to be included in a stable matching, the
corresponding set of rotations needs to include ρm1,w2 = φ2 and
cannot include ρm1,w1 = φ4 (in fact the single stable matching
containing {m1,w2} corresponds to the rotation set {φ1,φ2}).

Finally, we conclude by observing that for every stable pair {a,b}
and each stable matchingM not including {a,b} exactly one of a
and b prefers the other to its partner inM :

Lemma 6 ([21, Lemma 4.3.9]). LetM be a stable matching and e =
{a,b} < M be a stable pair. Then either M(a) ≻a b and a ≻b M(b)
or b ≻a M(a) andM(b) ≻b a.

4.2.3 The Algorithm. Using the machinery from Section 4.2.2, we
are now ready to present our algorithm.

Theorem 2. Adapt SR to Forced and Forbidden Pairs can be

solved in O(2 |P∩M1 | · n ·m) time.

Proof. In the algorithm, we will guess9 for each forbidden
pair e = {a,b} ∈ P ∩ M1 whether a or b prefers its partner in
the output matching to its partner inM1. We say that a matchingM
respects our guesses if for each forbidden pair e = {a,b} ∈ P ∩M1,
a prefers its partner in M to b if and only if we guessed that this
is the case. We assume that there is at least one stable matching
containing all forced and none of the forbidden pairs that respects
our guesses, as we can reject the current guess otherwise (and this
can be checked in O(m) time by reducing it to an instance of Stable
Roommates with Forced and Forbidden Pairs [16]). We further
assume without loss of generality that P only contains stable pairs
(otherwise, we can delete the pair from P , as each stable matching
will trivially not contain this pair).

In the following, when we say that we integrate a (nonsingular)
rotation φ in a closed and complete set Z of rotations, then we add φ
and all rotations preceding φ to Z and delete φ̄ and all rotations
preceded by φ̄ from Z . Before we present the algorithm, we now
argue that after integrating a nonsingular rotation φ to a closed and
complete set Z , the resulting set Z ′ is still closed and complete: Z ′

is closed, as Z is closed and in case we add a rotation we also add
all its predecessors and in case we delete a rotation we also delete
all its successors. Moreover, Z ′ is complete: When integrating φ,
we first add φ and delete φ̄. For all other rotations that we add,
i.e., all rotations preceding φ, we delete their dual and for all “dual”
rotations we delete, i.e., all rotations succeeding φ̄, we add the
“primal”, as φ ▷ ρ if and only if ρ̄ ▷ φ̄ [21, Lemma 4.3.7].

In the algorithm, we start with a closed and complete subset
of rotations Z and then only modify Z by integrating rotations.
Thus, Z remains to be closed and complete over the course of the
algorithm. We denote as MZ the stable matching corresponding
9“Guessing” can be interpreted as iterating over all possibilities.

to Z (the correspondence between matchings and sets of rotations
is described in Lemma 2).

The Algorithm. Our algorithm works as follows:
(1) Compute the rotation digraph which contains a vertex for

each rotation and an arc from rotation φ to rotation ρ if φ
precedes ρ. Let Z1 be the closed complete subset of rotations
corresponding toM1, which exists and is unique by Lemma 2.
Set Z := Z1.

(2) For each forced pair {a,b} ∈ Q that is not a fixed pair, assume
without loss of generality that there is a stable pair {a,b ′}
with a preferring b to b ′ (for one of the two agents such a
pair needs to exist by Lemma 6 and as {a,b} is stable but not
fixed). We integrate rotation ρa,b to Z . Further, for each sta-
ble pair {a,b∗} with a preferring b∗ to b, we integrate ρ̄a,b∗

to Z .
(3) For each forbidden pair e = {a,b} ∈ P ∩ M1, we guess

whether a or b prefers its partner in the desired matching to
its partner inM1 (note that by Lemma 6, exactly one of a and
b has to do this). We assume without loss of generality that
we guessed that a prefers its partner in the desired matching
to b. Let b∗ be the least-preferred (by a) stable partner of a
which a prefers to b (such a partner needs to exist by our
guess). Integrate ρa,b∗ to Z .

(4) As long as the matchingMZ contains a pair e = {a,b} ∈ P \

M1, assumewithout loss of generality that a prefersMZ (a) =
b to M1(a) (for one of the two agents this needs to hold
by Lemma 6, as {a,b} is a stable pair). Let b∗ be the least-
preferred (by a) stable partner of a which a prefers to b. If
b∗ exists, we integrate ρa,b∗ to Z ; otherwise we do nothing.

(5) Return the matchingM := MZ .

Proof of Correctness. We start by showing that all changes made
to Z over the course of the algorithm are indeed necessary.

Claim 1. Let M∗
be a stable matching containing all forced pairs

and no forbidden pairs which respects our guesses. Further, let Z ∗
be

the corresponding closed and complete subset of rotations. Then Z ∗

contains all rotations added in Steps 2 to 4. Moreover, the agent b∗

defined in Step 4 always exists.

Proof of Claim. We start by proving the first part of the claim.
Note that it is sufficient to prove the statement for all integrated
rotations, as all other rotations ρ that we added to Z precede an
integrated rotation.

Each rotation integrated in Step 2 is contained in Z ∗ by Lemma 5
and as Z ∗ needs to be complete.

Next, we consider the rotations integrated in Step 3. Assumewith-
out loss of generality that we guessed that a prefers its partner in
the desired matching to b. Then a must be matched at least as good
as b∗ in the desired matching. Assume towards a contradiction that
ρa,b

∗

< Z ∗, implying ρ̄a,b
∗

∈ Z ∗. Rotation ρ̄a,b
∗ contains (a,b∗)

(by definition of ρ̄a,b∗ and as the dual of ρ̄ is again ρ). Recall that in
case ρ̄a,b∗ is exposed, then a is the last choice of b∗ (Lemma 1) and
eliminating the rotation implies deleting the pair {a,b∗} (Lemma 1).
Thus, after the elimination of ρ̄a,b∗ , agent b∗ prefers its last choice
to a. This implies that b∗ prefers M∗(b∗) to a. By Lemma 6 and
as {a,b∗} is a stable pair not contained in M∗, it follows that a
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prefers b∗ to M∗(a). This is a contradiction to a preferring M∗(a)

to b and the definition of b∗. Consequently, ρa,b∗

∈ Z ∗.
For Step 4, we show by induction that the claim holds after the i-

th execution of this step. The statement clearly holds before the first
execution of the step. Let Z i be the set Z before the i-th execution.
Let {a,b} be the pair examined in this execution, with a preferringb
to M1(a). Lemma 5 implies that ρa,b ∈ Z i , as a is matched to b
in MZ i and M1(a) is a stable partner of a to which a prefers b.
Moreover, we need to have that ρa,b < Z1: If ρa,b ∈ Z1, then by
Lemma 4, a is matched at least as good as b inM1, contradicting our
assumption that a prefers b toM1(a). By our induction hypothesis
it follows that ρa,b ∈ Z ∗. Applying again Lemma 4 it follows that a
is matched at least as good as b inM∗. As {a,b} is a forbidden pair,
we even get that a prefersM∗(a) to b. The remainder of the proof
is now analogous to Step 3.

Concerning the second part of the claim, observe that we have
established above that in each iteration of Step 4, a prefersM∗(a)
to b. From this it follows that a has a stable partner it prefers to b
and thus in particular that b∗ exists in each execution of Step 4. ■

Recall that we have assumed that there is a stable matchingM∗

containing all forced and no forbidden pairs that respects our
guesses. Thus, as all rotations integrated to Z must be contained
in Z ∗ by Claim 1, there is no rotation ρ such that ρ as well as ρ̄ get
added to Z during the algorithm (as in this case, Z ∗ would not be a
complete subset of rotations). Step 2 now ensures by Lemma 5 that
M contains all forced pairs. Steps 3 and 4 ensure thatM contains
no forbidden pair by Lemma 4 (note that the case that b∗ does not
exist in Step 4 never occurs as proven in Claim 1).

Next, we show the optimality ofM . Let Z ∗ be the subset of the
rotation poset corresponding to M∗. By Claim 1, we get Z1△Z ⊆

Z1△Z ∗ (Claim 1 directly implies that Z \ Z1 ⊆ Z ∗ \ Z1 but also
gives us Z1 \ Z ⊆ Z1 \ Z ∗ as deleting a rotation corresponds to
adding its dual). We now show that we can conclude from this
that there is no pair e ∈ (M1 ∩M∗) \ (M1 ∩M): Assume towards a
contradiction that there is some e = {a,b} ∈ (M1 ∩M∗) \ (M1 ∩M).
Note that as {a,b} is not contained in the stable matching M , it
is not a fixed pair. Assume without loss of generality that there is
a stable pair {a,b ′} with a preferring b to b ′ (for one of the two
agents this needs to exist by Lemma 6, as {a,b} is a stable pair
not contained in M). Thus, by Lemma 5, Z1 ∩ Z ∗ contain ρa,b as
well as ρ̄a,b∗ for any stable partner b∗ which a prefers to b. Since
Z1 ∩ Z ∗ ⊆ Z1 ∩ Z these rotations are also contained in Z and by
Lemma 5 it follows that {a,b} is also contained inM , a contradiction
to {a,b} ∈ (M1 ∩M∗) \ (M1 ∩M).

Running Time. Computing the rotation digraph can be done in
O(n ·m) time [14]. In Step 3, there are 2 |P∩M1 | guesses. For each
guess, any pair can be added at most once toMZ and any rotation
can be added at most once to Z . Thus, the remaining part of Steps 2
to 4 can be done in O(m) total time. Consequently, the algorithm
runs in O

(
(2 |P∩M1 | + n) ·m

)
time. □

4.3 (FPT-)Algorithm for Adapt Strongly SR
with Ties to Forced and Forbidden Pairs

In case of strong stability, we can employ a similar algorithm as
for strict preferences, as this problem also admits a (slightly more

complicated) rotation poset. Although the definition of the rotations
and their duals differ from the “classical” case without ties, they
still fulfill crucial properties exploited in Theorem 2:

(1) Analogous to Lemma 2, each stable matching corresponds
to a closed and complete subset of the rotation poset.

(2) Somewhat analogous to Lemma 5, for each stable pair e there
are two rotations ρ and φ such that e may be contained in
a stable matching corresponding to a complete and closed
set Z of rotations if and only if ρ ∈ Z and φ < Z .

There are now multiple possible stable matchings corresponding
to the same set of rotations (as rotations here only encode the
rank of the partner of an agent in the matching). In order to solve
Adapt Strongly SR with Ties to Forced and Forbidden Pairs,
it suffices to compute the closed and complete set Z of rotations cor-
responding to an optimal solution (as subsequently we can find the
stable matching corresponding toZ closest toM1 using a minimum-
cost matching algorithm). Turning to the constraints that forced
and forbidden pairs impose on Z , as for strict preferences, each
forced pair gives rise to the constraint that one rotation is contained
and one rotation is not contained in Z (due to part (2) of the above
enumeration). For forbidden pairs the situation is different and
more complicated: As there may be multiple stable matchings for
the same set of rotations with only some of them not containing
a forbidden pair in question, a forbidden pair does not necessarily
lead to a constraint on Z (even if this forbidden pair is also con-
tained inM1). In order to be able to solve the problem, we show as
a crucial step that we can determine whether (a set of) forbidden
pairs lead to constraints on Z . We can show the following:

Theorem 3 (⋆). Adapt Strongly SR with Ties to Forced and

Forbidden Edges can be solved in O
(
(2 |P∩M1 |+m) ·

√
nm logn

)
time.

5 CONCLUSION
We have conducted a complete and fine-grained analysis of min-
imally changing stable matchings to include forced and exclude
forbidden pairs. As our main result, we have proven that Adapt SR
to Forced and Forbidden Pairs is fixed-parameter tractable with
respect to the number of forbidden pairs in the given matching (and
thus polynomial-time solvable if there are only forced pairs). At
the core of this algorithm lies a clever exploitation of the rotation
poset that might inspire similar approaches for related problems.
For example, one might want to adapt a matching to (dis)satisfy
certain groups of agents or to improve the situation of the agent
which is worst of. All these requirements can be encoded if we are
given for each agent an upper and lower bound for how the agent is
matched in the new matchingM2 (i.e., for each agent a ∈ A, we are
given two agents ba and va and we require ba ≻a M2(a) ≻a va ).
Slightly adapting the initialization procedure of our algorithm (by
starting with incorporating rotations realizing these constraints)
this problem becomes polynomial-time solvable.

To the best of our knowledge, the idea of minimally changing
a given matching to incorporate external requirements has not
been studied in previous works. Thus, extending our studies of
forced and forbidden pairs for stable matchings to other incremental
requirements such as group fairness or diversity constraints or
other matching problems such as popular matching is an interesting
direction for future work.

Session 3C: Matching
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

992



Acknowledgments
NB was supported by the DFG project ComSoc-MPMS (NI 369/22).
KH was supported by the DFG project FPTinP (NI 369/16).

REFERENCES
[1] Sayan Bhattacharya, Martin Hoefer, Chien-Chung Huang, Telikepalli Kavitha,

and Lisa Wagner. 2015. Maintaining Near-Popular Matchings. In Proceedings of

the 42nd International Colloquium on Automata, Languages, and Programming

(ICALP ’15). Springer, 504–515.
[2] Niclas Boehmer and Klaus Heeger. 2022. Adapting Stable Matchings to Forced

and Forbidden Pairs. CoRR abs/2204.10040 (2022). arXiv:2204.10040 https:
//arxiv.org/abs/2204.10040

[3] Niclas Boehmer, Klaus Heeger, and Rolf Niedermeier. 2022. Deepening the
(Parameterized) Complexity Analysis of Incremental Stable Matching Problems.
In Proceedings of the 47th International Symposium onMathematical Foundations of

Computer Science (MFCS ’22). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
21:1–21:15.

[4] Niclas Boehmer, Klaus Heeger, and Rolf Niedermeier. 2022. Theory of and
Experiments on Minimally Invasive Stability Preservation in Changing Two-
Sided Matching Markets. In Proceedings of the Thirty-Sixth AAAI Conference on

Artificial Intelligence (AAAI ’22). AAAI Press, 4851–4858.
[5] Niclas Boehmer and Rolf Niedermeier. 2021. Broadening the Research Agenda for

Computational Social Choice: Multiple Preference Profiles and Multiple Solutions.
In Proceedings of the 20th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS ’21). ACM, 1–5.
[6] Robert Bredereck, Jiehua Chen, Dušan Knop, Junjie Luo, and Rolf Niedermeier.

2020. Adapting Stable Matchings to Evolving Preferences. In Proceedings of the

Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI ’20). AAAI Press,
1830–1837.

[7] Katarína Cechlárová, Laurent Gourvès, and Julien Lesca. 2019. On the Problem
of Assigning PhD Grants. In Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence (IJCAI ’19). ijcai.org, 130–136.
[8] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. 2004.

Incremental Clustering and Dynamic Information Retrieval. SIAM J. Comput. 33,
6 (2004), 1417–1440.

[9] Ágnes Cseh and Klaus Heeger. 2020. The stable marriage problem with ties and
restricted edges. Discret. Optim. 36 (2020), 100571.

[10] Ágnes Cseh and David F. Manlove. 2016. Stable Marriage and Roommates
problems with restricted edges: Complexity and approximability. Discret. Optim.

20 (2016), 62–89.
[11] Vânia M. F. Dias, Guilherme Dias da Fonseca, Celina M. H. de Figueiredo, and

Jayme Luiz Szwarcfiter. 2003. The stable marriage problem with restricted pairs.
Theor. Comput. Sci. 306, 1-3 (2003), 391–405.

[12] David Eisenstat, Claire Mathieu, and Nicolas Schabanel. 2014. Facility Location in
Evolving Metrics. In Proceedings of the 41st International Colloquium on Automata,

Languages, and Programming (ICALP ’14). Springer, 459–470.
[13] Tomás Feder. 1992. A New Fixed Point Approach for Stable Networks and Stable

Marriages. J. Comput. Syst. Sci. 45, 2 (1992), 233–284.
[14] Tomás Feder. 1994. Network Flow and 2-Satisfiability. Algorithmica 11, 3 (1994),

291–319.
[15] Itai Feigenbaum, Yash Kanoria, Irene Lo, and Jay Sethuraman. 2020. Dynamic

Matching in School Choice: Efficient Seat Reallocation After Late Cancellations.

Manag. Sci. 66, 11 (2020), 5341–5361.
[16] Tamás Fleiner, Robert W. Irving, and David F. Manlove. 2007. Efficient algorithms

for generalized Stable Marriage and Roommates problems. Theor. Comput. Sci.

381, 1-3 (2007), 162–176.
[17] Karthik Gajulapalli, James A. Liu, Tung Mai, and Vijay V. Vazirani. 2020. Stability-

Preserving, Time-Efficient Mechanisms for School Choice in Two Rounds. In
Proceedings of the 40th IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS ’20). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 21:1–21:15.

[18] D. Gale and L. S. Shapley. 2013. College Admissions and the Stability of Marriage.
Am. Math. Mon. 120, 5 (2013), 386–391.

[19] Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi.
2020. On the (Parameterized) Complexity of Almost Stable Marriage. In Proceed-

ings of the 40th IARCS Annual Conference on Foundations of Software Technol-

ogy and Theoretical Computer Science (FSTTCS ’20). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 24:1–24:17.

[20] Dan Gusfield. 1988. The Structure of the Stable Roommate Problem: Efficient
Representation and Enumeration of All Stable Assignments. SIAM J. Comput. 17,
4 (1988), 742–769.

[21] Dan Gusfield and Robert W. Irving. 1989. The Stable Marriage Problem – Structure

and Algorithms. MIT Press.
[22] Guillaume Haeringer and Vincent Iehlé. 2021. Gradual college admission. J. Econ.

Theory 198 (2021), 105378.
[23] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. 2022. Recent Ad-

vances in Fully Dynamic Graph Algorithms (Invited Talk). In Proceedings of the

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND ’22).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:47.

[24] Robert W. Irving. 1985. An Efficient Algorithm for the "Stable Roommates"
Problem. J. Algorithms 6, 4 (1985), 577–595.

[25] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceed-

ings of a symposium on the Complexity of Computer Computations, held March

20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New

York, USA (The IBM Research Symposia Series). Plenum Press, New York, 85–103.
[26] Donald E. Knuth. 1976. Mariages stables et leurs relations avec d’autres problèmes

combinatoires. Les Presses de l’Université de Montréal, Montreal, Que. 106 pages.
Introduction à l’analyse mathématique des algorithmes, Collection de la Chaire
Aisenstadt.

[27] Adam Kunysz. 2018. An Algorithm for the Maximum Weight Strongly Stable
Matching Problem. In Proceedings of the 29th International Symposium on Algo-

rithms and Computation (ISAAC ’18). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 42:1–42:13.

[28] David F. Manlove. 1999. Stable marriage with ties and unacceptable partners.
Technical Report. University of Glasgow, Department of Computing Science.

[29] David F. Manlove. 2013. Algorithmics of Matching Under Preferences. Series on
Theoretical Computer Science, Vol. 2. WorldScientific.

[30] David F. Manlove, Robert W. Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasu-
fumi Morita. 2002. Hard variants of stable marriage. Theor. Comput. Sci. 276, 1-2
(2002), 261–279.

[31] Dániel Marx and Ildikó Schlotter. 2010. Parameterized Complexity and Local
Search Approaches for the Stable Marriage Problem with Ties. Algorithmica 58,
1 (2010), 170–187.

[32] Alvin Roth. 1986. On the allocation of residents to rural hospitals: a general
property of two-sided matching markets. Econometrica (1986), 425–427.

Session 3C: Matching
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

993

https://arxiv.org/abs/2204.10040
https://arxiv.org/abs/2204.10040
https://arxiv.org/abs/2204.10040

	Abstract
	1 Introduction
	2 Preliminaries
	3 Stable Marriage
	3.1 (Strongly) Stable Marriage
	3.2 Weakly Stable Marriage With Ties

	4 Stable Roommates
	4.1 NP-hardness of Adapt SR to Forbidden Pairs
	4.2 (FPT-)Algorithm for Adapt SR to Forced and Forbidden Pairs
	4.3 (FPT-)Algorithm for Adapt Strongly SR with Ties to Forced and Forbidden Pairs

	5 Conclusion
	References



