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1
Kinetic Theory – I

PHYS1013 Energy & Matter looks at the thermal properties of matter from micro-
scopic and macroscopic viewpoints. The microscopic view was second to be de-
veloped and was only fully accepted by about 1900, long after the development of 
macroscopic “classical” thermodynamics. There is no obvious order to take when 
learning these two topics, because although related, they are largely independent. 
Kinetic theory predicts a few properties of gases from fundamental principles, but 
is at best approximate and fails completely to describe liquids and solids. Classical 
thermodynamics on the other hand is rigorous and exact, but works with bulk proper-
ties such as pressure, work and heat, building a theory from elementary observations, 
without explaining the properties themselves. A third, very powerful approach, sta-
tistical thermodynamics, builds up many of the ideas of thermodynamics from a 
microscopic point of view, but I will touch on this only to illuminate the property 
of entropy which emerges rather mysteriously in classical thermodynamic.

In this course I will start with kinetic theory as it is closest to the physics that you
will have learnt before, building from Newtonian physics with a few assumptions.

1.1 The Assumptions of Kinetic theory

Kinetic theory is a microscopic model of gases which predicts macroscopic quanti-
ties such as pressure and heat capacity. It is based on six assumptions:

1. A gas is composed of a large number of molecules.

2. The molecules are small compared to their separation.

3. The molecules are uniformly distributed and move randomly.

4. The molecules obey Newton’s laws of motion.

5. The molecules feel no force except during collisions with other molecules or the
walls of the container — “hard spheres”.

6. Molecules collide elastically, and the walls are smooth.

Assumptions 2 and 5 fail at high densities when the molecules are close together.
Thus kinetic theory cannot be expected to describe either liquids or solids. Assump-
tion 4 is wrong: quantum mechanics rules, but the quantum predictions tend to those

1



2 1 Kinetic Theory – I

x
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y

Figure 1.1 The collision of a molecule with a wall, used to derive the relation between
pressure and molecular speeds.

of classical physics if the de Broglie wavelength of the molecules, λ = h/mv, is
much less than their mean separation. This is true if the temperature is high so that
the speed v is large on average, and at low density when the mean separation is large.
These are just the conditions needed for assumptions 2 and 5 to hold as well. Quan-
tum effects can be very important and remarkable (e.g. the amazing properties of
liquid helium), but they are for the most part beyond the remit of this course. The
important point to realise is that

kinetic theory is approximate and applies best to gases at low den-
sity and high temperature.

1.2 Ideal Gases

The concept of an ideal gas is an important one in thermal physics. An ideal gas
obeys the assumptions of kinetic theory perfectly. Real gases approximate ideal
gases in the limit of low density, ρ → 0. Some of the properties of ideal gases also
apply in somewhat surprising situations, such as very dilute solutions of salts, and
thus one can find equations related to ideal gases cropping up in many places. I will
now derive some fundamental relations for ideal gases.

1.2.1 Pressure

Molecules in a gas collide with the walls of their container and transfer momentum
to it. Averaged over time, we have what is felt macroscopically as pressure. Pressure
is a force per unit area, or equivalently the total rate of momentum transfer per unit
time per unit area. Referring to Fig. 1.1, a molecule hitting a wall perpendicular
to the x-axis will reverse its momentum (elastic collision with a smooth wall) and
therefore suffer a change in momentum of −2mvx where vx is the x component of
its velocity and m is its mass. This momentum is imparted to the wall. In time ∆t
all atoms within a distance vx ∆t of the wall can hit it, but only half are travelling
towards the wall (by assumption 3), so the number of collisions per unit area in time
∆t is

1
2nvx ∆t. (1.1)

where n is number of molecules per unit volume. The force exerted is the rate of
momentum transfer, so the pressure, which is the force per unit area is

P = 1
2

nvx ∆t × 2mvx
∆t = nmv2x. (1.2)
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This must be averaged because the molecules have a spread of vx values. Denoting
averages by bars over the top, we have

P = nmv̄2x, (1.3)

The overall speed v, in three dimensions, is given by

v2 = v2x + v
2
y + v

2
z , (1.4)

which carries over to
v̄2 = v̄2x + v̄

2
y + v̄

2
z . (1.5)

The assumption that the molecules move randomly implies that they have no pre-
ferred direction, so v̄2x = v̄2y = v̄2z which leads to v̄2x = v̄2/3. Therefore we have the
very important equation

P = 1
3

nmv̄2 . (1.6)

For example, for air at standard temperature and pressure (STP, 1 atmosphere,
273 K): P = 101 000 N m−2 and the density ρ = 1.2 kg m−3. Now ρ = nm, so

vrms =
√

v̄2 =

√

3P
ρ
≈ 500 m s−1. (1.7)

This is why air can fill a vacuum so quickly, for example if you break a tungsten 
filament light bulb. A light bulb 10 cm in diameter will fill up in about 0.1 m/500 m 
s−1 = 0.2 ms for example.

The SI unit of pressure, N m−2 is also known as the pascal or Pa.

1.2.2 Internal energy

The expression for pressure shows that it is related to the kinetic energy of the
molecules. If all the energy of a gas is kinetic energy then we can write

U = 1
2(nV)mv̄2. (1.8)

where U is the total energy of the molecules. Therefore from P = (1/3)nmv̄2 we
have

U = 3
2

PV. (1.9)

The energy density U/V = 3P/2 is therefore directly related to the pressure, a result
that you will encounter often in physics. Air for example has energy density U/V ≈
150 kJ m−3. U is known as the internal energy; we will encounter it many times in
this course.

Now we appeal to the empirical ideal gas laws, shown in Table 1.1 on the fol-
lowing page. In particular Boyle’s Law tells us that the quantity PV is constant for
a fixed temperature, and is therefore a function of temperature alone. Therefore we
have that

the internal energy U of an ideal gas depends only upon its temper-
ature, TI, not on either P or V .

In other words UI = U(TI), where the subscript I stands for ideal. Note that this is
already one of the gas laws, Joule’s law, although the experiments from which he
derived this law were not very sensitive.
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Avogadro’s Law   Equal volumes of all gases, at the same temperature and 
                              pressure, have the same number of molecules
Boyle’s Law          The volume of an ideal gas at fixed temperature is inversely

proportional to its pressure.
Charles’ Law The volume of an ideal gas kept at fixed pressure is propor-

tional to its temperature.
Joule’s Law The internal energy of an ideal gas depends only upon its

temperature.

Table 1.1 The ideal gas laws

1.2.3 The Equation of State of an Ideal Gas

Boyle’s, Charles’ and Avogadro’s Laws can be combined into a single simple equa-
tion

PV = NkTI , (1.10)
where

N is the number of molecules in volume V ,
k = 1.38 × 10−23 J K−1 is Boltzmann’s constant,
TI is the temperature in Kelvin.

In fact this equation defines the ideal gas scale of temperature, which I will for now
denote TI. Later on we will see that this particular temperature scale has a special
and fundamental significance. The ideal gas scale is an absolute scale: it has a zero-
point when all motion ceases. As defined by Kelvin, the freezing point of water,
which is 0◦C on the Celsius scale, is 273.15 K. This seemingly arbitrary number
was chosen to make the difference between the freezing and boiling points of water
equal to 100 K. We will see more of this in Chapter 7.

Equation 1.10 is an example of an equation of state, which is a relation between
pressure, volume and temperature. Its existence means that one has only two “de-
grees of freedom” in fixing the state of a gas. For instance one can fix the temperature
and pressure, but not also the volume, or one can set the temperature and volume,
but not also the pressure because given the first two, the third is fixed by the equation
of state.

There are several other forms of the ideal gas equation of state that you should be
familiar with. Defining the number density (number of molecules per unit volume)
by n = N/V we have

P = nkTI . (1.11)
Alternatively, it is common to work in terms of “moles”. One mole is defined as
Avogadro’s number, NA = 6.02 × 1023, of molecules. More formally, a mole is the
number of atoms in 12 g of 12C. This means it is very close (but not exactly equal)
to the number of atoms in 1 g of 1H, or the number of molecules in (1 + 1 + 16) g =
18 g of H20, etc. In other words the weight in grams of a mole of some substance
equals the total relative atomic mass of its constituents. Molar quantities are used
extensively in chemistry. For nm moles, N = nmNA and so

PV = nmNAkTI, (1.12)

and, defining the gas constant, R = NAk = 8.314 J K−1 mole−1, we have a very
commonly encountered version of the equation of state:

PV = nmRTI . (1.13)
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Finally, defining the molar volume Vm = V/nm (i.e. the volume occupied by one
mole), we get

PVm = RTI. (1.14)

Example 1.1 What is the volume of 1 mole of ideal gas at STP?

Answer 1.1 The nice point is that I do not have specify the type of gas: all ideal
gases have the same molar volume. The answer is

Vm =
RTI
P =

8.314 × 273
101, 000 = 0.0225 m3 = 22.5 litre.

Example 1.2 Intel manufactures Pentium chips in chambers where the pressure is
equivalent to 1.0 × 10−10 mm of mercury. What fraction is this of atmospheric
pressure? How many molecules are there in a chamber 40 cm in diameter and
30 cm tall at 20◦C?

Answer 1.2 At atmospheric pressure, Patm, air can support a column of mercury
of height 760 mm. Therefore the pressure, P, in the chamber is given by

P
Patm

=
10−10 mm
760 mm

= 1.32 × 10−13.

Alternatively, if the height of mercury supported is h = 10−10 mm and the density
of mercury is ρ = 13 600 kg m−3, the pressure is P = ρgh, and

P
Patm

=
ρgh
Patm

=
13 600 kg m−3 × 9.81 m s−2 × 10−13 m

1.01 × 105 Pa
= 1.32 × 10−13.

To find the number of molecules in the chamber we use

N =
PV
kTI

=
13 600 kg m−3 × 9.81 m s−2 × 10−13 m × π × (40/2)2 × 30 × 10−6 m3

1.38 × 10−23 J K−1 × 293 K
= 1.24 × 1011.

This is a large number of molecules, but much much less than NA.

1.2.4 Temperature and Average Kinetic Energy

Combining the ideal gas law in equation 1.10 on the previous page with the kinetic
theory expression for the pressure in an ideal gas, equation 1.6 on page 3 we find:

1
2mv̄2 = 3

2kTI. (1.15)

This tells us that the temperature is a measure of the average molecular kinetic en-
ergy for the ideal gas (the factor 3/2 will be explained in section 2.3). Boltzmann’s
constant k is the conversion factor between units of temperature and energy.
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1.3 Summary

The first key point to take from this initial look at kinetic theory (we will return
to it later) is that it is an approximate theory which can be expected to apply to
low density gases. The other important parts are the relation between pressure and
molecular speeds (Eq. 1.6) and the well-known equation of state of the ideal gas, in
its various forms (Eqs. 1.10, 1.11 and 1.13).



2
The Boltzmann Factor &

Equipartition

In the last chapter I discussed the rms molecular speed and alluded to the fact that not
all speeds are the same. What controls how often we find a particular speed? The
answer, for a system in thermal equilibrium, is the Boltzmann factor. This factor
can be introduced by considering the change of pressure with height in the Earth’s
atmosphere when the atmosphere is in hydrostatic equilibrium.

2.1 Hydrostatic Equilibrium

Consider the equilibrium of a slab of gas of vertical thickness dh in a gravitational
field g. The pressure at the top of the slab must be less than at the bottom in order to
support the weight of the slab. The weight of a slab of area A is

ρAg dh, (2.1)

where ρ is the density, while the upwards force is

PA − (P + dP)A = −A dP. (2.2)

Therefore, balancing forces we have dP = −ρg dh, or

dP
dh = −ρg . (2.3)

This is the equation of hydrostatic equilibrium, which applies to any fluid static un-
der gravity, e.g. the Earth’s and other planetary atmospheres and stars. For example,

h h + dhg

P

P + dP

Figure 2.1 Equilibrium of a thin slab of gas in a gravitational field.

7



8 2 The Boltzmann Factor & Equipartition

if the density ρ is constant, then integrating we get P = −ρgh+constant. If we switch
the sign of h so it is measured downwards, and set P = 0 at h = 0, this is the usual
“P = ρgh” for pressure under the sea.

For an ideal gas we have P = nkTI and ρ = nm, and so

dn
dh = −

mg
kTI

n. (2.4)

If the atmosphere is isothermal (TI is constant with h), we can integrate this easily
∫ n

n0

dn′
n′ = −

mg
kTI

∫ h

0
dh′, (2.5)

introducing primes to distinguish the integration variable from the limits. This gives

ln n
n0
= −mgh

kTI
, (2.6)

or
n
n0
=

P
P0
= e−mgh/kTI . (2.7)

Thus in an isothermal atmosphere under hydrostatic equilibrium, the pressure and 
number density drop exponentially with height. For example, for air on Earth we 
have m = 30u and g = 9.81 m s−2, and assuming that TI = 300 K, at a height of h = 5 
km, one finds P/P0 = 0.55. 

2.2 Boltzmann Factor

The term mgh = E, the potential energy of a molecule, and so we can write

n ∝ e−E/kT . (2.8)

We derived an expression  for the variation  of number density with height, but we 
can now take an alternative view: for each particle,  the probability  of finding it at 
height h, where the potential energy is E = mgh, is proportional  to e−E/kT . Although 
this is a very general result of huge importance: the chance of finding an atom, or 
any system, with energy  E when in thermal equilibrium  at temperature  T is

P(E) ∝ e−E/kT . (2.9)

This is known as the Boltzmann factor. Because it is general, and not dependent upon 
ideal gases, I have dropped the subscript I on the temperature; the precise meaning 
of this will only become clear later, but for now just think of it as the absolute 
temperature in Kelvin. A complicating factor is that there may be many states of 
the same energy, each of which contributes, and so the Boltzmann factor must be 
multiplied by a weight factor to account for this. The calculation of such factors 
requires quantum physics. You will encounter the Boltzmann factor many times. 
For the ideal gas, the energy E is the kinetic energy, and the factor e−mv2/2kT controls 
the distribution of molecular speeds (with a weight factor also appearing in this 
case).
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2.2.1 Activation Energies

The Boltzmann factor has important consequences for the rates of chemical and
other reactions. Consider a mixture of hydrogen and oxygen. At room temperature
it is stable, and can last for years in this state. However a tiny spark can set off an
explosive reaction resulting in the formation of water and the liberation of a great
deal of heat. Water is therefore a lower energy state, but cannot normally be reached
because a certain (positive) amount of energy is required to start the reaction. This
is the activation energy, EA. For a system like hydrogen and oxygen, it is clear that
EA � kT , or the reaction would start spontaneously. In this case the Boltzmann
factor e−E/kT can make rates very sensitive to temperature. This is best seen in an
example.

Example 2.1 If EA = 100 kT and T = 300 K by how much does the Boltzmann
factor change if T is raised by 20 K?

Answer 2.1 Initial value is e−100. For T = 320 K, EA/kT = 100(300/320) =
93.75, so the new value is e−93.75. The ratio is

e−93.75

e−100 = e100−93.75 = e6.25 = 518. (2.10)

A small increase in temperature causes a dramatic increase in the Boltzmann
factor. This is the origin of the temperature sensitivity of chemical processes and
of fusion processes in stars. Also note that catalysts are substances that can reduce
the activation energies and allow reactions to take place at much lower temperatures;
they are essential in biology.

2.3 The Equipartition of Energy and Heat Capacities

The Boltzmann factor also leads to an important theorem of classical physics called 
the equipartition theorem. This theorem gives a simple rule-of-thumb for 
estimating heat capacities. Unfortunately it is wrong, but for an interesting reason.

2.3.1 The Equipartition Theorem

Consider an atom of a monatomic gas, helium for example. We can write its energy
as

E = 1
2mv2 = 1

2m
(

v2x + v
2
y + v

2
z
)

. (2.11)

There are 3 squared terms or degrees of freedom. We have met degrees of freedom in
another context, that of the number of variables needed to specify the state of a gas.
In general the number of degrees of freedom is the number of parameters required
to define a system. The equipartition theorem states:

for a classical system in thermal equilibrium, the total energy of
the system is shared or partitioned equally among all the various
degrees of freedom.

The temperature of a classical system in thermal equilibrium can be defined using
this average energy per degree of freedom:

1
2kT = (average energy in each degree of freedom). (2.12)
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Figure 2.2 Rotation axes for a diatomic molecule.

Our helium atom has kinetic energy only and equipartition  says that each 
squared term has a mean thermal energy of kT/2, so that

1
2mv̄2 = 3

2kT. (2.13)

For a mole of identical helium atoms (or the atoms of any ideal gas) the total en-
ergy in thermal equilibrium at temperature T becomes 3RT/2. This means that the
internal energy of a monatomic gas is U = 3RT/2 per mole, as we have seen before.

Comparing the equation above, Eq. 2.13, with Eq. 1.15 on page 5, we learn that
our equipartion-based temperature agrees with the ideal gas temperature. Later, we
will define thermodynamic temperature and will discover that this too agrees with
the ideal gas (and hence equipartition) temperatures.

Proving the equipartition theorem requires a sophisticated level of classical me-
chanics. It comes about because of the finite amount of energy a system can have
according to the Boltzmann distribution at temperature T . It should be obvious from
the form of the distribution, exp(−E/kT ), that the mean energy is of order kT . The
factor of 1/2 needs much more work, and I will take it on trust. The theorem can be
applied to more complex systems than monatomic gases, as I now discuss.

2.3.2 Diatomic Gases

Many gases are diatomic, for example H2, O2, N2. They have translational motions
(centre of mass motion), but they can also rotate and vibrate (motion relative to the
centre of mass). Figure 2.2 shows the rotation axes perpendiclar to the axis of the
molecule. In fact there are

3 directions of translation (as before), mv2x/2 etc.
2 axes of rotation (Iω2

x/2 etc)
1 vibration (mv2/2 + kx2/2)

The axis of rotation parallel to the axis of the molecule does not contribute since I
assume the atoms are points. I will come back to this later. Each axis of rotation
contributes one squared term, a kinetic energy term. The vibration however has two
squared terms, 1 kinetic and 1 potential, therefore we have a grand total of 7 degrees
of freedom, and so U = 7RT/2 per mole. Note that the “internal” degrees of freedom
contribute more than the translational energy.

2.3.3 Carbon Dioxide

Now let’s look at a more complex case still, that of carbon dioxide, a linear arrange-
ment of three atoms (figure 2.3 on the next page). In this case there are

3 translations
2 rotations
4 vibrations (2 along the bonds, 2 bending in perpendicular planes)
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Figure 2.3 Schematic illustrations of a carbon dioxide molecule (left) and a crystal lattice
(right).

With two terms per vibration as before, there are a total of 3+2+4×2 = 13 degrees
of freedom, and U = 13RT/2 per mole.

2.3.4 Solids

Imagine a regular lattice of atoms (figure 2.3). We need three coordinates to specify
the position of each atom. Each of these will have an associated kinetic and potential
energy term. Therefore we expect 6 degrees of freedom per atom, giving a total
internal energy of U = 3RT per mole (this is known as Dulong and Petit’s Law). This
is the maximum number of degrees of freedom we need since a position and velocity
are enough to fully specify atoms. Note that in terms of atoms the monatomic and
diatomic gases and carbon dioxide amount to 3RT/2, 7RT/4 and 13RT/6, so none
of them exceed 3RT .

2.3.5 Heat Capacities

We can test these predictions experimentally using heat capacities. The rate of in-
crease in internal energy of a substance with increasing temperature (or the increase
in internal energy per unit rise in temperature) is called its heat capacity (I will be
more precise about this later: see section 4.7 on page 33). Heat capacities have SI
units of J K−1. If we measure the heat capacity per mole, per unit mass or per unit
volume, it is called the specific heat capacity and has units of J K−1 kg−1 or per mole
or whatever. In this instance the molar specific heat capacity is of most interest.

For one mole of a monatomic gas, with U = 3RT/2, a rise of 1 K causes U to
increase by 3R/2 and so the molar specific heat capacity C is given by

C = dU
dT =

3
2R = 12.5 J K−1 mole−1. (2.14)

Similarly for a diatomic gas, C = 7R/2 = 29 J K−1 mole−1. These are values that 
we can test directly against experiment. Experimentally derived values are listed 
in Table 2.1. The results are good in parts. Equipartition seems to work very well 
for the monatomic gases, partly for diatomic gases, fairly poorly for triatomic 
gases, and is good and bad for solids. Clearly it has elements of the truth about 
it, but at the same time it is not correct. The question is why does it fail?
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Monatomic He Ne Ar Xe
C (experiment) 12.5 12.5 12.5 12.5
C (predicted) 12.5 12.5 12.5 12.5
Diatomic H2 N2 O2 I2
C (experiment) 20.5 20.8 21.1 28.6
C (predicted) 29.1 29.1 29.1 29.1
Triatomic CO2 H2O O3 NO2
C (experiment) 28.8 25.3 29.9 29.6
C (predicted) 54.0 58.2 58.2 58.2
Solids Cu Al Zn C (diamond)
C (experiment) 24.5 24.3 25.1 6.1
C (predicted) 24.9 24.9 24.9 24.9

Table 2.1 Experimental and theoretical molar specific heat capacities for different sub-
stances. Units J K−1 mole−1.

kT
Classical Quantum

Figure 2.4 A schematic figure of the difference between excitation in a classical systems
with a continuum of energy levels and a real system which obeys the laws of quantum
physics, with discrete energy levels.

2.3.6 Why Equipartition fails

Fig. 2.4 illustrates why equipartition fails. The reason is that in classical physics,
there is a continuum of energy levels. Between any two energies you care to name,
there are infinitely many possible states. This means that the total energy of a system
can vary continuously and the equipartition theorem assumes this. In the quantum
world this is not the case. Energy levels are commonly discrete. In particular there
is a finite step between the lowest energy level and the first excited state above it.
In a classical system it is always possible for some atoms to be excited above the
lowest energy level, and hence contribute towards the kT/2. In a real system, if kT
is much less than the energy needed to get to the first excited state, ∆E, there can
be no excitation at all, and no contribution to the specific heat. Degrees of freedom
therefore “freeze out”, and the lower the temperature, the more this happens.

For typical molecules, it is the case that

∆Etrans � ∆Erot � ∆Evib. (2.15)

Starting from a low temperature and gradually increasing it, at first the translational
modes come into play, giving C = 3R/2. This happens at very low temperatures
where typically one must include other factors such as intermolecular forces; I will
ignore these for now. As the gas gets hotter, rotations start to contribute. This
happens at 50 K or so. In other words, well below this value, the molecules do
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Translations

Rotations

Vibrations

Figure 2.5 A schematic illustration of variation of specific heat with temperature as more
and more degrees of freedom become excited.
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SiGe

Si 0.5Ge 0.5

Figure 2.6 Molar specific heats of germanium, silicon and an alloy of the two. Adapted
from KL Wang and X Zheng, in E Kasper (ed), Properties of Strained and Relaxed Sili-
con Germanium, EMIS Datareviews, INSPEC, London 1995. The dotted line shows the
equipartion prediction, 3R.

not rotate! Once rotations are fully on, C = 5R/2 = 20.8 J K−1 mole−1. If you
refer to Table 2.1 once more, you will see that this exactly matches the value for
nitrogen at room temperature. As the temperature rises more, over 1000 K say, then
the vibrational modes start to be excited, and we will eventually reach the original
prediction (although once vibrations become fully excited, it also becomes possible
for the molecules to break up). The frequency of vibrations is lower for more massive
atoms, and so we can expect that a heavier molecule might match the equipartition
value better than a light molecule. This can be seen to be the case by comparing
hydrogen with iodine in Table 2.1. Fig. 2.5 shows schematically how the specific
heat of molecular substances varies with temperature.

I can now come back to my earlier statement that for a diatomic molecule we
ignore rotations around the line joining the atoms. Notice that the moment of inertia
around this axis will be much smaller than those for the two perpendicular axes.
But, the kinetic energy of rotation is L2/2I, where L is the angular momentum and
I the moment of inertia. Quantum mechanics tells us that the angular momentum
takes quantised values, and therefore the rotational energy will be much larger for
rotations about the line joining the atoms.

For solids, a nice example is provided by diamond (Table 2.1). This has a very
rigid structure with strong bonds and relatively light atoms. Therefore the vibration
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frequencies are high, and not fully excited at room temperature. Hence its heat ca-
pacity is only 1/4 of the value predicted by equipartition. Figure 2.6 on the previous
page shows the molar specific heats for germanium, silicon and an alloy of the two.
Again the equipartition value of 3R is only approached at temperatures of hundreds
of kelvin.

There are much better theories that predict how specific heats vary with temper-
ature; they are all based upon quantum mechanics. I close with two more reasons
why we need better theories:

• Many metals contain large numbers of conduction electrons which behave es-
sentially freely and so should contribute an extra 3k/2 per electron to the heat
capacity. However, the Dulong-Petit law, which takes into account only the lat-
tice ions, works pretty well for metals at around room temperature.

• Consider a rigid diatomic dumbbell molecule compared to a slightly non-rigid
one. Classical equipartition would say that any non-rigidity will lead to a fixed
contribution to the heat capacity, while the rigid molecule has no such contribu-
tion. This would mean a discontinuous change in the heat capacity in the limit of
making a molecule infinitely stiff: probably not the behaviour we would expect.

2.4 Summary

The Boltzmann factor is of key importance in thermal physics and has an impact in
many areas. It also leads to the classical theorem of equipartition, whose failure was
one of the first signs that something was seriously amiss with classical physics, at
least in hindsight.
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Kinetic Theory – II

I now continue  the development  of kinetic theory  by looking  at some features  of the 
motion of molecules  in a gas. The molecules’  paths are called random walks. We 
are interested  here in how far molecules  travel  on average  over given intervals  of 
time and how far between collisions. The latter in particular sets the scale above 
which one can expect to see behaviour that is characteristic  of large amounts of gas 
rather than individual molecules. Such average distance is called the mean free 
path. I will first estimate this and then use it to estimate further properties such as 
thermal conductivity.

3.1 The Mean Free Path

Molecules collide, travel freely, collide and so on. The mean distance between col-
lisions is the mean free path, usually denoted by λ. To estimate λ, consider the 
situation depicted in Fig. 3.1. Imagine that all molecules are stationary except the 
molecule on the left, which is travelling from left to right. Let all the molecules be 
spheres of radius R and diameter D = 2R. The moving molecule can 
potentially hit any molecule located within a distance D from its projected path.  
In other words the moving molecule sweeps out a cylinder of radius D and any 
molecule within this cylinder can be hit (after each collision, the direction of the 
moving molecule changes, so we might also depict the situation as in Fig. 3.2 on 
the next page). The moving molecule sweeps out a volume

πD2v (3.1)

D

Figure 3.1 Illustration showing which molecules will collide with the one on the left.

15
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Figure 3.2 Alternative depiction of a moving molecule colliding with other molecules and
tracing out a “bent” cylinder.

per unit time giving a collision rate πD2nv. If one accounts for the movement of the
other molecules, this is increased by a factor of

√
2, so the collision rate is

√
2πD2nv (3.2)

For example, for air at STP, P = nkTI, so

n = P
kTI
=

1.01 × 105 Pa
1.38 × 10−23 J K−1 × 273 K

= 2.7 × 1025 m−3. (3.3)

(NB temperature in Kelvin!). Taking D = 0.3 nm and v = 477 m s−1 , then the
collision rate is ≈ 5.1 × 109 s−1.

The mean free path is the speed divided by the collision rate, and so

λ =
1

√
2πD2n

, (3.4)

where I have included the factor
√

2 mentioned above. For air at STP, we obtain
λ ≈ 10−7 m. 

Example 3.1 Electrons travel 3 km along the SLAC linear collider at Stanford
in California. To reduce scattering losses, the electrons need to have a mean
free path of at least 50 km. What is the maximum allowed pressure inside the
collider’s beam pipe at TI = 20◦C?

Answer 3.1 
We have

λelectron =
1

√
2πD2n

.

Now we use the ideal gas relation, P = nkTI, to find,

P =
kTI

√
2πD2λelectron 

=
  1    1.38 × 10−23 J K−1 × 293 K
√

2
×
π(1 × 10−10 m)2 × 50 × 103 m

= 1.8 × 10−6 Pa.

We have taken the gas molecules to have a diameter D = 0.2 nm, appropriate for
diatomic molecules. This pressure is about 2 × 10−11 atm.
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3.1.1 What is the distribution of molecular path lengths?

The mean free path tells us how far a molecule travels on average, but sometimes 
it will go further, and sometimes not so far. What is the distribution of free path 
distances, or equivalently, what is the chance that a molecule survives a distance r 
without collision? This can be worked out as follows: the chance of colliding in 
a small distance dr equals the time taken multiplied by the collision rate,

dr
v
× (collision rate) = dr

λ
. (3.5)

Therefore if the probability of traveling distance r is P(r), the probability of travelin 
r + dr, which by definition is P(r + dr) can also be written as the chance of getting 
to r multiplied by the chance of surviving (ie, not being hit) within the next short
interval dr which gives

P(r + dr) = P(r)
(

1 − dr
λ

)

. (3.6)

Hence subtracting P(r) from both sides and dividing through by dr we get

P(r + dr) − P(r)
dr = −P(r)

λ
. (3.7)

The left-hand side is the standard definition of the derivative dP/dr, so

dP
dr = −

1
λ

P. (3.8)

This is another equation of exponential decay, as we saw for the hydrostatic equilib-
rium of an ideal gas. Integrating it we have

P(r) = P(0)e−r/λ, (3.9)

where P(0) is a constant, the chance of surviving for zero distance, which is clearly
unity. Then P(0) = 1, and so

P(r) = e−r/λ . (3.10)

This is an exponential probability distribution. The chance of travelling 10λ, for
example, is e−10 ≈ 5 in 100,000. The mean free path length is λ and the rms free
path length is

√
2λ. This distribution is commonly encountered with random events.

It is for instance the distribution of times between the arrival of photons from a 
light source, amongst other things.

3.1.2 Distance travelled

How far will a molecule have travelled after a time t? One answer is vt, where v is 
its speed, but this would not be the direct distance it has travelled from its point 
of origin if there are collisions, and we have seen that it cannot get far in this case. 
Consider where it will be after N steps. Its position vector r will be

r = s1 + s2 + s3 + . . . , (3.11)

where si is the displacement of the i-th step. It might seem hard to progress further: 
we cannot possibly try to work out s for more than a few steps at most. However, 
we can learn something if we focus on the square modulus of r which is given by

r2 = r · r = s2
1 + s2

2 + s2
3 + · · · + s1 · s2 + s1 · s3 + s2 · s1 + . . . (3.12)
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Figure 3.3 Seven random walks of a particle. Each walk comprises 100 steps with step-
lengths distributed according to the exponential distribution.

The terms are either of the form s2
i = s2

i or “cross terms” such as

si · s j = sis j cos θi j, (3.13)

for i , j, where θi j is the angle between step i and step j. Assuming that θi j is
random, then the average value 〈cos θi j〉 = 0, and the cross terms disappear. Thus
the mean squared distance

r̄2 =
N

∑

i=1
s̄2

i ≈ Nλ2. (3.14)

The ‘approximately equal to’ ( ) appears here because s̄2
i is the mean squared step-

length which we have simply 
≈

replaced by λ2 without being too precise. Thus the
root-mean-square (rms) distance travelled, measuring in a straight line from the point
of origin is

r ≈
√

Nλ , (3.15)

the classic result of a random walk of N steps. Fig. 3.3 shows seven such random 
walks, with the individual step lengths distributed according to the exponential 
distribution. It is important to realise that the distance travelled (displacement from 
the starting point) and the path length can be hugely different,

since
√

N � N for large N. A couple of examples will illustrate this.

Example 3.2 How far on average does an air molecule travel in 1 second?

Answer 3.2 From before, N = 5.1 × 109 and λ = 0.93 × 10−7 m. So r =
√

Nλ =
6.7 mm. This compares to 477 m of actual flight.

Example 3.3 The mean free path of a photon inside the Sun before it is absorbed
and re-emitted in a random direction is about 0.01 m. How many steps will
photons take to travel from the centre of the Sun to its surface, a distance of 7 ×
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Figure 3.4 Frequency distribution of the distance travelled in 100 000 random walks, each
of 100 steps, with the step-lengths themselves distributed according to an exponential distri-
bution with mean λ. The mean distance travelled is 12.99λ, while the rms distance is 14.15λ
and the maximum is 44.30λ.

108 m? How long will this take if the time between absorption and re-emission
can be neglected?

Answer 3.3 Applying r =
√

Nλ gives the number of steps as

N = (r/λ)2 = (7 × 108 m/0.01 m)2 = 4.9 × 1021.

Ignoring the delay between absorption and re-emission (bad approximation),
each step takes time λ/c, for a total of

Nλ
c =

r2

λc =
(7 × 108 m)2

0.01 m × 3 × 108 m s−1 = 1.6 × 1011 s = 5200 years.

It would take the photon 2.3 s to cover this distance directly.

Since the number of collisions scales with time, N ∝ t, the distance travelled
from the origin by a molecule scales with t1/2. The distance is in reality best de-
scribed by a distribution rather than simply a mean. Fig. 3.4 shows such a distribu-
tion.

The mean free path is a crucial concept for the next topic, the study of what are
called “transport” processes. This forms the final part of my look at kinetic theory.

3.2 Transport

Transport processes apply when there is a departure from equilibrium. For instance,
if a temperature gradient is set up, then energy will be transported. If a concentra-
tion gradient of one type of molecule is set up, then there will a flow of that type
of molecule from high to low concentration (this is called diffusion.) The general
situation is illustrated in Fig. 3.5 In this figure, the shaded molecules have some par-
ticular property which is transported from regions of high concentration to regions
of low concentration simply by the random movement of molecules. I will focus
upon the following three possibilities:

• different identity: diffusion
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Figure 3.5 The shaded molecules represent those with some type of property such as
element type, energy or momentum. As molecules move the shaded molecules will spread
themselves out and in doing so “transport” the particular property of interest.

• different energy: thermal conduction

• different momentum: viscosity.

I will model all transport properties on the following basis:

• 1/6 of the molecules travel in each of the directions ±x, ±y, ±z at speed v̄.

• Molecules have the average properties of the position of their last collision, λ
away from the surface through which the property of interest is being trans-
ported.

Although this is very simplified, and fails to account for subtle effects, such as the
correlations between the energy, speed and mean free path of molecules, it captures
the most important physics, and more sophisticated approaches often still rest on
assumptions that mean they are not much better. I begin with the simplest of the
transport processes, diffusion and follow this with thermal conductivity and viscos-
ity, which follow through in much the same way.

3.2.1 Diffusion

Diffusion is the movement of a substance driven by a gradient in its concentration.
The flow rate across area A in terms of a number of molecules per unit time is
governed by an equation known as Fick’s Law:

dN
dt = −DAdn

dx , (3.16)

where D is the diffusion coefficient. The term dn/dx is the gradient in the number
density of the substance of interest. This equation defines the diffusion coefficient;
the minus sign indicates that diffusion causes a flow from high towards low concen-
trations. The diffusion coefficient has units of m2 s−1. The transported property in
the case of diffusion is the type of molecule.

Applying the simple description of transport, the flow rate (number per unit time)
from left to right across area A of the dashed line at x is given by

1
6

n(x − λ)Av̄, (3.17)

because 1/6 of molecules within distance v̄ of x can reach it (i.e. the same argument
as used when deriving P = nmv̄2/3). The important point here is that the number
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density is evaluated a distance λ from the reference line. This matters because it is
the gradient in n that drives diffusion. From right to left the flow rate is

1
6n(x + λ)Av̄. (3.18)

Therefore the total from left to right is the difference
1
6

[n(x − λ) − n(x + λ)]Av̄. (3.19)

Since λ is small, we now expand each of the terms involving λ to first order as
follows:

n(x − λ) ≈ n(x) − dn
dxλ and n(x + λ) ≈ n(x) + dn

dxλ, (3.20)

so the net flow rate is
−1

3λv̄A
dn
dx . (3.21)

Comparing with Fick’s Law, Eq. 3.16, we deduce the kinetic theory estimate for the
diffusion coefficient

D = 1
3λv̄ . (3.22)

Thus we have a relation between a macroscopic constant, the diffusion coefficient,
and the microscopic properties of a gas. I will now illustrate the above with a fairly
complex example.

Example 3.4 How fast does water in a test-tube evaporate?

Answer 3.4 The question is very brief, so we have to make some assumptions:
1. The water vapour has its saturated density, ns, at the water surface.
2. The number density drops to zero at the mouth of test-tube, a height h above

the water surface.
3. There are no air currents within the tube.
4. Water vapour can be described as an ideal gas.
In equilibrium, the concentration gradient is constant along the tube, so dn/dx =
ns/h. Therefore the loss rate/unit area is

λv̄ns
3h =

λv̄Ps
3hkTI

,

using the ideal gas equation, ns = Ps/kTI. Therefore the rate of reduction in
water level is the loss rate in molecules per unit time multiplied by the mass of
each molecule m and divided by the density of water ρ:

mλv̄Ps
3hkTIρ

=
mmoleλv̄Ps

3hRTIρ
.

In the last step, top and bottom were multiplied by Avogadro’s number, NA, to
express the result in terms of the mass of a mole, mmole = NAm, and R = NAk.
For example, at TI = 293 K, the saturated vapour pressure is Ps = 1710 N m−2

and the density of water is ρ = 103 kg m−3. Assuming h = 0.1 m and taking
λ = 10−7 m, v̄ = 650 m s−1 (water molecules are less massive and move faster
than those of air, mmole = 0.018 kg), then the evaporation rate is

0.018 kg × 10−7 m × 650 m s−1 × 1710 N m−2

3 × 0.1 m × 8.314 J K−1 × 293 K × 103 kg m−3 = 2.7 × 10−9 m s−1

= 0.24 mm per day.
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cold hot
heat flow

Figure 3.6 A standard setup for studying thermal conduction. Heat is conducted from a
hot to a cold reservoir by means of a uniform rod. The rod is insulated (shaded regions) to
prevent heat entering or leaving along its sides.

3.2.2 Thermal conduction

Thermal conduction is the transfer of energy as heat that occurs when there is a
temperature gradient; see Fig. 3.6 for an illustration of a typical setup for studying
it. The fundamental equation of heat conduction is Fourier’s Law:

dQ
dt = −KAdT

dx , (3.23)

where dQ/dt is the energy flow rate across area A down a temperature gradient
of dT/dx. This equation defines the thermal conductivity K, which has units of
W m−1 K−1. The kinetic theory estimate of K follows as for diffusion, but we are
transferring energy. Let the energy/molecule at position x be E(x), then the energy
flow rate from left to right is

1
6nAv̄E(x − λ), (3.24)

while from right to left it is
1
6nAv̄E(x + λ). (3.25)

The net flow from left to right is the difference,

−1
3nAv̄λdE

dx , (3.26)

after applying the same expansions as for the diffusion case. Now

dE
dx =

dE
dT

dT
dx , (3.27)

while n dE/dT is the rate of increase of energy/volume with temperature, or specific
heat capacity per unit volume, c, so

dQ
dt = −

1
3 Acv̄λdT

dx . (3.28)

Comparing with Fourier’s Law, Eq. 3.23, we see that

K = 1
3λv̄c . (3.29)

I emphasize that the heat capacity here is per unit volume and hence density depen-
dent. Observe the similarity of this result to the relation for the diffusion constant
with the addition of c.
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Fixed

Moving

Figure 3.7 A velocity gradient between two parallel surfaces with the top one moving
relative to the bottom one.

In the argument above you might legitimately have worried that the temperature
gradient causes n and v̄ to depend on the position x. However, for the steady-state
conditions we are concerned with here, the rates at which molecules cross our small
area in either direction must be the same, and these are proportional to the product
nv̄. Hence we needed only to consider the position dependence of E, the energy per
molecule.

3.2.3 Viscosity

The phenomenon  of viscosity  is seen in its simplest form when considering  two 
parallel  flat surfaces,  with one moving relative  to the other (Fig. 3.7). When 
molecules  hit each surface  they stick briefly before  leaving (in contradiction  to the 
basic assumptions of kinetic theory). In doing so they acquire the mean velocity of 
the surface. If one surface moves with respect to the other, there must therefore be a 
velocity gradient. This produces a drag force on each surface given by

Fx = −ηA
dvx
dy , (3.30)

where Fx is the force in the x-direction (left to right in the figure), and dvx/dy is the
velocity gradient, i.e. the change in vx with y-position (upwards in the figure); A is
the area of the surface. As before, this equation defines the constant, in this case η,
which is known as the viscosity coefficient, and has units of N m−2 s−1. The minus
sign means that the force is a drag force. Viscosity is the transport of momentum, in
this case the x-component of momentum transported in the y-direction.

Let the mean x-momentum/molecule at y be mvx(y). Then as before, the mo-
mentum per unit time carried from bottom to top across an imaginary surface in the
fluid parallel to the upper and lower surface is

1
6nAv̄mvx(y − λ), (3.31)

compared with a rate from top to bottom

1
6nAv̄mvx(y + λ), (3.32)

which leaves a net flow rate of

−1
3

nAv̄λmdvx
dy
. (3.33)
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Figure 3.8 Schematic illustration of fluid flow past a wing (adapted from JD Anderson,
Ludwig Prandtl’s Boundary Layer, Physics Today, December 2005).

transported
quantity

macroscopic
law

kinetic theory
estimate

diffusion number density
or ‘identity’

dN
dt = −DA dn

dx D = 1
3λv̄

thermal
conduction

thermal energy dQ
dt = −KA dT

dx K = 1
3λv̄c

viscosity momentum dpx
dt = Fx = −ηA dvx

dy η = 1
3λv̄ρ

Table 3.1 Three transport coefficients.

Remembering that nm is the mass/unit volume, i.e. the density ρ, and comparing
with Eq. 3.30 we deduce that

η =
1
3λv̄ρ . (3.34)

Again this is very similar to the relation for the diffusion coefficient with the addition
of the density.

Viscosity is important in the boundary layer near the surface of a body moving
through a fluid. Outside this layer the flow can be taken as non-viscous. A reasonable
description of (non-turbulent) airflow past a wing, say, as illustrated schematically
in figure 3.8, can be obtained by considering a thin boundary layer near the wing’s
surface, where the effects of viscosity are dominant. The figure shows how the flow
velocity v changes, as a function of the normal distance n, from zero at the surface
to the full non-viscous flow value at the outer edge of the layer. Calculating the
boundary layer flow allows the skin-friction component of the drag on the wing to
be determined.

Table 3.1 summarises what we have learned about the three transport coefficients
we have studied.

3.2.4 Avogadro’s Number

The kinetic theory of transport led to the first reliable estimate of Avogadro’s number
(Maxwell 1865). This can be obtained as follows. We cannot measure the flow rate
of molecules directly, but we can measure it in terms of the mass flow rate, and hence
we can measure

Dm = mD = 1
3λv̄m. (3.35)
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Temperature η K K/η
K 10−6 N m−2 s 10−3 W m−1 K−1 m2 s−2 K−1

100 7.400 8.960 1211
150 11.18 13.85 1237
200 14.65 18.35 1253
250 17.80 22.49 1263
300 20.68 26.38 1276
350 23.34 30.10 1289
400 25.83 33.79 1308
500 30.41 41.13 1352

1000 49.05 74.32 1515

Table 3.2 Experimental measurements of the thermal conductivity and viscosity of oxygen
as a function of temperature

Then from kinetic theory, the ratio of the viscosity coefficient to the mass diffusion
coefficient is expected to be

η

Dm
=
ρ

m = n, (3.36)

the number of molecules per unit volume. If we now measure the volume of one
mole, the molar volume Vm, then NA = Vmn, and therefore

NA =
Vmη

Dm
. (3.37)

All the quantities on the right are measurable although Maxwell found that there
were no existing measurements of the viscosity of gases and had to devise methods
to carry them out.

3.2.5 Temperature dependence of Transport coefficients

All the transport coefficients contain the mean speed v̄ ∝ T 1/2
I . On the other hand,

the quantities C and ρ are both proportional to n and hence decrease with T I since
n = P/kTI, if the pressure remains constant. However, this is compensated by a
matching increase of λ ∝ 1/n. Therefore overall all transport coefficients of gases 
are expected to increase with temperature. This is observed, although not necessarily 
in good agreement with TI

1/2 (or TI
3/2 for diffusion) because of the inaccuracy of the 

“hard sphere” approximation. By contrast, the viscosity of liquids decreases with 
T. This is just another example of the inapplicability of kinetic theory to liquids 
and solids.

Table 3.2 lists some experimental measurements of the thermal conductivity and
viscosity of oxygen as a function of temperature. Figure 3.9 shows the variation
of K and η with temperature, while figure 3.10 shows the ratio K/η as a function
of temperature, which kinetic theory predicts to be a constant. Remembering the
formulae, K = λv̄nCm/3 and η = λv̄nm/3, where Cm and m are the heat capacity and
mass per molecule, then we expect

K
η
=

Cm
m =

5k
2m , (3.38)

with the last line appropriate for a diatomic molecule. We therefore expect from
kinetic theory that the ratio of thermal conductivity to viscosity should be indepen-
dent of temperature. One can see from Table 3.2 that this is approximately correct,
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Figure 3.9 Thermal conductivity and viscosity of oxygen as a function of temperature. This
is a log-log plot, so both lines should be straight with the same slope if the kinetic theory
prediction that K and η are proportional to T 1/2
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Figure 3.10 Ratio of thermal conductivity and viscosity of oxygen as a function of tem-
perature. This should be a constant if the kinetic theory prediction that K and η are both
proportional to T 1/2

I holds.

although it does rise, partly as a result of the excitation of vibrations in the oxygen
molecule. For molecular oxygen, m = 32 u, and the ratio is expected to be 650. This
is too low, but is at least the correct order of magnitude, which is all one can expect
given the simple assumptions made.

3.2.6 Pressure dependence of transport coefficients

Recall once more the viscosity and thermal conductivity coefficients:

η =
1
3λv̄ρ,

K =
1
3λv̄C.

As I mentioned above, both ρ and C scale with n, while λ ∝ n−1, and therefore

kinetic theory predicts that K and η are independent of pressure!
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Pressure K
atm 10−3 W m−1 K−1

1 26.2
5 26.6

10 27.0
20 27.8
40 29.4
60 31.0

100 34.3

Table 3.3 Thermal conductivity of oxygen as a function of pressure at 300 K
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Figure 3.11 Thermal conductivity of oxygen as a function of pressure at 300 K. This
should be a constant if the kinetic theory prediction holds.

Table 3.3 and figure 3.11 show that this rather unexpected result is indeed approx-
imately correct in the case of oxygen, for which the thermal conductivity increases
by only 30% while the pressure increases by a factor of 100. At first one might have
guessed that the conductivity would also increase by a factor of 100, because the
density has increased by this factor, but of course the mean free path simultaneously
drops by the same factor, leading to the relatively small dependence.

However, there is still something wrong about this result. For instance, it implies
that removing air from between two pieces of glass in a double glazing unit makes
no difference to the rate of heat loss! However, surely if there was no air there could
be no conduction of heat by air molecules. In fact both statements are correct: over
a wide range of pressures these two coefficients are fairly constant, but they do tend
to zero in the limit of zero pressure. The key point is in the transition between the
two cases. The mean free path does get larger as the pressure drops, but eventually
it will become similar in size to the dimensions of the apparatus. It then ceases to
increase and the transport coefficients start to drop. This is known as the “Knudsen
regime” of pressures, and is difficult to treat accurately since results start to depend
upon details of the apparatus. However the formula for λ can be used as a useful
guide to when such effects start to matter. At high densities, other problems set in as
interatomic forces becomes significant.

The following example shows very roughly how one can take account of low
pressures.
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Example 3.5 Estimate the power per unit area carried by conduction between two
plates differing in temperature by 10 K and separated by a 1 mm thick air gap at
pressures of 105 N m−2 and 0.1 N m−2 at T = 298 K.

Answer 3.5 For P = 105 N m−2 (1 bar), λ = 10−7 m � d, so we use

K = 1
3λv̄c. (3.39)

with v̄ = 500 m s−1. Estimate c, the heat capacity per unit volume, using the
equipartition theorem for a diatomic gas with no vibrations:

c = 5
2

kn = 5
2

P
TI
, (3.40)

Hence,

K = 10−7 × 500 × 5 × 105

3 × 2 × 298
= 0.014 W m−1 K−1. (3.41)

For ∆T = 10 K, ∆x = 0.001 m, dT/dx = 104 K m−1 and so the conduction rate
is 140 W m−2.
For P = 0.1 N m−2, λ = 0.1 m � d, where d is the thickness of the air gap, so
we expect the rate to be d/λ = 150 times smaller, very roughly.

3.2.7 Variation with nature of gas

The kinetic theory model gives an intuitive feel for how different gases should com-
pare in thermal conductivity etc. Large mean free paths will lead to good conduction,
which means that small molecules will conduct better. Small molecules are often
low mass molecules, which means they move faster at a given temperature, which
increases the conductivity still further. Therefore we expect hydrogen and helium to
be better heat conductors than carbon dioxide for instance. (Remember: for fixed P
and TI, n is the same for all ideal gases.)

3.3 Limitations of kinetic theory

Kinetic theory gives an intuitive feel for several phenomena, most importantly the
pressure exerted by a gas. However, it is far from being a generally useful model,
and fails to explain such basic phenomena as

• phase changes (boiling, melting),

• the existence of liquids and solids,

• deviations from the ideal gas law.

It is the neglect of interatomic forces which is most important (without them there
could be no liquids). Although we can do much better than the simple theory I have
outlined, we are still far from being able to predict the properties of a substance
composed of a given molecule. Although this is an important aim, it is an undeni-
ably difficult one. Can we go no further then? Neither easily nor accurately with
a microscopic approach. Instead I will start in the next chapter upon a more utili-
tarian approach in which we take some measured properties for granted and try to
extrapolate from these. This is the subject of classical thermodynamics.



4
An Introduction to

Thermodynamics

Thermodynamics is a subject of great generality, rigour and power, but one which
you may well find quite different in flavour from any physics you have done be-
fore. Thermodynamics deals with quantities such as work, heat and temperature,
and provides a firm basis for these concepts. It is concerned with macroscopic, not
microscopic physics (by “thermodynamics” I mean what is often called “classical
thermodynamics” as opposed to “statistical thermodynamics”). This is unusual in
that in physics one normally tries to reduce phenomena to their most fundamental
level. However, this is difficult with thermodynamics. What after all is the “tempera-
ture” of a single particle? Indeed, some of the fundamental aspects of thermodynam-
ics can almost seem like mirages that disappear on a microscopic scale. Therefore
from this point we will see relatively little in the way of microscopic models.

Thermodynamics is of huge practical importance, and has applications to

engines, jets, rockets,
power generation,
chemistry and biology,

astrophysics and cosmology,
refrigerators and heat pumps,
weather forecasting,

and many more. It is built from four fundamental laws deduced from experiment:

• Zeroth law: defines temperature.

• First law: defines internal energy and expresses the conservation of energy.

• Second Law: defines entropy and how efficiently once can convert heat to work.

• Third Law: establishes the unattainability of absolute zero.

These laws form the bedrock of thermodynamics. When you encounter them you
will see it is hard to imagine thermodynamics being overturned, in the same way
that Newtonian physics was when relativity was developed.

4.1 Thermodynamic Definitions

It is important in thermodynamics to be precise with one’s use of language. In Ta-
ble 4.1 I show three important terms that will be used often. In thermodynamics we
are often concerned with changes of a system but very often these must be considered

29
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System the piece of Universe under study. Its precise extent
must be clearly defined.

Surroundings anything that is not part of the system.
Boundary whatever separates the system from its surroundings.

Table 4.1 Three basic terms defined.

Closed lets no matter in or out.
Open or permeable can let matter pass.
Rigid does not allow any change in the system by external

forces, such as pressure.
Adiabatic does not allow any heat to flow in or out.
Diathermal opposite of adiabatic — does allow heat transfer.
Isolating allows nothing in or out: closed, rigid and adiabatic.

Table 4.2 The different possible types of boundary.

in conjunction with changes in the surroundings. The two are linked by a boundary
(sometimes called a “wall”) which can come in several different varieties. These are
listed in Table 4.2. To start with, all boundaries that I consider will be closed, i.e.
no matter will enter or leave the system. I will often switch between adiabatic and
diathermal boundaries. I prefer the term “boundary” to “wall” as the dividing line
need not be a physical object.

I now start on the laws underlying thermodynamics. I will proceed in historical
order, starting with the First Law.

4.2 The First Law of Thermodynamics

In the 1840’s Joule carried out careful experiments which led him to conclude:

“If the state of an otherwise isolated system is changed by the per-
formance of work, the amount of work needed depends solely upon
the change effected and not on the means by which the work is per-
formed, nor on the intermediate stages through which the system
passes between its initial and final states.”

This is the formal statement of the First Law of thermodynamics in the case with no
heat flow. Two terms need explaining:

1. performance of work: any process which, in principle, can be carried out by
lowering a weight (W = mgh).

2. otherwise isolated: we can do work, but no heat can flow in or out.

The definition of work may seem restricted, but in fact it encompasses anything that
one would consider to be work. For instance, consider electrical work. Electricity
can be generated via hydro-electric power, in which water drops in height. Therefore
electricity is included within the definition.

4.2.1 What did Joule do?

Joule deduced the first law by trying different ways of carrying out work on a system,
measuring the amount of work and determining the change in the system via its
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Figure 4.1 Joule’s paddle-wheel experiment. Photograph: Science Museum.
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Figure 4.2 An illustration of different paths between two states, A and B. X1 and X2 define
the state of the system, and could be, for instance, pressure and volume.

change in temperature. The famous example is his use of a paddle wheel driven
by weights to stir water (Fig. 4.1): it is worth noting that Joule was a brewer when
contemplating this apparatus. The important point is that Joule could calculate the
amount of mechanical work; it is not for nothing that our unit of energy, representing
the work done by a force of 1 N moving 1 m, is named after him. He took great care
over this. For instance in the paddle wheel experiments, he took account of the
kinetic energy of the weights at the end of their travel. He also performed electrical
work, in which a current is passed through a system, requiring a work rate of I 2R,
known as Joule heating.

What Joule found was that the amount of work required to change a system,
when no heat is allowed to enter or escape, depends only upon the initial and final
states of the system. The First Law is nothing more than the conservation of energy.
The energy represented by the performance of the same amount of work causes
the same change in a system. This leads to the recognition of something we have
encountered already, the internal energy.

4.3 Internal Energy

Joule’s experiments show that the work done depends only upon the initial and final
states of a system. In other words, when a system changes from state A to B, as
illustrated in Fig. 4.2, the work done can be written as W = f (B) − f (A), where
f is a function of the state of the system and not the path taken. Such a function
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is known simply as a “function of state”. Such functions play an important role in
thermodynamics. Examples are pressure and volume: the same state of a system
must have the same volume by definition. Not everything is a function of state.
For instance, the distance travelled by a system is not a function of state. More
interestingly, we will see that work and heat are not functions of state.

Returning to the first law, the function of state has a particular name, the internal
energy, U. This is defined by

W = Ufinal − Uinitial = ∆U. (4.1)

The work done on the system W changes its internal energy by W . Note the sign
convention: work done on the system is positive. Work done by the system is neg-
ative. Not all texts agree on this; older books and engineering books, where work
done by a system is often of most interest, tend to use the reverse definition: watch
out!

4.4 Heat

We can equally change a system by bringing it into contact with a hot or cold reser-
voir.

Heat is the transfer of energy between a system and its environment
due to a temperature difference between them.

Having calibrated the internal energy with Joule’s experiments, we can define the
heat entering a system, Q, in the case of no work as

Q = ∆U. (4.2)

Heat added to a system is positive. Heat given up by a system is negative.
Joule showed that heat and work are two forms of the same thing, which we

call energy. Before Joule, heat was measured in calories, defined as the amount of
heat needed to raise the temperature of 1 g of water by 1◦C. Work was measured in
terms of force times distance. Joule calibrated calories in terms of mechanical work,
sometimes known as the “mechanical equivalent of heat”. The conversion is

1 calorie = 4.2 J. (4.3)

Food energy values are often quoted in terms of “Calories” which are the amount of
heat needed to raise 1 kg of water by 1◦C:

1 Calorie = 4200 J. (4.4)

The persistence of these units is rather remarkable given that Joule performed his
experiments more than 150 years ago!

4.5 Mathematical expression of the First Law

If heat is added and work is performed on a system, then the first law becomes

∆U = Q +W . (4.5)

This is an important equation which you should remember. This is the mathematical
form of the first law, and has the following significance:
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• energy is conserved,

• generalises conservation of kinetic + potential energy,

• defines heat as a form of energy.

The mathematical form makes clear the equivalence of heat and work in terms of 
their effect upon a system. Given a change in internal energy ∆U it is impossible to 
say how much of it was work or how much was heat, without more information. An 
infinity of different combinations of Q, W values can give the same ∆U. This means 
that:

Heat and work are not functions of state. They depend upon the
path taken.

We cannot therefore talk about the “heat” or “work” of a system in the same way as
we say “the pressure of a system”.

For infinitesimal changes, we write the first law as

dU = d̄Q + d̄W . (4.6)

The lines through the “d”s in front of Q and W are a reminder that they are not
functions of state. The distinction turns out to be significant.

4.6 Perpetual Motion Machines of the First Kind

A loose way of expressing the first law goes as follows: “you can’t get something
for nothing, you can only ever break even”. That is, you cannot create energy from
nothing. Unfortunately, there have been many instances of inventors who have failed
to appreciate this, and have tried to promote devices that apparently run for ever
without the need for fuel. These are known as “perpetual motion machines of the
first kind” (I will discuss the more subtle second type later). Imagine that the first
law was not true. Then moving from state A to B via path 1 in figure 4.2, would
require us to put in work W1, while we could extract work W2 when moving back
from B to A via path 2, and, crucially, W2 , W1. We could then extract a total
amount of work W = W2−W1, and, if we went round the cycle in the right direction,
we could ensure that W > 0. This would be a perpetual motion machine; the first
law implies instead that W = 0, we can only “break even”. The Patent Office rejects
all applications for perpetual motion machines — if they recognise them as such,
which they don’t always. No one has proved them wrong as yet.

4.7 Heat Capacities

The first law of thermodynamics allows us to define the concept of heat capacity
more carefully. From the differential form of the first law

d̄Q = dU − d̄W. (4.7)

The change dU is seen through an associated temperature change, dT . The “heat
capacity” is then defined by the heat input divided by the change in temperature:

C = d̄Q
dT =

dU
dT −

d̄W
dT . (4.8)
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This depends upon the work d¯W, and so in defining heat capacities we must define 
the work done as well. Note that the term “heat capacity”  is inaccourate: once heat 
enters  a system it loses its identity  and should be thought  of as energy.  As we will 
see, in many cases, part of the heat “stored”  in a system is in fact used up as work.

The heat capacity one normally thinks of is the heat capacity at constant volume.
If we don’t allow a system to change its volume (rigid boundary) then it performs
no work against external pressure. The specific heat capacity at constant volume is
usually denoted by CV ; the equipartition heat capacities were of this form, although
I did not say so explicitly. Since W = 0 we can write

CV =

(

∂U
∂T

)

V
. (4.9)

This expression says that CV is the partial derivative of the internal energy with
respect to temperature. It is a partial derivative because only the temperature is
varied. However, an additional complication in thermodynamics is caused by the
equation of state: we can hold the volume fixed, or the pressure, but not both when
we are varying the temperature. Therefore in thermodynamics whenever we write a
partial derivative, we must indicate precisely which parameter is being held fixed; in
this case it is the volume, and hence the subscript V .

It is usually easier to measure the specific heat capacity at constant pressure, C P.
In this case the system expands and does work on the surroundings, so the work done
on the system, W < 0. Thus

CP > CV . (4.10)

This is important for gases as we will see.

4.8 Calorimetry

The measurement of heats of reaction and specific heats is an important part of chem-
istry. It is called calorimetry, and provides a simple application of the first law. The
basic idea is to use an isolating container, i.e. Q = W = 0. In practice, this is not
easy when high accuracies are desired, and calorimetry experiments require much
care. However, stripped down to its basics, one measures the specific heat capacity
as follows:

1. put a mass mw of water in a container,

2. measure its temperature, Tw,

3. take a mass ms of the substance and measure its temperature Ts,

4. allow the substance and water to come to thermal equilibrium,

5. measure the final temperature, T f .

Then since Q = W = 0, we have ∆U = Q +W = 0, and so

U(initial) = U(final), (4.11)

or, since the internal energy of mass m of specific heat capacity C at temperature T
is given by U = mCT (if C does not vary with temperature),

mwCwTw + msCsTs = mwCwT f + msCsT f . (4.12)
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We know mw, ms, Cw (Joule), Tw and Ts, and therefore we can deduce Cs:

Cs =
mwCw(T f − Tw)

ms(Ts − T f )
. (4.13)

Note that this defines Cs as a multiple of Cw, which is why calories were useful. This 
formula is as one would deduce more intuitively from the idea that the heat lost by 
the substance equals the heat gained by the water. This case gives the impression of 
a conserved property that flows from the substance to the water. It was this idea that 
lead to the old “caloric” model of heat. Caloric was an indestructible  fluid that flowed 
into an object when it was heated. This idea founders when work is considered, as 
was famously realised by Count Rumford when supervising the boring of 
cannons, during which work expended is converted to heat.

4.9 Expansion & Compression of Gases

The second application of the first law that I consider is to the expansion of gases.
There are three distinctly different ways to expand or compress a gas (although one
can also perform intermediate versions of these as well). The three methods are:

1. Isothermally: temperature remains constant.

2. Adiabatically: no heat in or out.

3. Joule expansion: adiabatic. Gas in one part of a container, vacuum in the other.
The separating wall is removed. The container is rigid.

4.9.1 Isothermal compression & expansion

If the gas is ideal, then U is a function of TI only, i.e. U(TI). Therefore since TI is
constant, ∆U = 0. Hence

Q +W = 0. (4.14)

As the gas expands it does work, so W < 0, therefore Q > 0. In words, during an
isothermal expansion, the gas absorbs heat but does an exactly equivalent amount of
work; its internal energy is unchanged (ideal gases only). During compression, you
do work, which is given out as heat.

4.9.2 Adiabatic compression & expansion

In the adiabatic case, Q = 0, so ∆U = W . All work done during compression is
stored as internal energy in the gas.

4.9.3 Joule expansion

Note first that there is no such thing as a Joule “compression”. We will see why
later. A Joule expansion is adiabatic and the container is rigid, so no work is done.
Therefore, Q = W = 0, and so ∆U = 0. This is true whether or not an ideal gas is
involved (c.f. isothermal expansion). If U is a function of T and V , i.e. U(T ,V) then
we have the mathematical identity

dU =
(

∂U
∂T

)

V
dT +

(

∂U
∂V

)

T
dV. (4.15)
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Since dU = 0, then
dT = − (∂U/∂V)T

(∂U/∂T )V
dV. (4.16)

Joule measured dT = 0 for gases and so deduced that
(

∂U
∂V

)

T
= 0. (4.17)

If this is the case, then U is indeed a function of T only, U = U(T ). In this case,
we no longer need to qualify the derivative as being at constant volume, and we can
write

CV =

(

∂U
∂T

)

V
=

dU
dT . (4.18)

This means that dU = CV dT . This is a useful relation, but one should remember 
that it only applies when U = U(T). It is not easy to detect a change in temperature 
because the heat capacities of gases per unit volume are small.

4.10 Summary

In this chapter I have made a start on thermodynamics, which is based upon four
experimentally derived laws. I have looked at the First Law of Thermodynamics
which generalises energy conservation to include heat, and proves the existence of a
function of state, the internal energy. We see that heat and work are two forms of en-
ergy. Objects have internal energy, they do not contain “heat” or “work”. The latter
are not functions of state. They are entirely equivalent in terms of their effect upon a
system. You should remember the First Law. It is important throughout physics and
I will be using it many times in the course. We will return to the expansion of gases.
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Reversibility and the

Calculation of Work

Reversible and irreversible processes are important in thermodynamics. Reversible
processes are an idealisation but are important because they can be quantified. The
results of computations can have general applicability because for some quantities,
such as internal energy, the change depends only upon the initial and final states and
not on how the change was made. In such cases we imagine that the process was
reversible, allowing us to calculate numbers which then apply in general.

Irreversibility is interesting from another perspective. On a microscopic scale
our physical laws are reversible, so how can they lead to processes which are irre-
versible on a macroscopic scale?

5.1 Reversible Changes

A process is reversible if the system and surroundings return to their original state
when the process is reversed. Consider a very rapid compression of a gas. Shock
waves develop during the compression, but they dissipate as the system settles back
to equilibrium. Imagine filming this and running the film backwards (this idea is
often useful in deciding whether a process is reversible). You would see shock waves
develop in the middle of the gas for no apparent reason. This never happens; this
process is not reversible.

A reversible change must occur through intermediate states which are them-
selves in thermal equilibrium (the initial and final states must therefore also be in
equilibrium). A reversible change can be carried out by making a tiny change, al-
lowing the system to settle to equilibrium, making another tiny change, etc. This is
called a quasi-static change. However, this is still not enough, because there must
also be no friction. It is possible to compress a gas quasi-statically but if the piston
used has friction, then work is converted to heat and the surroundings will not return
to their initial state when the process is reversed. Before coming up with a more
general definition, let’s consider heat transfer.

5.1.1 Reversible heat transfer

Imagine placing a pan of cold water onto a hotplate. At first there is a temperature
gradient which gradually disappears as the water warms up. Again imagine a film
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of this run backwards. One would see a spontaneous development of a temperature
gradient, something that never happens. The process is irreversible. For heat transfer
to be reversible, no temperature gradients must occur. This can be done by making
a tiny increase in surrounding temperature, allowing the system to warm up, making
another tiny increase, etc. This leads to a general criterion for reversible changes.

5.1.2 General Criterion for Reversibility

The following statement provides a general criterion for reversibility:

A reversible change is one which can be reversed in direction by an
infinitesimally small change in the surroundings.

This is best explained with a few examples.

1. A piston of area A holds a gas at pressure P in equilibrium with an external
force, F = PA. The applied force is suddenly doubled, F ′ = 2PA, causing
compression.
This is irreversible, because a small change in F ′, δF′ = 0.1PA say, would not
reverse the compression.

2. A stone is heated to T = 500 ◦C and thrown into water.
This is irreversible, because a small change in temperature, δT = 20 ◦C say,
would still heat the water.

3. A sealed container of water and vapour is cooled, condensing some of the vapour.
This is reversible if done slowly, because a tiny change in temperature can re-
verse the effect.

In reality all changes are irreversible, but it is possible to come close to reversibility,
and as we will see, this is closely connected with issues such as engine efficiency.

5.2 Calculating Reversible work

Reversible work is calculable. Irreversible work can be too, but can be nearly im-
possible to quantify when shock waves and the like develop. The essential definition
of work is force F times distance x, so

W = Fx. (5.1)

This is fine unless F varies with x. Then it is better to consider infinitesimal changes
in x so

d̄W = F(x) dx, (5.2)
and

W =
∫ x2

x1

F(x) dx. (5.3)

Example 5.1 How much work is needed to extend a spring, force constant k from
x1 to x2?

Answer 5.1

W =
∫ x2

x1

F(x) dx =
∫ x2

x1

kx dx =
[

1
2kx2

]x2

x1

=
1
2k(x2

2 − x2
1).



5.3 Heat Capacities of Gases 39

F

x

Figure 5.1 A piston compressing a gas

5.2.1 Compressing a Gas

Now let’s consider the work done when compressing a gas. Fig. 5.1 shows a cross-
section of a piston compressing a gas. The face of the piston is flat, has area A, and
moves perpendicular to its surface. If the gas pressure is P, then the force needed
to move the (frictionless) piston is F = PA. This requires one to move the piston
slowly so that pressure gradients do not build up. Therefore to move the piston in by
an amount dx requires an amount of work

d̄WR = F dx = PA dx. (5.4)

The subscript R indicates that the change is reversible. The change in volume of the
gas is dV = −A dx (V decreases as x increases), and so we find

d̄WR = −P dV . (5.5)

Although calculated for a simple setup, this is a general result; remember it. The
sign is correct because this is the work done by the piston, which is the work done
on the gas. For a finite change

WR =

∫ V2

V1

−P dV . (5.6)

5.3 Heat Capacities of Gases

In section 4.7 I discussed heat capacities and the need to define the work done. We
can now obtain an explicit formula because for a reversible change

d̄QR = dU − d̄WR = dU + P dV. (5.7)

Since the right-hand side is a function of state, this is a general relation for d̄Q,
whether reversible or not. Now consider 1 mole of ideal gas, for which PV = RT I,
and dU = CV dTI. For a change at constant pressure, we must have

d(PV) = P dV = RdTI. (5.8)

Therefore the molar specific heat capacity at constant pressure CP is given by

CP =
d̄Q
dTI
=

CV dTI + R dTI
dTI

, (5.9)

hence, the molar specific heats of an ideal gas at constant pressure and volume are
related by

CP = CV + R . (5.10)
The work against the surroundings, which occurs in the constant pressure case, ap-
pears as the gas constant R. This is another very well-known relation, and is impor-
tant for adiabatic changes in gases.
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5.3.1 Reversible Isothermal Compression of a Gas

For an ideal gas P = nmRTI/V so

WR = −
∫ V2

V1

P dV = −
∫ V2

V1

nmRTI
V dV. (5.11)

If we restrict ourselves to isothermal changes, then T I is constant and so can be taken
outside the integral to give

WR = −nmRTI

∫ V2

V1

dV
V = −nmRTI [ln V]V2

V1
= nmRTI ln

(

V1
V2

)

. (5.12)

Sanity check on the sign: if V1 > V2, I will have compressed the gas, and so
have done work on it. I would therefore expect WR > 0, which is OK since then
ln(V1/V2) > 0. This is the minimum amount of work one would require to effect the
compression; any departure from reversibility such as friction, would increase this
value.

5.3.2 Reversible Adiabatic Compression

Now I consider reversible adiabatic compression (or expansion). We have the same
general expression for the work as Eq. 5.11 but cannot now assume that the temper-
ature is constant. Instead we need first to work out just how the temperature varies
in a reversible adiabatic change. For an adiabatic change, d̄Q = 0, and if the change
is reversible then d̄W = −P dV . Therefore dU = d̄W + d̄Q, becomes dU = d̄W and
so

dU + P dV = 0. (5.13)

But for an ideal gas dU = CV dTI, so

CV dTI + P dV = 0. (5.14)

Restricting ourselves to one mole, we can write PV = RT I, so

CV dTI + RTI
dV
V = 0, (5.15)

for one mole. Dividing by TI

CV
dTI
TI
+ RdV

V = 0, (5.16)

and integrating gives
CV ln TI + R ln V = constant. (5.17)

Dividing by CV and taking the exponential of this expression gives

TIVR/CV = constant, (5.18)

where the constant is different from the line before, but is still a constant. This
relation between TI and V is enough to evaluate the expression of Eq. 5.11 but there
is a rather nicer path to the same end result. Remember that the ideal gas equation
of state for one mole is PV = RTI, and so

PVVR/CV = PV (CV+R)/CV = constant. (5.19)
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From before we had CP = CV + R, and defining the “ratio of specific heats” γ by

γ =
CP
CV
=

CV + R
CV

, (5.20)

we have the important relation for reversible adiabatic compression and expansion
of gases:

PVγ = constant . (5.21)

Note that although I derived this for one mole, in this form, since the heat capacities
are in the form of a ratio, this expression is general. The ratio of specific heats, γ, is
clearly greater than unity, and so since P ∝ 1/V γ, this leads to a steeper dependence
of pressure on volume than the isothermal case, P ∝ 1/V . This is as one might guess
because as you compress a gas adiabatically its temperature rises which increases
the pressure compared to the isothermal case. In fact all the work applied is stored
as internal energy during an adiabatic compression.

It is the adiabatic pressure–volume relation which applies to sound waves, be-
cause there is not enough time for heat to be conducted from the peaks to the troughs
of pressure and temperature, and one can show that the speed of sound is given by
CS =

√

γRTI/m, where m is the mass of one mole of gas. If one assumes isothermal
compression, then the result is CS =

√
RTI/m, an underestimate of the true speed,

a mistake that Newton made. As a result, measurements of sound speed, which can
be done very accurately, can give estimates of γ.

We saw how to estimate heat capacities from the equipartition theorem. For a
monatomic gas we had CV = 3R/2, therefore CP = 3R/2 + R = 5R/2, and so
γ = CP/CV = 5/3 = 1.666. For diatomic gases such as nitrogen, we found that
without excitation of vibrations, CV = 5R/2, and therefore γ = 7/5 = 1.4. This is
the value that applies to air.

Let’s now return to the computation of work. We can write

PVγ = P1Vγ1 , (5.22)

where a gas starts at P1, V1. Then the work is

WR = −
∫ V2

V1

P dV = −P1Vγ1
∫ V2

V1

dV
Vγ

= −P1Vγ1

[

V1−γ

1 − γ

]V2

V1

=
P1V1
γ − 1















(

V1
V2

)γ−1
− 1















. (5.23)

I leave you to fill in the details of this calculation. Again, it is worth doing a sanity
check on the sign. For a compression we expect WR > 0, but this is OK because then
V1 > V2 (and γ > 1).

What about Joule expansion? We already saw that no work is performed. It is
also irreversible, which is why you will never hear about “Joule compression”.

5.4 Indicator Diagrams

Changes of gases and other substances can usefully be represented by plotting pres-
sure versus volume on P–V or indicator diagrams. These diagrams are especially
useful in representing the cycles of engines as I will show later. Fig. 5.2 shows an ex-
ample of an indicator diagram. One reason they are useful is that the work changing
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P

V

adiabatic

isothermal

Figure 5.2 An example of an indicator diagram. The shaded area under part of the solid
curve represents the work done during a change from one end of the curve at the top of the
shaded area to the other end. The dashed line represents a reversible adiabatic change while
the solid line represents a reversible isothermal change.

Form of Work Expression Comment
Gas compression −P dV most common form in this course
Magnetic work B·dm m is the magnetic dipole moment of a

specimen
Electrical work E·dp p is the electric dipole moment of a

specimen
Battery E dq q is the charge that flows, E is the volt-

age
Spring, rubber band F dL L is the length

Table 5.1 Forms of work and expressions for them when they are carried out reversibly.

a volume is given by −
∫

P dV . In an indicator diagram this equals the area under the
curve, and so areas in indicator diagrams are directly related to work. Fig. 5.2 shows
schematic tracks of reversible isothermal and adiabatic changes. The key point is
that the adiabatic change is steeper than the isothermal one. Mathematically this is
a consequence of PV = const for isothermal changes versus PV γ = const for adi-
abatic ones, with γ > 1. Physically it is because in an adiabatic compression, the
work applied goes into the gas and heats it up giving it a higher pressure for a given
volume than in an isothermal compression.

5.5 Other Forms of Work

You should not get the impression that “PDV” (P dV ′) work is the only form ever
encountered, although it is the one that we will use most in this course. A more
complete list of expressions for work is shown in Table 5.1. Some of these should
be obvious, while the expressions for electrical and magnetic work are beyond the
scope of this course, although magnetic work in particular is of great importance in
low temperature physics. The main reason for listing these expressions is to show
that they are all of the same form “Y dX”, where X is some coordinate defining a
system and Y is an associated “force” in a very generalised sense. The X variable
in each case is “extensive”, which is to say that it scales in proportion to the size of
system, whereas the Y force does not scale with the size of the system, and is called
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“intensive”. In general the expression for the reversible work that one needs for the
first law is of the form

WR = −P dV + F dL + B·dm + · · · , (5.24)

i.e. the sum of all possible forms of work. Each extra term implies another variable
needed to define a system of course, that is another degree of freedom. Thus for
a system involving magnetic and −P dV work we would need to define the system
with T , V and m or P, V and m, etc.

5.6 Summary

In this chapter I have discussed the idea of reversible and irreversible processes.
These are key concepts. Reversible processes, although an idealisation, are at the
heart of equilibrium thermodynamics, and lead to tractable answers for quantities
of interest such as work. I applied these ideas to gases, and derived the relation
WR = −P dV . Applied to ideal gases, this also lead to the relation for adiabatic
changes of PVγ = constant, where γ is the ratio of the specific heat capacity at
constant pressure to the specific heat capacity at constant volume.
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6
The Second Law of

Thermodynamics

The first law of thermodynamics is not enough to describe all thermal phenomena.
In particular there are many energetically allowed transitions that never happen. I
have already mentioned the stability of hydrogen and oxygen mixtures which do
not convert to water without some trigger such as a spark. This is because a certain
activation energy is needed to start the reaction. There are other phenomena however,
which do not need any apparent activation energy and are possible, but which do not
happen. For instance, it is possible under the first law that a quantity of water could
suddenly split into a small part which boils, while the remainder cools. Similarly,
energetically, a mixture of gases could separate into its components, but this never
happens either. These ideas are connected to reversibility and irreversibility and
were developed in the 19th century to find the simplest, most self-evident expression
from which quantitative progress could be made. This led to the Second Law of
Thermodynamics.

6.1 Statements of the Second Law

There are two statements of the second law. The first is the Clausius statement:
It is impossible to construct a device that, operating in a cycle, pro-
duces no effect other than the transfer of heat from a colder to a
hotter body.

You might also see this in the form “heat cannot of itself flow from a colder to a
hotter body”. The longer statement makes the meaning of “of itself” explicit. The
Clausius statement of the second law is something that we know from experience.
It is never the case when you pour hot water into a cup, that the water gets hotter
while the cup gets colder; instead the water always cools while the cup warms up.
The second version of the second law is the Kelvin-Planck statement:

It is impossible to construct a device that, operating in a cycle,
produces no effect other than the extraction of heat from a single
body at uniform temperature and the performance of an equivalent
amount of work.

Again this is somewhat wordy, and more succinct, although less explicit, versions
exist such as: “a process whose only effect is the complete conversion of heat into
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46 6 The Second Law of Thermodynamics

work is impossible”, or “heat cannot be completely converted into work without
other effect”.

The Kelvin-Planck statement rules out perpetual motion machines of the second
kind, which are those that live off stored thermal energy in the environment, convert-
ing it into work. Such machines do not violate the first law (conservation of energy),
but would nevertheless provide an endless supply of power; these are ruled out by the
second law. The Clausius statement of the second law seems perhaps more obvious,
but in fact the two are equivalent as I will demonstrate. To do so I need to introduce
the concept of heat engines which played an important role in the development of
thermodynamics. These will also make clear what kind of “devices” are referred to
in the two statements above and why they refer to operation in a cycle.

6.1.1 Conversion of work to heat

There is no problem converting work to heat: an electric kettle is an example of a
device in which work is 100% converted into heat. Similarly, in Joule’s paddle wheel
setup, the work of the paddle wheel is dissipated as heat, and this is true regardless
of how hot the water is. Therefore we can always assume that work can be dumped
into a reservoir in a way entirely equivalent to heating it. This is called irreversible
work, in contrast, for example to storing the work by winding up a spring. This will
be used in showing the equivalence of the two statements of the second law.

6.2 Heat Engines

Much of the development of engines has been about making them more efficient.
The advantages are obvious: just think of the effect of raising the typical efficiency
of car engines from 30% to 100% upon pollution, energy consumption and global
warming. Most of this development occurred through trial-and-error. It has been
remarked that “thermodynamics owes more to steam engines than steam engines owe
to thermodynamics”. Nevertheless, it is interesting to establish just how efficient an
engine can be. Unfortunately real engines come in many designs and are complex.
It would seem hard to derive any general conclusions about them. Remarkably this
is not the case, as was first realised by a French engineer, Sadi Carnot. It was he who
in 1824 clarified the idea of efficiency, and identified the simplest form of engine,
that we know as a heat engine.

A heat engine operates between two heat reservoirs, one hotter than the other
(Fig. 6.1). You should think of the reservoirs as having such a large capacity that
they don’t change temperature as heat is taken from or added to them. The reservoirs
themselves are in equilibrium and therefore of uniform temperature. The heat engine
illustrated has the following key features:

1. It takes an amount of heat Q1 from the hot reservoir.

2. It dumps an amount of heat Q2 to the cold reservoir.

3. It performs an amount of work W

4. In doing the above, it completes one cycle, at the end of which it is in exactly
the same state as it was at the start.

The last point is crucial, because it means that we do not have to worry about any
change of internal energy of the engine, and can therefore write down by conserva-
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Hot reservoir

Cold reservoir

Engine

Q1

Q2

W

Figure 6.1 A heat engine.

tion of energy (the First Law) that:

W = Q1 − Q2. (6.1)

The heat engine is the simplest form of engine we can envisage. For instance, a
single reservoir is no good because then one would extract Q1 from it, dump Q2
back to it, and extract work W , but this is in violation of the Kelvin-Planck statement
of the second law.

We are used to thinking of the need for a hot reservoir, such as the boiler in a
steam engine, but the need for a cold reservoir seems less clear. However, a cru-
cial part of a steam engine is the condenser, or just letting the steam escape to the
atmosphere. Cooling towers, or large masses of water go hand-in-hand with power
stations. Carnot’s brilliance was to abstract the heat engine as a simplest form of
engine, making it very clear why one must have two reservoirs.

When you sketch a heat engine, and you always should in any question involving
them, always indicate the direction of the heat and work because it defines the signs.
This is very important. If you get the sign wrong, you can end up with a completely
incorrect answer.

6.2.1 Efficiency of a Heat Engine

To rate an engine, we are interested in how much work can be obtained for a given
amount of fuel, the number of “miles per gallon” in other words. The fuel heats the
hot reservoir and is represented by Q1. So the efficiency of the heat engine depicted
in Fig. 6.1 is given by

η =
W
Q1
=

Q1 − Q2
Q1

= 1 − Q2
Q1
. (6.2)

Clearly, the smaller the amount of heat dumped to the cold reservoir, the more effi-
cient the engine. A major result of thermodynamics is that we will be able to place
an upper limit on this efficiency, and this upper limit is a function only of the tem-
peratures of the reservoirs.

6.2.2 Equivalence of the Clausius and Kelvin-Planck Statements

I will now use heat engines to demonstrate that the two forms of the Second Law are
equivalent. I will do so by considering a potential engine that violates the Kelvin-
Planck statement but show that it is ruled out by the Clausius version. Consider a
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Hot reservoir

Cold reservoir

Q

W = Q

Figure 6.2 An (impossible) engine which violates the Kelvin-Planck statement of the Sec-
ond Law of Thermodynamics.

Hot reservoir

Cold reservoir

Heat pump

Q1

Q2

W

Figure 6.3 A heat engine run backwards as a heat pump or refrigerator.

hypothetical device that can convert heat completely into work. This is illustrated
in Fig. 6.2 which depicts heat Q being extracted from a cold reservoir and converted
into work so that W = Q. The dashed line is an indication that in this hypothetical en-
gine, no other heat is transferred. The figure also shows the work being directed into
a hot reservoir. As I discussed above, we can always convert work completely into
heat, and so this is equivalent to transferring heat Q to the hot reservoir. The whole
process, however, violates the Clausius statement, because we have transferred heat
Q from the cold reservoir to the hot reservoir with no other effect (because the engine
works in a cycle). We conclude that the hypothetical engine cannot exist, and there-
fore it is not possible to make an engine which fully converts heat into work without
other effect. In other words the Clausius statement implies the Kelvin-Planck state-
ment of the second law. We are free to use either in the knowledge that they are
equivalent.

6.3 Heat Pumps and Refrigerators

If we run a heat engine backwards we have device known as a heat pump. This situ-
ation is depicted in Fig. 6.3 which shows a device which when work W is performed
on it, extracts Q2 from a cold reservoir and dumps Q1 to the hot reservoir. As before,
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we restrict ourselves to complete cycles and can therefore say

Q1 = Q2 +W. (6.3)

One can think of the hot reservoir as a house to be heated, while the cold reservoir
is a nearby stream, for example. Then for every W of work done to run the heat
pump (usually electrical), one obtains W + Q2 of heating. Compare this with an
electric fire, where one simply converts W directly to heat. Therefore a heat pump
is potentially more efficient than normal heating. The efficiency of a heat pump is
defined as

ηHP =
Q1
W . (6.4)

The higher this is, the better; it is greater than one in general. In section 7.3 I will
obtain a simple expression for the maximum value this ratio can have.

If the cold reservoir is an insulated box, while the hot reservoir is the room the
box is in, then we have a refrigerator or freezer. In this case one is interested in the
amount of cooling per unit work, so the refrigerator efficiency is

ηR =
Q2
W . (6.5)

Again, I will obtain an upper limit on this value in section 7.3.

6.4 Carnot’s Theorem

Carnot focussed upon the idea of a reversible engine. A reversible engine is one in
which every part of its cycle is thermodynamically reversible in the sense I discussed
earlier. Note that this more than simply saying that one can apply a torque to the drive
shaft of the engine and make it run backwards: it has to be completely reversible so
that to draw the engine in reverse I need only reverse the directions of the arrows in
Fig. 6.1, but the numerical values of Q1, Q2 and W are unchanged. I have already
discussed running an engine backwards as a heat pump, but there was no need there
for it to be reversible.

Carnot’s implementation of a reversible engine is called a “Carnot cycle”. I
will discuss this below. First I want to establish Carnot’s theorem, which shows the
importance of reversible engines. Carnot’s theorem says that reversible engines are
the most efficient of all. This can be proved by considering two engines, A and B.
Engine B is reversible and is run as a heat pump using the power generated by engine
A, which may or may not be reversible (Fig. 6.4). Carnot’s theorem can be expressed
as ηB ≥ ηA. Since B is reversible, then we can say

ηB =
W
Q′1
. (6.6)

We could not say this if B was not reversible because then the magnitudes of Q′1 and
Q′2 would not remain the same through the switch from engine to heat pump. The
efficiency of engine A, which is running as an engine, is given as usual by

ηA =
W
Q1
. (6.7)

All the work produced by A is used to run B, thus the two engines form a complete
system (indicated by the dashed box) which produces no work but just transfers heat
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Hot reservoir

Cold reservoir
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Q1
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Q′1

Q′2

W

Figure 6.4 The setup used to prove Carnot’s theorem. Engine A, which may or may not be
reversible, is used to run the reversible engine B as a heat pump.

from one reservoir to another. By the Clausius statement of the 2nd law, the heat
must flow from the hot to the cold reservoir. Therefore we must have that

Q1 − Q′1 ≥ 0. (6.8)

Therefore Q1 ≥ Q′1, which implies that

W
Q1
≤ W

Q′1
, (6.9)

which, from the relations above, shows that

ηA ≤ ηB . (6.10)

This is Carnot’s theorem.
Had A been reversible, we could have reversed the argument to show that ηB ≤

ηA. For both to be correct, we must have ηA = ηB. Therefore we now know that
reversible engines are the most efficient of all engines, and that all reversible engines
operating between the same reservoirs have the same efficiency. This means that one
only needs to conceive of one reversible engine to know the efficiency of them all.

6.5 The Carnot Cycle

The discussion of heat engines has been a little abstract. We need to convince our-
selves that we can at least contemplate a real example of a reversible heat engine.
Carnot provided such an example. This is an engine that operates in a cycle of four
reversible steps, which together are known as the Carnot Cycle. The Carnot cycle
is based upon the expansion and compression of an ideal gas. Remember that we
are free to choose as simple a system as possible, because Carnot’s theorem shows
that all reversible heat engines operating between the same reservoirs have the same
efficiency.

Starting with the gas in thermal contact with the hot reservoir, at a point labelled
A (see Fig. 6.5), the steps of the Carnot cycle are as follows:

• A→ B
While in contact with the hot reservoir, the gas is expanded isothermally, doing
work W1 while absorbing heat Q1. As it is ideal, U = U(T ), so ∆U = 0.
Therefore W1 = Q1 (NB: W1 here defined as work done by the gas, not on it ).
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Figure 6.5 The left-hand part of the figure shows the configurations of piston and reservoirs
at the ends of each of the steps of the Carnot cycle. The equivalent pressure–volume plot is
shown on the right. Between points B and C and points D and A the piston is not in contact
with either reservoir. The plot is drawn for one mole of an ideal gas with γ = 1.83 running
in a Carnot cycle between temperatures 3Tstp and 2Tstp.

• B→ C
The gas is removed from contact with the hot reservoir and expanded adiabat-
ically until it is in thermal equilibrium with the cold reservoir (its temperature
drops during adiabatic expansion). During the expansion it performs work W2,
while Q = 0. Therefore ∆U2 = −W2.

• C→ D
The gas is placed into thermal contact with the cold reservoir and isothermally
compressed. Work W3 is done on the gas during the compression, and it gives
up heat Q2 to the cold reservoir. As in step 1, ∆U = 0, so Q2 = W3.

• D→ A
Finally the gas is removed from thermal contact with the cold reservoir and adi-
abatically compressed until it is once more in thermal equilibrium with the hot
reservoir, and it has the volume that it started with. Work W4 is done on the gas
during this stage, while Q = 0, so ∆U4 = W4.

The end result is that the gas has completed a cycle, ending in the same state as it
started. Q1 has been extracted from the hot reservoir, while Q2 has been dumped to
the cold reservoir, and the net work extracted is:

W = W1 +W2 −W3 −W4 = Q1 − Q2 (6.11)

Fig. 6.5 shows the configurations of the piston and reservoirs at each end of the steps
of the Carnot cycle. The right-hand side shows the indicator diagram of the cycle.
Since areas in indicator diagrams represent work, the shaded area in Fig. 6.5 is the
work extracted from one cycle of the Carnot cycle. Note that when drawing indicator
diagrams, the two lines representing the adiabatic changes, PV γ = constant rise
more steeply than those representing the isothermal changes, PV = constant, and
that the isotherms cross the adiabatics, but isotherms do not cross each other, nor do
adiabatics. This should be obvious for isotherms (the same state cannot have two
different temperatures); it will only become “obvious” for adiabatic changes later.
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6.6 Summary

We need more than just the First Law of thermodynamics to describe the thermal
behaviour of matter. There are some processes possible under the First Law which
nevertheless never happen. The Second Law (in the form proposed by Clausius) is
a statement of one such impossible process, the spontaneous transfer of heat from a
cold to a hot body. This also leads to an equivalent statement to the effect that heat
cannot be turned completely into work. The equivalence was established through
the idea of a “heat engine”. Further the second law applied to such engines was used
to establish that thermodynamically reversible engines are the most efficient, and
also that all reversible engines running between the same reservoirs have the same
efficiency.
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Temperature and Entropy

Boltzmann’s tomb with his definition of entropy engraved on it.

The second law of thermodynamics can be used to prove the existence of a new func-
tion of state known as entropy which allows us to determine quantitatively whether
a process is reversible and whether it can occur naturally or not. Entropy is of fun-
damental significance in thermal physics and it is recognition of entropy rather than
any effect upon the design of engines that is the truly important legacy of the de-
velopment of thermodynamics. We shall see that entropy is inextricably linked to
temperature, about which I have said little so far. I was careful when presenting the
second law, to talk in terms of hot and cold, rather than high or low temperature. In
fact, from what I have said so far, it is not necessarily the case that temperature is
linked uniquely to “hot” or “cold”, although this is the case of course. It was realised
rather late in the development of thermodynamics that temperature was not clearly
defined. In an effort to address this, a simple way of defining temperature was de-
vised. As this was felt to be the most basic of all the laws of thermodynamics, and
since numbers one, two and three had already been used, it was called the zeroth
law; this name has stuck. I start this chapter therefore by looking at the meaning of
temperature.

7.1 The Zeroth Law and Empirical Temperature

The Zeroth Law states that

“if a system A is in thermal equilibrium with two other systems, B
and C, then the systems B and C are in equilibrium with each other.”

Two systems are in thermal equilibrium if neither of them changes (no heat is trans-
ferred between them) when they are placed in thermal contact. A moment’s thought
will show that if this was not the case, we could not talk about the temperature of an

53
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object. A thermometer is calibrated by allowing it to come into thermal equilibrium
with some system or systems of fixed temperature, for example a water/ice mixture.
If the thermometer is used to measure the temperature of another system which gives
the same value as the water/ice mixture did, then the new system would be in ther-
mal equilibrium with water/ice if we chose to bring them into thermal contact. This
empirical fact is raised to the status of a law.

The Zeroth Law means that we can assign a label to any system, the label being
the value shown on a thermometer when it is thermal equilibrium with the system.
We call the label temperature. Temperature is a function of state which determines
whether one system will be in thermal equilibrium with another.

7.1.1 Empirical Temperature Scales

To put this into practice we need a thermometer, a device with some easily mea-
sured property, X, that varies with temperature, such as the length of the mercury
column in a mercury-in-glass thermometer, or the pressure of a constant volume gas
thermometer. The temperature θ is some function of X, θ(X). We choose

θ(X) = aX + b,

where a and b are constants, fixed using two easily reproduced calibration tempera-
tures. Such temperatures are called empirical, denoted by the symbol θ.

For instance, the Centigrade temperature scale assigns values of 0 ◦C for the
temperature of ice in equilibrium with water (known as the ice point) and 100 ◦C for
the temperature of boiling water (the steam point). Letting the values of X at these
two points be X0 and X100, the Centigrade temperature is defined as

θ = 100
(

X − X0
X100 − X0

)

. (7.1)

The Centigrade scale is not very good for two reasons. First, the ice and steam points
are not well defined as both depend upon pressure, and dissolved air makes a differ-
ence to the ice point in particular. Second, any errors made during the calibration
are amplified when extrapolating to very low temperatures (≈ −270◦C).

Temperatures are now defined by setting θ(X=0) = 0 (so that b = 0) and choos-
ing one other calibration point. A good choice is the triple point, the unique tem-
perature (and pressure) at which ice, water and water vapour are in equilibrium.
Temperatures are given by:

θ = 273.16
(

X
XTP

)

, (7.2)

where XTP is the value of X at the triple point.
The trouble with empirical temperatures is that, except at the calibration points,

the temperature depends upon the thermometer. For instance, the rate at which the
length of a mercury-in-glass thermometer changes will slow dramatically once the
mercury shrinks to be inside the bulb. The temperature can thus depend upon the
substance (mercury versus alcohol for instance), and the exact dimensions of the
thermometer. When quoting a temperature, we would have to detail the exact design
of the thermometer used, a very unsatisfactory situation.

7.1.2 The Ideal Gas Scale

In constant volume gas thermometers, as the name implies, the volume of a quantity
of gas is kept constant, while the pressure is measured. Fig. 7.1 shows a schematic
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head

Figure 7.1 Schematic figure of a constant volume gas thermometer. The height of the right-
most tube is adjusted to hold the mercury at the level of the mark, keeping the gas volume
constant. The pressure is read from the difference in the heights of the mercury in different
tubes.

picture of a constant volume gas thermometer. For an ideal gas, PV = nmRTI, and
so if V is constant, T ∝ P, so the pressure is used for “X” above:

TI = 273.16
(

P
PTP

)

ρ→0
. (7.3)

The units of this scale are Kelvin, symbol K. The measurement is carried out in 
the limit of zero density since that is when gases tend to the ideal. Unlike other 
thermometers, all gases give the same value of temperature, and so seem in some 
sense more “fundamental” than the others. We will see that this is indeed the 
case. Constant volume gas thermometers are not very convenient, but they can be 
used to calibrate more convenient thermometers.

The Celsius temperature scale is directly related to the ideal gas scale, and is
defined by

t = TI − 273.15, (7.4)

with symbol C (there is no degree, ◦, here). The triple point has temperature 0.01 C
by definition, so using 273.15 in the relation above ensures that the temperature of
the ice point is 0 C = 0 ◦C. The number 273.16 in equation 7.3 was chosen to get a
100 K = 100 C temperature difference between the ice and steam points to coincide
with the Centigrade scale. In fact a slight mistake was made in doing this and the
steam point is actually 99.97 C = 100.00 ◦C. I have loosely referred to temperatures
using the Centigrade symbol, ◦C because it is familiar. I will continue to do so, but
you should be aware of the distinctions between the various scales.

7.2 Thermodynamic Temperature

While Carnot introduced the idea of heat engines, it was Clausius and Kelvin who
developed his ideas to the point where a more fundamental definition of temperature
emerged, along with a new function of state, called entropy. I am going to adopt the
traditional approach to this based upon heat engines, as I think that it follows more
naturally from what has gone before, and is still the most widely known. I refer to
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Figure 7.2 Two Carnot engines run between reservoirs at temperatures θ1 and θ3 via an
intermediate stage at temperature θ2.

Appendix A.1 for a more abstract approach, which the more mathematically inclined
may prefer; it is not required material for this course however.

Carnot’s theorem says that all reversible engines (henceforth “Carnot engines”)
running between the same two reservoirs have the same efficiency, regardless of their
construction. Therefore we can say that the efficiency and the ratio of heat input to
output is a function of the reservoir temperatures only

Q1
Q2
= f (θ1, θ2), (7.5)

where θ1 and θ2 are the empirical  temperatures  of the hot and cold reservoirs respec-
tively. The function  f will depend upon the particular  empirical  temperature  scale in 
use, but its result, Q1/Q2 does not, as long the reservoir  temperatures  do not vary. 
This is a strong  hint that we might be able to come up with a system-independent  
definition of temperature  based upon Carnot engines. To do so, let’s look into the 
form of the function  f . Consider  the situation  depicted  in Fig. 7.2 which shows two 
Carnot engines (by which I mean reversible)  running  between reservoirs at empirical  
temperatures  θ1 and θ3 via an intermediary  at θ2. The system is set up so that there 
is no net flow of heat into or out of the intermediate  reservoir, in which case we can 
also think of the two engines combined into a single engine running  straight  from 
the top to the bottom reservoir and producing  total work W12 + W23. The ratios  of 
heat input to output of the two engines considered separately and the two 
considered as one are given by:

Q1
Q2

= f (θ1, θ2), (7.6)

Q2
Q3

= f (θ2, θ3), (7.7)
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Q1
Q3

= f (θ1, θ3). (7.8)

Therefore
f (θ1, θ3) = f (θ1, θ2) f (θ2, θ3). (7.9)

Although θ2 appears on the right-hand side, it does not on the left, and the only way
that this can be true for arbitrary θ2 is if the function f is of the form

f (θ1, θ2) = g(θ1)
g(θ2) , (7.10)

where g is a function of the empirical temperature. Again, the form of g will depend
upon the empirical temperature scale we are using, but its output for all bodies of
the same temperature in the sense of being in thermal equilibrium must be the same,
up to an arbitrary multiplicative constant, because of Carnot’s theorem. Now comes
the clever bit: let’s use T = g(θ) for our temperature! We can then write

Q1
Q2
=

T1
T2
. (7.11)

where T1 and T2 are the “thermodynamic temperatures” of the reservoirs. This equa-
tion defines the ratio of thermodynamic temperatures of two reservoirs as the ratio of
heats exchanged during the operation of a reversible engine running between them.
This defines thermodynamic temperature up to a multiplicative constant. If a calibra-
tion point is defined, then the scale is uniquely determined. The triple point of water
is defined to have T = 273.16 K, the number chosen so that there are 100 K between
the ice and steam points, consistent with the standard usage of the Centigrade scale.

7.2.1 Temperature and Hotness

We know from the Second Law that if Q1 is extracted from the hotter reservoir then
some work can be obtained and therefore Q2 < Q1, which implies that T2 < T1.
This implies that the hotter reservoir has the higher temperature, as expected. Note
that there is an element of choice here. I could have equally well written

f (θ1, θ2) = T (θ2)
T (θ1)

, (7.12)

in place of Eq. 7.10 which would have reversed the ordering of temperature and
hotness, although there would always be a one-to-one correspondence between the
two properties in any scheme.

7.3 Efficiencies of Engines, Heat Pumps and Refriger-

ators

Eq. 7.11, which says that Q1/Q2 = T1/T2, leads immediately to expressions for
maximum efficiency factors for engines, heat pumps and refrigerators. For an engine

ηE =
W
Q1
=

Q1 − Q2
Q1

=
T1 − T2

T1
. (7.13)

Thus a heat engine running between the steam point (T1 = 373 K) and the ice point
(T2 = 273 K) has a maximum efficiency of ∼ 27%. It is clearly of advantage to raise
the hot reservoir to the highest possible temperature.
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For heat pumps we are interested in the reverse, i.e. the ratio of heat dumped to
the hot reservoir to the work input

ηHP =
Q1
W =

Q1
Q1 − Q2

=
T1

T1 − T2
. (7.14)

The point here is that for small temperature differences, one potentially has a huge
gain. For instance to heat a house to 18◦C with a river flowing by of temperature 8◦C,
ηHP = 29! Real heat pumps fall a long way short of this ideal, and have large initial
costs, which is why they are relatively rare. However, they are certainly used and can
produce considerable savings in heating costs. If only “heat” as in hot water could
be transported efficiently through pipes one could easily imagine power companies
setting up heat pumps on the coast to supply cities with heating; the savings in energy
usage could be enormous if this were possible.

Finally, in refrigerators we are interested in the amount of heat extracted from
the cold reservoir per unit work

ηR =
Q2
W =

Q2
Q1 − Q2

=
T2

T1 − T2
. (7.15)

This again can be much larger than unity, but we can always expect a considerable
drop off in efficiency the larger the temperature difference.

7.4 Goodbye to TI

In principle measurement of thermodynamic temperature is simple. One defines a
reference temperature, e.g. the triple point of water, 273.16 K. Then to measure the
temperature of any other object, one runs a reversible heat engine between the two
and measures the heats Q1 and Q2. Then by the fundamental relation, Q1/Q2 =
T1/T2, the temperature of the object follows. However, this is complex and in no
way practical. Is there another way? The answer is yes, and in this section I will
show that the thermodynamic temperature is in fact identical to the ideal gas scale.
Although the latter is tricky to measure in practice, it is at least possible. The key to
the proof is Carnot’s cycle which works with an ideal gas. From this we can obtain
an expression of the heat ratio involving the ideal gas scale, which leads to the direct
equivalence of thermodynamic and ideal gas temperatures.

The heat Q1 can be calculated from step 1 of the Carnot cycle, when the gas
expands isothermally in contact with the hot reservoir (point A to point B, Fig. 6.5,
section 6.5). As we saw in section 4.9.1, all heat absorbed in an isothermal expansion
of an ideal gas is converted to work, so the work performed in this stage gives the
heat absorbed Q1. Therefore from Eq. 5.12 and putting V1 = VA, and V2 = VB, and
TI = (TI)1, we get

Q1 = nmR(TI)1 ln VB
VA
. (7.16)

(NB: there is a switch of sign here which inverts the ratio within the logarithm,
because Q1 equals the work done by the gas.) Similarly Q2, the heat given up to
the cold reservoir, comes from step 3 when the gas is isothermally compressed in
contact with the cold reservoir (point C to D), in which case

Q2 = nmR(TI)2 ln VC
VD
. (7.17)
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Figure 7.3 A Carnot engine is used to transfer heat to a system. The engine runs between
a reservoir at temperature T0 and a part of the system at temperature T .

Therefore
Q1
Q2
=

T1
T2
=

(TI)1
(TI)2

ln(VB/VA)
ln(VC/VD)

. (7.18)

The middle term of this equation is just the definition of thermodynamic temperature.
The equivalence between the thermodynamic and ideal gas scales is proved if we can
show that the last term equals unity. We can do this if we remember that points B
and C, and points D and A are connected by reversible adiabatics for which we know
TIVγ−1 = const. Therefore

(TI)1Vγ−1
B = (TI)2Vγ−1

C , (7.19)
(TI)1Vγ−1

A = (TI)2Vγ−1
D . (7.20)

Dividing these two equations shows that VB/VA = VC/VD and so

Q1
Q2
=

T1
T2
=

(TI)1
(TI)2

. (7.21)

Therefore, the ideal gas temperature scale does indeed have a fundamental signifi-
cance since it is identical to the thermodynamic temperature scale. From now 
on, there will be no more “TI”, but T instead.

Having finally dealt with temperature, I move on to entropy.

7.5 Entropy

Carnot’s engine provides us with a means to deal quantitatively with the transfer of
heat and will lead to a definition of a new function of state, entropy.

Consider the situation depicted in Fig. 7.3 which shows the transfer of an in-
finitesimal amount of heat d̄Q to a system via a Carnot engine which does useful
work d̄W . For each infinitesimal cycle of the Carnot engine the heat transferred from
the reservoir is

d̄Q0 = T0
d̄Q
T . (7.22)

The part of the system which connects to the Carnot engine is at temperature T , but
we do not require the whole system to be at this temperature. We expect that T will
change as the Carnot engine runs over many cycles and heat is exchanged between
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the system and the reservoir. By making each cycle infinitesimally small we can take
T as fixed over the cycle. Thus, all the infinitesimal Carnot cycles are reversible, but
the system can undergo any process, reversible or not. The system may do some
work, but all heat transfer in or out of it is done via the Carnot engine.

Now we take the system through a “large” cycle, encompassing infinitely many
complete cycles of the Carnot engine, returning everything to its initial state, so that
the internal energy (of system plus Carnot engine) is unchanged. Hence the total
heat Q0 extracted from the reservoir is equal to the work done by the system and
the Carnot engine. By the Kelvin-Planck statement of the Second Law these must
be less than or equal to zero or we would have converted heat completely into work
with no other effect. Therefore

Q0 =

∮

d̄Q0 = T0

∮ d̄Q
T ≤ 0, (7.23)

where the circles through the integral signs indicates that the system executes a cycle.
Since T0 > 0 we deduce that

∮ d̄Q
T ≤ 0 . (7.24)

This is Clausius’ inequality and is a very important relation in thermodynamics.
As usual, d̄Q is the heat transferred to the system. It’s worth noting carefully the
significance of T in the above result. In a general (irreversible) cycle, the different
parts of the system might not be in thermal equilibrium with each other and it might
be impossible to define a temperature for the system as a whole. T appeared in the
argument above as the temperature of the Carnot engine as heat is transferred across
the boundary of the system. So, T is the temperature at which heat is supplied to the
system.

If the cycle is reversible, then by running it in reverse we exchange every d̄Q
with −d̄Q so that

∮

d̄Q/T ≥ 0. But if this and 7.24 are simultaneously true we must
have

∮ d̄QR
T = 0, (7.25)

where the subscript R denotes reversible. Clausius’s inequality becomes an equality
for reversible changes.

This last equation implies the existence of a new function of state, in a way
similar to that in which the First Law implies the existence of internal energy, U.
Consider for example Fig. 7.4 in which a system is taken through a cycle. If done
reversibly we can write

∮

d̄QR
T =

(∫ B

A

d̄QR
T

)

1
+

(∫ A

B

d̄QR
T

)

2
= 0, (7.26)

where the subscripts on the brackets around the integrals refer to the path traversed.
Therefore switching the limits on the second integral we have

(∫ B

A

d̄QR
T

)

1
=

(∫ B

A

d̄QR
T

)

2
. (7.27)

In other words, the value of this integral is independent of the path taken. This is the 
same as the First Law in which the work done is independent of the path if no heat 
is involved (adiabatic). Therefore in a similar way, there must be a function of 
state,
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Figure 7.4 A system is taken through a cycle from A to B via path 1 and then back to A via
path 2. Done reversibly, this establishes the existence of entropy; see text for how it does so.

S , such that

S B − S A =

∫ B

A

d̄QR
T . (7.28)

The new function of state is called the entropy. The fundamental equation for a
change of entropy of a system is then

dS = d̄QR
T , (7.29)

where the R is a reminder that this only applies to reversible transfer of heat and T is
the temperature at which heat is supplied to the system. An immediate consequence
of this is that if a change is reversible and adiabatic as well (d̄Q = 0), then dS = 0.
Therefore

the entropy of a system is constant for reversible, adiabatic changes.
Entropy is a “label” that uniquely defines reversible adiabatics.

This can in fact be shown very directly from the Second Law, as shown in Ap-
pendix A.1, although to obtain the relation of Eq. 7.29 requires some rather abstract
analysis.

Now consider that path 1 in Fig. 7.4 is irreversible (so it can’t really be drawn
on the diagram because the system does not pass through a continuous set of equi-
librium states!) while path 2 remains reversible. Then from Clausius’s inequality,
Eq. 7.24, I can write

∮ d̄Q
T =

(∫ B

A

d̄Q
T

)

1
+

(∫ A

B

d̄QR
T

)

2
≤ 0. (7.30)

Using Eq. 7.28, the second term can be written
(∫ A

B

d̄QR
T

)

2
= S A − S B (7.31)

and therefore in general

S B − S A ≥
∫ B

A

d̄Q
T , (7.32)

or for an infinitesimal heat transfer

d̄Q ≤ T dS , (7.33)
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where T is the temperature at which heat is supplied to the system. This is Clausius’
inequality in a different form, and is a very important relation. For reversible heat
transfer, it becomes an equality.

7.6 The Increase of Entropy and Heat Death of the

Universe

For an isolated system d̄Q = 0, so Clausius’ inequality in the form of Eq. 7.33 shows
that

dS ≥ 0. (7.34)
In words, the entropy of an isolated system can never decrease. This is a very
remarkable result, as it imposes a direction in which processes can occur. Applied
to the Universe as a whole, the entropy will carry on increasing until it can no longer
do so, by which point the Universe will be in a state of equilibrium and it will no
longer be possible to extract work from any process. This is the so-called heat death
of the Universe that was much discussed in the 19th century.

The increase of entropy gives us another way to decide whether a process is
reversible or not:

reversible processes do not change the total entropy of the Universe

7.7 Calculations Involving Entropy

Entropy will be an unfamiliar concept to you. One way to become happy with it
is to carry out lots of example calculations of entropy changes. I will now do just
this. One thing to realise is that you are free to assume reversible changes for the
separate components of a system because entropy is a function of state. It does not
matter how you calculate the change as long as the system begins and ends in an
equilibrium state. Therefore, you might as well make things simple and do things
reversibly when you can.

7.7.1 Heat Engines

The setup of a heat engine makes it particularly simple to calculate entropy changes.
The hot reservoir has heat Q1 removed so

∆S 1 = −
Q1
T1
. (7.35)

Similarly
∆S 2 =

Q2
T2
. (7.36)

When the engine completes a cycle, the entropy change of the Universe is:

∆S = Q2
T2
− Q1

T1
. (7.37)

If the engine is reversible, then Q1/T1 = Q2/T2 and ∆S = 0, as expected. If the 
engine is not reversible then it is less efficient, or equivalently Q2 is larger for a 
given Q1 than in the case of a reversible engine, and ∆S > 0, as expected again. 
Irreversible  engines are therefore entropy source.
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7.7.2 Entropy Change during a Change of Phase

The change of a liquid to a gas or solid to liquid is called a change of phase. As we
know this involves “latent heat”, heat absorbed at constant temperature. This implies
that an increase of entropy has occurred. This is particularly simple to calculate
because there is no change in temperature. To boil mass m of liquid requires input
of

Q = mL, (7.38)

where L is latent heat of vaporisation, at temperature Tb. Therefore

∆S l =
mL
Tb
. (7.39)

In this case, an entropy increase is associated with increasing disorder. Note that it
is only the entropy of the substance that has increased; the entropy of the Universe
could stay constant if the process was carried out reversibly because then you would
have supplied heat Q at temperature Tb, and so the entropy of the surroundings
would have dropped by ∆S l.

7.7.3 Hot objects placed in water

Suppose you heat a lump of iron to temperature TFe, and then place it into a large
quantity of water of temperature TW. The final temperature will be ≈ TW, and as
we have seen such a process is irreversible. We therefore expect the total entropy to
increase.

We need to calculate the change in entropy of the water and the iron. The change
for water is relatively easy. Its temperature is constant, but heat Q = mFeCFe(TFe −
TW) flows into it from the iron, giving a change in entropy of

∆S W = mFeCFe
TFe − TW

TW
, (7.40)

because the temperature of the water hardly changes. The iron is trickier because
as it loses heat, it cools down so the temperature T that we use in the relation dS =
d̄QR/T changes all the time. We therefore need to integrate. Remembering that
d̄Q = mFeCFe dT , then

∆S Fe =

∫ TW

TFe

mFeCFe dT
T = −mFeCFe ln TFe

TW
. (7.41)

The total entropy change of the Universe is then

δS = ∆S W + ∆S Fe = mFeCFe

(

TFe − TW
TW

− ln TFe
TW

)

. (7.42)

One can show that the term in brackets is indeed positive (or zero if TFe = TW),
as expected, so the entropy of the Universe does indeed increase in this irreversible
process.

7.7.4 Isothermal Expansion of Gas

During the isothermal expansion of an ideal gas, the heat absorbed equals the work
performed by the gas. Therefore

d̄QR = T dS = P dV, (7.43)
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and so
∆S gas =

∫ V2

V1

P dV
T . (7.44)

From the ideal gas law, PV = nmRT , and so

∆S gas = nmR
∫ V2

V1

dV
V = nmR ln V2

V1
. (7.45)

If carried out reversibly there is an exactly compensating decrease in the entropy
of the surroundings. However, since entropy is a function of state, this formula is
correct regardless of how the volume change is carried out, as long as we start and
end in equilibrium at temperature T .

7.7.5 Joule Expansions

Joule expansions are classic examples of irreversible changes. In this case no heat is
transferred, so the surroundings do not change their entropy. However, in expanding
from V1 to V2, the entropy of the gas does change according to the equation of the
previous section

∆S = nmR ln V2
V1
. (7.46)

This is therefore the change of entropy of the Universe, and since V2 > V1, then
∆S > 0 as expected.

7.8 Generating Entropy

Any irreversibility generates entropy; entropy is not conserved. An example is the
Sun, which is a huge entropy source. The Sun generates 4× 1026 W at a temperature
of T = 15 × 106 K at its centre. This corresponds to an entropy generation rate of

4 × 1026 W
15 × 106 K

= 2.67 × 1019 J K−1 s−1. (7.47)

All this power is radiated at its surface at a temperature of 5700 K, so entropy is
generated at

4 × 1026 W
5700 K

= 7.02 × 1022 J K−1 s−1, (7.48)

at the surface. Between the core and the surface irreversible heat transfer processes
have generated more entropy. Still more is generated when the radiation reaches
Earth, is absorbed and then re-radiated at about 300 K.

7.9 Statistical Interpretation of Entropy

Entropy shows in which direction processes can occur and distinguishes reversible
adiabatics, but just what is it? A question like this is almost always best answered
at a microscopic level. For example, temperature is related microscopically to the
mean energy per particle, an easy concept to take on board. This is even more the
case with entropy. The Joule expansion is probably the easiest way to see this.

The increase of entropy during a Joule expansion indicates that it is irreversible.
In other words, gas molecules in a box of volume V will never spontaneously all
move to volume V/2. But surely this is nonsense isn’t it? If you had only 2
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molecules, there would be a 25% chance at any one time that both were in, say, the
left-hand half of the box — nothing irreversible about that. How about N molecules?
The chance of finding all of these in the left-hand side of the box is 1/2N . For large
N, this is tiny! There are 2N more ways to arrange N molecules in the whole box
than in only half of it. This number is typically enormous! To see how big, note that

2N = 10(log 2)N = 100.3N . (7.49)

For gas at STP, for which N ≈ 2.5 × 1025 m−3, we therefore find that occupation of
the whole of a cubic metre is approximately

101025 (7.50)

times larger than occupation of half a cubic metre. Compare this with the age of
the Universe, which is of order 1017 seconds. If you looked at the box once every
second for the age of the Universe, the chance that you would find all the gas on one
side is of order

1017−1025
. (7.51)

The “17” is tiny compared to 1025. Thus a “Joule compression” will not happen in
the age of the Universe, or even many, many, many times the age of the Universe.
For practical purposes, it will indeed never happen.

We can investigate this some more. Let us count the number of ways in which 
we can distribute N molecules into two halves of a box.2 At the microscopic level, 
each molecule can be in either the left or right half (but not both), and there are 2N 

possibilities in total: these are the distinct microstates. However, at a macroscopic 
level, all that matters is how many molecules are in each half: we can label these 
macrostates by the number or fraction of the molecules in, say, the right half of 
the box (since the total number is fixed). The number of ways in which we can 
have n molecules out of N on the right is simply the number of combinations of n 
distinguishable  objects drawn from N, which is

N!
(N − n)! n!

. (7.52)

If there are N = 10 molecules in total, for example, there are 11 possible macrostates,
with microstates distributed as follows:

macrostate
right left number of microstates

0 10 1
1 9 10
2 8 45
3 7 120
4 6 210
5 5 252
6 4 210
7 3 120
8 2 45
9 1 10

10 0 1
2You can think of these molecules as classically identical, meaning that they all have the same

properties, but can be individually distinguished.
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Figure 7.5 Multiplicity distributions for states of N = 10, 100, 1000 and 10 000 molecules
distributed in two halves of a box.

With just 10 molecules we can begin to see that there are more microstates corre-
sponding to macrostates with equal or nearly equal numbers of molecules in the two
halves. As N increases it becomes less and less probable to have anything other
than (almost) equal numbers in the two halves. I have illustrated this in Fig. 7.5.
I considered using, in turn, N = 10, 100, 1000 and 10 000 molecules. In each
case I did 100 000 trials of distributing the N molecules at random and with equal
probability into the two halves of a box. For each set of trials I counted how often
each macrostate (expressed as the fraction of molecules ending up in the right half)
occurred. The results are presented as four graphs of the relative frequencies with
which each macrostate occurred. What you can see is that as N increases, there is
a sharper and sharper peak centred at 50% occupancy. This should make it easy to
believe that with N ≈ 1023 molecules you essentially always find a macrostate with
equal occupancy in the two halves of the box.

All this suggests that entropy may be related to the number of ways of arranging
molecules, which is known as the multiplicity, W . The multiplicity of a macrostate
is the number of microstates which correspond to it. For N molecules expanding
from volume V1 to V2 (so V1 and V2 label the macrostates), the multiplicity changes
by

W2
W1
=

(

V2
V1

)N
. (7.53)

Very large numbers are easier to handle by taking their logarithm. The natural log
of the multiplicity increase is given by

ln W2
W1
= N ln V2

V1
. (7.54)

This is very closely related to the relation of Eq. 7.46. Indeed if we suppose that
S = k ln W , we have

∆S = S 2 − S 1 = k(ln W2 − ln W1)

= k ln W2
W1
= kN ln V2

V1
= nmNAk ln V2

V1
= nmR ln V2

V1
, (7.55)
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using Eq. 7.54, and that there are NA molecules in a mole. This is exactly the same
as Eq. 7.46. The relation

S = k ln W (7.56)

is one of the most famous in physics. It was proposed by Boltzmann and is carved on
his gravestone. It gives a very intuitive idea of entropy as a measure of the number of
microscopic arrangements or microstates of a system, always subject to constraints
on energy, volume, etc.

Boltzmann’s relation is part of the foundation of statistical mechanics and makes 
it clear why reversible mechanical laws nevertheless lead to macroscopic irreversibil-
ity. All this is fairly clear for volume changes, but also applies to temperature in-
creases. This however is much more difficult to deal with.

Boltzmann’s interpretation makes the reason for the ever-increasing entropy of
the Universe simple: the Universe is always changing to a more probable config-
uration, in the sense of more available microstates. The new configurations are so
much more probable that the change is irreversible. The chance of the entropy of the
Universe decreasing by as little as 0.000001 J K−1 is so tiny as to make the chance
of being hit by a meteorite enormous by comparison.

7.10 Summary

In the hands of Clausius and Kelvin, Carnot’s theorem led to the definition of an
absolute, as opposed to empirical, temperature scale. At the same time a new func-
tion of state was recognised, called entropy. The key relation to remember for the
entropy change of a system absorbing heat d̄Q, with the heat transfer occurring at
temperature T , is Clausius’ inequality in the form dS ≥ d̄Q/T . When the change is
reversible, this reduces to dS = d̄QR/T where T is the temperature of the system.

The important consequence of Clausius’ inequality is that the entropy of an iso-
lated system always increases. This mysterious function is simplicity itself when
viewed microscopically, following Boltzmann: a system always tends towards states
of greater multiplicity given external constraints.
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8
Thermodynamic Potentials

At this point I have more-or-less finished with the introduction of fundamental new
physics, and we move onto applications. Even so we will need to develop new ma-
terial to make straightforward use of entropy and the like. Thus in this chapter I will
introduce what are called thermodynamic potentials which are of great importance
in chemistry and biochemistry. I begin with an equation that summarises the First
and Second Laws in one go.

8.1 The Central Equation of Thermodynamics

There is no commonly accepted description of the important equation I am now 
going to introduce, I will call it the central equation of thermodynamics. We have 
learned that the First Law can be written as

d̄Q = dU − d̄W, (8.1)

and that for reversible pressure work we can write

d̄QR = dU + P dV. (8.2)

Now we also learnt in the last chapter that we can write

d̄QR = T dS , (8.3)

and therefore we have
T dS = dU + P dV . (8.4)

This is the central equation. It has a wonderful property: although derived for re-
versible changes only, it applies generally. This is because all variables are functions
of state, so the method of change is immaterial. However, it is essential that the sys-
tem starts and ends in equilibrium so that it is meaningful to talk about pressure,
temperature and entropy.

8.2 Entropy of an Ideal Gas

I have already discussed the entropy change of an ideal gas during a Joule expansion,
but now I can use the central equation to derive a more general relation. For one

69



70 8 Thermodynamic Potentials

mole of ideal gas we have P = RT/V and dU = CV dT (internal energy a function
of temperature only). Therefore we can write Eq. 8.4 as

dS = CV
dT
T + RdV

V . (8.5)

This can immediately be integrated to give

S = S 0 +CV ln T + R ln V, (8.6)

where S 0 is a constant of integration (note that this constant is not determined in
classical thermodynamics but is by statistical thermodynamics). This relation shows
that the entropy of an ideal gas increases with both T and V . In other words in-
creasing temperature must increase the number of available states, which it does
because more energy states become available for the atoms. Remembering that for
a monatomic gas

CV =
3
2R = 3

2 NAk,

Boltzmann’s relation S = k ln W implies that

W ∝ T 3NA/2,

or ∝ T 3/2 for one atom. This is a relation that can be explained by statistical thermo-
dynamics.

8.3 Thermodynamic Potentials

Changes can only occur if the entropy of the Universe increases. For instance, we
might have two chemicals mixed in a vessel. whether these react or not depends upon
whether the entropy of the Universe increases as a result of their reaction. Similarly
some elements, such as tin and sulphur, and perhaps most famously of all, carbon
(graphite and diamond), can exist in multiple forms or “allotropes”. Which is the
stable one again depends upon whether the entropy of the Universe increases as one
form converts to another. Note that this only means that change can occur, not that
it will occur because potential barriers can make such reactions very slow indeed.

Framed in these terms, it seems odd that we need to account for the entire Uni-
verse in determining whether a change will occur, but it is simply because reactions
do not usually occur in isolation. Plain ∆S > 0 for a system only applies if we
can mechanically and thermally isolate it, but thermal isolation for ever cannot be
achieved and so we must at least be able to deal with the effect heat transfer has.
This leads naturally to the definition of some new functions of state. Luckily they
are just combinations of ones already encountered.

I will start with the quantity called enthalpy. In what follows, a subscript 0 
on a quantity refers to its value in the surroundings,  while plain variables refer to 
the system of interest.

8.3.1 Enthalpy

If a reaction occurs in a vessel of constant volume, then the First Law tells us that
the heat given off, −Q, is simply related to the change of internal energy by

−Q = −∆U. (8.7)
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However, it is often easier to perform reactions at constant pressure, when we need to
account for any change in volume. Thus consider a change of a system in pressure
equilibrium with its surroundings, i.e. P = P0, at least at the start and end of the
change, although not necessarily while the change occurs. From the First Law we
have

∆U = Q − P0∆V, (8.8)

and so the heat given off, −Q, is now

−Q = −(∆U + P0∆V). (8.9)

Now since P = P0, a constant, at the start and end, we can write

−Q = −(∆U + P∆V) = −∆(U + PV) = −∆H, (8.10)

where
H = U + PV (8.11)

is a function of state called the enthalpy. −∆H is the heat given off in chemical
reactions at constant pressure. If you look at thermodynamic data tables, you are far
more likely to see the enthalpy listed than the internal energy, even though the latter
is more fundamental. The PV term in the enthalpy corrects for work done during
any volume change. Just as we have seen that

CV =

(

∂U
∂T

)

V
,

it is obvious that

CP =

(

∂H
∂T

)

P
.

Thus most “specific heat capacities” are really “specific enthalpy capacities”, al-
though the difference is large only for gases.

Thermodynamic data books include “enthalpies of formation”, ∆H f , from stan-
dard forms of elements. Thus the enthalpy of formation of the elements themselves
is defined as zero. For instance, both hydrogen in the form of H2, and oxygen as O2
have ∆H f = 0. Water on the other hand (H2O) has ∆H f = −242 kJ mole−1, and the
formation of 1 kg of water from hydrogen and oxygen releases 242/0.018 = 13.4 MJ
of heat (molar mass of water = 18 g).

Example 8.1 The enthalpies of formation of carbon monoxide (CO) and carbon
dioxide (CO2) are −110.5 kJ mole−1 and −393.5 kJ mole−1 respectively. How
much heat is produced per mole of carbon monoxide when it is burnt to produce
carbon dioxide?

Answer 8.1 One mole of CO plus half a mole of O2 produces one mole of CO2.
The enthalpy of formation of O2 is zero by definition, and therefore the heat
released is given by

−∆H = −(∆H f (CO2) − ∆H f (CO)) = 283 kJ mole−1.
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8.3.2 Helmholtz Free Energy

I now look at a quantity of great importance in physics as it connects the microscopic
and macroscopic properties of substances. Consider once more a reaction taking
place at constant volume and let it be in temperature equilibrium at the start and
finish. We have already seen that the heat given off is given by −Q = −∆U, but
now I want to consider when such a reaction can take place spontaneously (that is
without any intervention to make it happen).

We know that we must obey

∆S universe = ∆S surroundings + ∆S ≥ 0. (8.12)

We have to include the surroundings now because the reaction is not thermally iso-
lated, and therefore the condition is not the plain-and-simple ∆S ≥ 0 that applies in
the adiabatic d̄Q = 0 case.

The temperature of the surroundings does not change while heat Q transfers from
it to the system, and so

∆S surroundings = −
Q
T0
. (8.13)

(We are not including anything else that may be happening in the Universe!) We have
in fact rederived Clausius’s inequality since the previous two statements combine to
give Q ≤ T0 dS , however it is less clear what is going on if one starts from this point.

Now from the First Law, Q = ∆U (no work in this case), and so we get

∆S − ∆U
T0
≥ 0. (8.14)

Now since T = T0 a constant at the start and finish, we can write (multiplying
through by T )

T∆S − ∆U ≥ 0. (8.15)
or, equivalently,

∆F ≤ 0, (8.16)
where, the Helmholtz free energy F, is another function of state and is defined by

F = U − TS . (8.17)

I have shown that changes (e.g. chemical reactions) at constant volume and tem-
perature only occur spontaneously if ∆F ≤ 0. Equilibrium is reached therefore when
F is a minimum at which point dF = 0. The TS part of F is the usual entropy part
that gives ∆S ≥ 0 for a thermally isolated system. The internal energy part enters to
account for the heat transferred from the surroundings, in terms of the equivalent en-
tropy change of the surroundings. Above all it is entropy which determines whether
a change is possible or not, and F provides a convenient way of accounting for it.

One can see that changes are favoured either if ∆U < 0 (the reaction gives off
heat), or if ∆S > 0 (there is an increase in entropy). In some cases both conditions
are met, in others neither condition is met. Then there are the interesting in-between
cases where perhaps ∆U > 0 (the reaction absorbs heat) but ∆S > 0. Then whether it
occurs depends upon the temperature, becoming more favourable as the temperature
is increased. Many such reactions occur: for instance the solution of ammonium
nitrate in water is endothermic (it absorbs heat) but it goes ahead anyway because
of the large increase in entropy (of the system) that results. This it must do to offset
the decrease in the entropy of the surroundings that has occurred as a result of the
absorption of heat.
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8.3.3 Gibbs Free Energy

As usual, experimentally it is easier to operate under conditions of constant pressure
rather than constant volume. All the reasoning of the previous section hold true
except where we set Q = ∆U, we must now set Q = ∆H as explained in section 8.3.1.
Therefore rather than F = U − TS as the function that determines whether changes
can occur, we get

∆G ≤ 0, (8.18)
where

G = H − TS = U − TS + PV . (8.19)
G is a function of state called the Gibbs free energy. It is named in honour of Willard
Gibbs who almost single-handedly developed these ideas. Again, G is a minimum
in equilibrium, when dG = 0 for all possible changes.

The internal energy U, the enthalpy H = U + PV , the Helmholtz free energy
F = U − TS and the Gibbs free energy G = U − TS + PV are collectively called
the “thermodynamic potentials” because like potential energy, they are minimised in
equilibrium. It is important to realise that which one is minimised depends upon the
constraints. In practice F and especially G are the most useful in this respect.

8.3.4 Why “Free Energy”?

There is a very nice interpretation of F and G: the maximum amount of work that
can be obtained during a change of a system of constant volume V and temperature
T is −∆F, whereas it is −∆G when T and P are constant (at the start and end of the
change, not necessarily in between). It will suffice to show this for the Gibbs free
energy, G. From the first law, the work we can extract from a system, −W is given
by

−W = −dU + Q. (8.20)
If the volume changes, then we lose some of this in work against the surroundings,
P0∆V , and so can extract useful work

Wuse = −W − P0 dV = −dU − P0 dV + Q. (8.21)

Now from Clausius’ inequality, Q ≤ T0 dS , and therefore

Wuse ≤ −dU − P0 dV + T0 dS . (8.22)

Now, as usual, at the beginning and the end, T0 = T and P0 = P and therefore we
can write

Wuse ≤ −d(U − TS + PV) = −dG. (8.23)
Therefore, as claimed −∆G is the maximum amount of work that can be obtained. I
will go through an example of this later in this chapter.

8.4 Natural Variables

The thermodynamic potentials have a different use, as they can provide expressions
useful for manipulating the partial derivatives that abound in thermodynamics. This
also provides what is probably the easiest way to remember their definitions (i.e. F =
U − TS etc). You first need to remember the “central equation”, T dS = dU + P dV ,
which can be written as

dU = T dS − P dV. (8.24)
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We know that because of the equation of state one needs only have two independent
variables. In this case the “natural” ones are S and V , i.e. U = U(S ,V). Now from
mathematics we know that

dU =
(

∂U
∂S

)

V
dS +

(

∂U
∂V

)

S
dV. (8.25)

This applies because U is a function of state! Therefore comparing the expression
from physics with that from maths we can write down some new relations:

T =
(

∂U
∂S

)

V
, (8.26)

and
P = −

(

∂U
∂V

)

S
. (8.27)

Actually, these are not especially useful since it is not immediately obvious how one
takes a derivative with respect to entropy. It might have been better had it been S dT
rather than T dS . Consider then subtracting d(TS ) from Eq. 8.25. Then, since

d(TS ) = T dS + S dT, (8.28)

we get
dU − d(TS ) = d(U − TS ) = −S dT − P dV, (8.29)

or, recognising the Helmholtz free energy F,

dF = −S dT − P dV. (8.30)

We now have a function of state on the left again, but with natural variables T and
V , i.e. F = F(T,V). We can then deduce, as with the expression for dU, that

S = −
(

∂F
∂T

)

V
, (8.31)

and
P = −

(

∂F
∂V

)

T
. (8.32)

Now these equations are useful because it tuns out that F can be calculated rather
directly in statistical thermodynamics. Starting with a microscopic model one can
calculate an expression for F, and then having done so, calculate the pressure and
entropy, and then U = F + TS , etc.

The subtraction of “d(TS )” was not random: we must end up with a function
of state on the left and only 2 dependent variables on the right. F then emerges
naturally. We cannot for instance subtract d(PS ) because it would not leave two
terms on the right. Neither could we simply subtract T dS because then the left-
hand side would not be a “perfect differential” i.e. a differential of a function because
dU − T dS , dX, where X is a function of state.

Having done this once, it is easy to repeat the process. For instance P and V can
be swapped by adding d(PV). If we do this to Eq. 8.25 we get

dH = d(U + PV) = T dS + V dP, (8.33)

and equivalent relations

T =
(

∂H
∂S

)

P
, (8.34)
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and
V =

(

∂H
∂P

)

S
. (8.35)

If we now subtract d(TS ) from dH, we get

dG = d(H − TS ) = −S dT + V dP, (8.36)

and equivalent relations

S = −
(

∂G
∂T

)

P
, (8.37)

and
V =

(

∂G
∂P

)

T
. (8.38)

Notice how the dependent variables match those discussed earlier. For instance G
applies for reactions at constant T and P, and indeed the natural variables for G are
T and P.

8.5 Example of Use of Gibbs Free Energy

I finish this chapter with an example of the use of the Gibbs free energy G.

Example 8.2 The density of graphite is 2.25 × 103 kg m−3 while that of diamond
is 3.51×103 kg m−3. Measured at 298 K, the enthalpy of formation of graphite is
0, while that of diamond is ∆H f = 1.897 kJ mole−1. The difference in entropies
of diamond and graphite is

S d − S g = −3.36 J K−1 mole−1.

(a) What is ∆G going from graphite to diamond at 298 K?
(b) Is diamond or graphite the stable form of carbon at 298 K and 1 atm?
(c) Assuming that graphite and diamond are incompressible, at what pressure

are they in equilibrium at 298 K?

Answer 8.2 (a) Starting from G = H − TS , then

∆G = Gd −Gg = Hd − Hg − T (S d − S g)
= 1897 J mole−1 − 298 K × (−3.36 J K−1 mole−1) = 2898 J mole−1.

(b) Since ∆G > 0, graphite is the stable form. Diamond can change sponta-
neously to graphite at 298 K since then ∆G < 0, but we don’t see it happen
because of a large activation energy.

(c) We use the relation dG = −S dT + V dP (Eq. 8.36), from which

d(Gd −Gg) = (Vd − Vg) dP.

One mole of carbon has mass 0.012 kg, so the molar specific volumes are
Vg = 0.012 kg mole−1/2250 kg m−3 = 5.333 × 10−6 m3 mole−1 and Vd =
3.419 × 10−6 m3 mole−1. Therefore

d(Gd −Gg) = −1.91 × 10−6 m3 mole−1 dP.

Therefore the difference in G decreases with pressure, and will reach zero
when dP = 2898 J mole−1/1.91 × 10−6 m3 mole−1 = 1.5 × 109 N m−2, or
15,000 atmospheres. Above this pressure, diamond is the stable form of
carbon at 298 K.
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8.6 Summary

The thermodynamic potentials are accounting tricks: the fundamental property is
always that the total entropy of the Universe increases. However, they are very
convenient and you can find extensive tables for many different substances. F and
G are the driving force of reactions. In this sense they are potentials. The Gibbs free
energy G in particular is very useful in the study of chemical reactions and can be
thought of as the driving force of chemical reactions.



9
Phase Equilibria

When ice and water or water and its vapour  exist together, we refer  to each differ-
ent state as a phase. The existence  of distinctly  different phases for the same set of 
molecules  is a familiar and yet marvellous phenomenon  which has fascinated  people 
for many years. I will now apply thermodynamic potentials to the equilibrium 
between phases. As usual, classical thermodynamics can tell you what will happen, 
but not why. Later on we will see that the existence of phases is a result of 
interatomic forces, but that will require delving down to the microscopic scale once 
more.

9.1 The Clausius–Clapeyron Equation

Consider two phases in equilibrium (e.g. liquid/vapour). They clearly have the same 
temperature T and pressure P. These are the independent variables of the Gibbs free 
energy, G. Thus it turns out that it is useful to consider a situation in which the liq-
uid/vapour system is in temperature and pressure equilibrium with its surroundings  
for which we know that G is a minimum. Now consider the specific Gibbs free en-
ergies of the phases, i.e. G per unit mass or per mole, g1 and g2, with the lower-case 
denoting the specific quantity as opposed to its so-called extensive counterpart.  We 
can write

G = m1g1 + m2g2, (9.1)

and at equilibrium dG = 0 so

dG = m1 dg1 + m2 dg2 + g1 dm1 + g2 dm2. (9.2)

However since T and P are constant, and g = g(T, P), we have dg1 = dg2 = 0, so

dG = g1 dm1 + g2 dm2. (9.3)

Finally dm1 = −dm2, from conservation of mass, so we have

g1 = g2. (9.4)

Thus the condition that two phases are in equilibrium is that their specific Gibbs free
energies are the same. One could start from a system of constant volume for which
dF = 0, however one finds the same result, i.e. that g1 = g2, not that f1 = f2. This is
because one cannot say that d f1 = d f2 = 0 because f = f (T,V), and the volume V
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of a given phase can change. In fact one has to impose dV1 + dV2 = 0, which brings
in a PV term which gets us back to G again. The fact that T and P are constant for
multi-phase systems is the reason why it is usually G that it most useful.

Now let’s consider what happens if we alter T and P. Then we must have

dg1 = dg2, (9.5)

in order to maintain equilibrium between the phases. But we know that

dG = −S dT + V dP, (9.6)

(Eq. 8.36) and so we have (using lower-case letters for specific quantities)

−s1 dT + v1 dP = −s2 dT + v2 dP, (9.7)

where s1, v1, s2, v2 are the specific entropies and volumes of the two phases, i.e. per
unit mass or per mole. This equation shows that, in order to maintain equilibrium
between the phases, a change in temperature must be matched by a change in pres-
sure. Therefore we can work out the rate of change of pressure with temperature
which is simply

dP
dT =

s2 − s1
v2 − v1

. (9.8)

Latent heat L converts unit mass of phase 1 to phase 2 so that

s2 − s1 =
L
T , (9.9)

therefore
dP
dT =

L
T (v2 − v1) . (9.10)

This is known as the Clausius-Clapeyron equation and tells you how the vapour
pressure of a liquid changes with temperature and how the melting point of solids
and the boiling point of liquids changes with pressure. I will now show this explicitly
for water.

9.1.1 Melting Point of Ice

The latent heat of fusion of ice is L = 335 × 103 J kg−1, while the specific volumes
are v2 = vW = 10−3 m3 kg−1 and v1 = vI = 1.09 × 10−3 m3 kg−1 for water and ice
respectively (the volume per unit mass is simply the inverse of the density: ice is less
dense than water and hence has a larger specific volume). Putting these figures into
the Clausius-Clapeyron equation gives

dP
dT =

335 × 103 J kg−1

273 K × (1.00 − 1.09) × 10−3 m3 kg−1 = −13.6 × 106 N m−2 K−1. (9.11)

This equations shows that if the external pressure increases by 134 atmospheres, the
melting point of ice drops by 1 K. It is the fact that ice is less dense than water
that determines the sign of the change. Most solids are denser than their equivalent
liquids and their melting point increases with pressure.

The decrease of melting point with pressure for ice is thought to be important for
the movement of glaciers: any obstruction to the flow of ice will cause an increase of
pressure and hence melting. It is also commonly said to be of importance to skating
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because of the melting caused by the pressure of the skate. However, taking a contact
area of 2×10−5 m2 for an 80 kg skater gives a pressure of about 400 atm, which would
decrease the melting point by about 3◦C. This is not enough to explain melting for
figure skaters who like the ice to be at −5.5◦C and ice-hockey players who like it to
be at −9◦C. In fact, skating is possible at temperatures down to −30◦C. Estimates
of frictional heating also cannot explain the melting. It is nowadays thought that the
surface of ice actually has a liquid or liquid-like layer on it so it is naturally very
slippery.

9.1.2 Boiling Point of Water

The latent heat of evaporation of water is L = 2.257 × 106 J kg−1, while the specific
volumes of steam and water are v2 = vS = 1.673 m3 kg−1 and v1 = vW = 1.043 ×
10−3 m3 kg−1, so

dP
dT =

2.257 × 106

373(1.673 − 1.043 × 10−3)
= 3619 N m−2 K−1. (9.12)

This shows the rate at which the vapour pressure of water increases with tempera-
ture. Alternatively, given that the boiling point is defined by the point at which the
vapour pressure of a liquid equals the surrounding atmospheric pressure, this equa-
tion can tell you how the boiling point changes with pressure. For instance, on top
of Everest, the pressure is ≈ 66,000 N m−2 lower than normal, so the boiling point 
of water is 66000/3619 = 18◦C lower. Such a reduction significantly lengthens 
cooking times (the chemical processes of cooking involves activation energies and 
temperature-sensitive Boltzmann factors, e−EA/kT ). This is also the principle behind 
pressure cookers where the increased pressure raises the cooking temperature.

9.2 Supersaturation

As a final example of phase equilibria, I consider supersaturation. This happens
in several contexts, but the one I will look at is supersaturation of vapours. Con-
sider cooling a vapour down. At some point when its pressure matches the saturated
vapour pressure for the temperature in question, one expects condensation to occur.
However, this is not always the case, and the vapour can carry on without condensa-
tion down to cooler temperatures, at least for a while. It is then known as supersat-
urated. To see why this can happen we have to look at the vapour pressure of small
droplets which turns out to be higher than that of a flat liquid surface. The reason
is to do with surface tension. Surface tension is a force that acts on the surfaces
of liquids. One can think of the surface of a liquid as being like a stretched rubber
sheet, most obvious when one sees insects walking on it. The difference is that the
tension depends little upon area. Surface tension is measured in terms of a force per
unit length, γ.

Now consider a spherical liquid drop of radius r. Around its equator surface
tension provides a force of

2πrγ, (9.13)

holding the two halves of the drop together. Opposing this is a pressure ∆P acting
over the cross-sectional area of the drop πr2, therefore

πr2∆P = 2πrγ, (9.14)
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and so surface tension raises the pressure inside a drop of radius r by

∆P = 2γ
r . (9.15)

This increase of pressure changes the specific Gibbs free energy of the liquid g l,
and therefore there has to be a compensating increase in vapour pressure. From the
equation for dG (Eq. 8.36), at fixed temperature gl is increased by ∆gl = vl∆P, and
therefore gv must increase by the same amount so

∆gv = vv∆Pv = vl∆P. (9.16)

As a result the vapour pressure of a droplet of radius r is larger than that of a flat
surface at the same temperature by an amount

∆Pv =
vl
vv

2γ
r . (9.17)

It is this which allows vapours to be supersaturated because the saturated vapour
pressure of droplets is such that they will not form until higher pressures than the
normal saturated vapour pressure of a liquid surface. In fact since they have to start
from a tiny radius, it is rather difficult to see how condensation happens as easily
as it often does. The reason is thought to be the presence of condensation nuclei,
such as charged particles and dust. The attractive forces of these lower g l enough for
condensation to get going. This idea was used in cloud and bubble chambers to show
the tracks of charged elementary particles using the ions they produce as they travel
through matter. It was also the principle of cloud seeding whereby people attempted
to make rain occur by sprinkling salt crystals into clouds (experiments that were only
partially successful). One can also see this in carbonated liquids such as cider and
champagne: if you look carefully you will see that bubbles form only at certain sites
which turn out to be either defects in the glass or dust particles. If you add sugar to
fizzy drinks, you provide many nucleation sites and the bubbles emerge rapidly.

A last example of supersaturation is provided by hand warmers which contain
a solution of sodium acetate in water. When sodium acetate dissolves in water,
the reaction is endothermic, that is it absorbs heat. In reverse when crystallisation
occurs, heat is realeased. Crystals of sodium acetate are dissolved by heating the
solution. As it cools, the solution becomes supersaturated. Crystallisation starts
only when a small metal disc is made to give a sharp click. Very quickly the whole
solution crystallises, giving the required warmth.

9.3 Summary

In this chapter I have given just a hint of the application of Gibbs free energies to the
equilibrium between phases. There are applications to the equilibrium of chemical
reactions, and how it changes with pressure and temperature (of great importance in
chemical engineering), as well as the mixing of liquids and the solution of salts.



10
Real Gases

I have so far exclusively used the ideal gas equation. This utterly fails to describe
liquids and solids, but is not too bad for gases. Therefore one might hope that gases
are the easiest type of matter to understand and should therefore be the first place
to look for deviations from the ideal. The key point is the presence of interatomic
forces which we have ignored up to now. I will show how a simple-minded approach
leads to something called the van der Waals equation, which already contains some
elements of the behaviour of real matter. In particular it offers some insight into the
phenomenon of phases.

10.1 Interatomic Forces

Real atoms exert forces on each other. When very close they repel, as they must to
keep the atoms separate, whereas at large distances the forces become weakly at-
tractive. The repulsion can be viewed in terms of the electrostatic repulsion of the
nuclei in combination with the Pauli exclusion principle which tends to counteract
the possibility of the electrons gathering in between the nuclei and binding them to-
gether, except of course in chemical bonds. A classical picture for the long-range
attraction is that fluctuations in the electron distribution give a dipole moment to an
atom which induces a similar dipole moment in another atom and the two are at-
tracted, rather as bits of dust can be attracted by an electrostatically-charged comb.
The interaction between atoms can be represented by the potential energy φ(r) be-
tween atoms separated by distance r. The force f between atoms is related to the
potential energy by f = −dφ/dr and f > 0 is repulsive, so the negative gradient at

r

φ(r)

r0

Figure 10.1 A schematic figure of the potential energy between two atoms as a function of
distance between them. r0 denotes the equilibrium separation.
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short distance corresponds to repulsion. The form of the potential can be measured
directly from experiments with atomic beams.

I will now show how interatomic forces can be taken into acount in an approxi-
mate manner.

10.2 The van der Waals Equation

The van der Waals equation is a modification of the ideal gas equation of state for the
effects of interatomic forces. It is itself approximate. The effect of the short-range
repulsive force shows up as an effective reduction in available volume, while the
attractive part acts to reduce the pressure. Consider then N molecules in a volume
V . Each molecule wipes out a small volume as far as the others are concerned. If
we call this volume b, then we need to replace the normal volume by V − Nb. One
estimate of b comes from considering the zone around a molecule in which no other
centres of molecules can lie. For spherical molecules of radius r this is a sphere
of radius 2r, and volume 4π(2r)3/3. Correcting by a factor of two to avoid double
counting (we are counting pairs of molecules and want to consider each pair only
once), we find b = 4vm where vm is the volume of one molecule. With the correction
to the volume, the ideal gas equation (Eq. 1.10) is modified to

P(V − Nb) = NkT. (10.1)

The reduced volume accounts for the short-range repulsion and increases the pres-
sure for a given V . The attractive forces on the other hand act to reduce the pressure.
Imagine a molecule hitting the wall of its container. It feels a general attractive
force towards the rest of the molecules which will reduce its speed as it approaches
the wall. Any forces exerted by atoms in the wall are irrelevant because if they at-
tract for example, then while approaching atoms are accelerated towards the wall, an
equal but opposite force is felt by the wall which is cancelled on average by the col-
lision of the speeded-up atoms. The correction to P can be deduced as follows: the
correction is proportional to the collision rate per unit area which is ∝ (N/V). The
force decelerating each molecule will also depend upon the density of molecules,
N/V , and thus we end with a correction factor of the form (N/V)2a where a is a
constant. This then leads to an equation of the form

(

P + N2 a
V2

)

(V − Nb) = NkT . (10.2)

This is the van der Waals equation.  The constants  a and b are the van der Waal’s 
coefficients. The coefficient a depends upon the long-range attractive forces, while b 
depends upon the short-range  repulsive forces which define the “size” of an atom. 
Very often rather  than the number of molecules  N, the number of moles nm is used 
instead, which simply implies a re-scaling  of a and b. The equation  then looks like

(

P + n2
m

a
V2

)

(V − nmb) = nmRT. (10.3)

A slightly more sophisticated derivation goes as follows. The idea is to derive
an expression for the Helmholtz free energy F = U − TS . We first correct U for
the attractive forces. The potential of a molecule due to other molecules in a small
volume dV at distance r is

du = φ(r)n(r) dV, (10.4)
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and assuming that the number density n is constant, except for r < D, the diameter
of the molecules where n = 0, then

u = n
∫ ∞

D
φ(r) dV = −2an, (10.5)

where the integral is set to −2a, a choice that will lead to the same expression in the
end. Note that since the potential is negative at large r, the coeffcient a is positive.
Therefore the total change in U is then

∆U = N
2 (−2an) = −N2a

V , (10.6)

where the factor of 2 prevents double counting of the the effect of each molecule.
Therefore the total internal energy is given by

U = 3
2 NkT − N2a

V , (10.7)

while the entropy is

S = S 0 + nmCV ln T + nmR ln(V − Nb), (10.8)

= S 0 +
3
2

Nk ln T + Nk ln(V − Nb), (10.9)

assuming a monatomic CV = 3R/2. Therefore

F = U − TS , (10.10)

=
3
2 NkT − N2a

V − 3
2 NkT ln T + NkT ln(V − Nb) − TS 0. (10.11)

Finally we deduce the pressure from

P = −
(

∂F
∂V

)

T
= −N2a

V2 +
NkT

V − Nb , (10.12)

which on re-arranging gives the van der Waals equation once more:
(

P +
(N

V

)2
a
)

(V − Nb) = NkT. (10.13)

This approach is called a mean field theory. Although it is more complex than the
argument in terms of forces, it is easier to generalise. Moreover, it is more obvious
where it fails. For instance it is not the case that the number density is constant
as a function of distance from a molecule. (The behaviour of number density with
distance is a key way to describe the difference between gases, liquids and solids in
fact.)

10.2.1 P–V Diagrams of a van der Waals Gas

Now let’s see how the van der Waals equation differs from the ideal gas case. Put 
into simplest form for one mole, the van der Waals equation becomes

(

P + a
V2

)

(V − b) = RT. (10.14)

Note that as V → ∞, this tends towards the ideal gas equation as expected. Fig. 10.2
shows a plot of isotherms of a van der Waals gas (curves of P versus V for a set
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Figure 10.2 Isotherms of a van der Waals gas. The plot uses values a = 0.138 N m4 and
b = 3.18 × 10−5 m3, appropriate for one mole of oxygen gas (O2). The critical isotherm is
drawn dashed, corresponding to a temperature of 155 K. The other isotherms are drawn in
steps of 8 K for the temperature.

of constant temperatures). At small volumes these are very steep because of the b
term, while at large volumes they tend to the ideal gas case. In between, some rather
unexpected behaviour occurs with a kink developing and even negative pressures.
The latter may seem impossible, but liquids are in fact able to support a certain level
of negative pressure. In other words they can be in tension rather than compression.
Still, although the van der Waals isotherms are somewhat closer to the behaviour
of real gases than the ideal gas ones, the region of the kink is where the grossest
deviations are seen and the behaviour of the van der Waals gas is in fact physically
impossible in this region. To see why, consider the isotherm shown in Fig. 10.3.
In the region BCD the pressure increases with increasing volume. This is unstable.
Consider the two halves of a box filled by such a fluid. The slightest perturbation,
which say caused the left-half to compress while the right-half expanded, would run
away because as the left-half compressed its pressure would drop while the pressure
in the right-half increased, so driving the process further still. Eventually once points
B and D have been passed the normal P, V behaviour would return and eventually
we would expect equilibrium to be reached with two fluids, one dense and one light,
that is a liquid and a gas! These are marked at A and E in Fig. 10.3.

What can we say about A and E? They must have the same temperature and pres-
sure, which means they lie on the intersection of a horizontal line with the isotherm.
We also have gA = gE, the usual condition for phase equilibrium. Since

dg = −s dT + v dP, (10.15)

if we integrate along the isotherm (for which dT = 0) from A to E, we must have

gE = gA +

∫ E

A
v dP, (10.16)

and so
∫ E

A
v dP = 0. (10.17)

For this reason I have drawn A and E at a pressure for which the shaded areas ABC
and CDE are equal. This construction (usually known as the Maxwell construction)
can be used to define the region where the liquid gas/separation is expected to occur.
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Figure 10.3 Isotherm of a van der Waals gas. The plot shows the T = 135 K isotherm for
one mole of oxygen (O2) with a = 0.138 N m4 and b = 3.18 × 10−5 m3. The equal-areas
construction gives PA = PE = 2.83 × 106 Pa, with VA = 0.055 litre and VE = 0.265 litre.

Referring to Fig. 10.2, we see that as the temperature rises (upper isotherms)
there comes a point when there is no longer any kink. The critical isotherm is marked
by a dashed line. At this point there will only be a single phase, and there will be
no distinction between a liquid and a gas. This is known as the critical point and
is a phenomenon observed in substances. This means there is a certain temperature
above which no matter the pressure you will not see the formation of a separate
liquid phase. At the critical point, which has a unique temperature and pressure, the
gradient of pressure with respect to volume at constant temperature tends to zero,
i.e.

(

∂P
∂V

)

T
→ 0. (10.18)

This means that huge density fluctuations occur and that one can see significant
density gradients develop due to gravity even in a small container. The density fluc-
tuations scatter light and the gas becomes milky white, a phenomenon known as
critical opalescence.

The van der Waals equation provides a first understanding of the phenomenon
of phases, but it is very crude. The surprise is that it works as well as it does.

10.3 Phase Diagrams

It is useful to represent phase equilibria on pressure–temperature, or P–T diagrams.
This is because these are the natural variables for G and because we know that T
and P are the same for all phases in equilibrium with one another (give or take
surface tension effects in special cases). Fig. 10.4 shows the typical case. The lines
indicate the values of pressure and temperature for which the various phases are in
equilibrium. For solid–liquid equilibrium (the melting line), g s = gl, and one degree
of freedom is lost. This implies that equilibrium is a line in a P–T diagram as shown.
Similarly for the liquid–vapour (vaporisation) and the solid–vapour (sublimation)
equilibria.

When all three phases are in equilibrium then gs = gl = gv which means there
are no degrees of freedom. This also means that all three lines must meet at this
point, which we have seen before as the triple point. The restriction on the specific
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Figure 10.4 Phase diagram of a typical substance. The negative sloped dashed line shows
the ice/water equilibrium which is unusual in this respect.

Gibbs free energies means that the triple point occurs at a unique temperature and
pressure, which is why it makes a good temperature reference.

The key features of phase diagrams are:

• The slopes of the lines come from the Clausius-Clapeyron equation:

dP
dT =

L
T (v2 − v1) .

The water/ice slope is negative: can “squeeze” ice into water (Fig. 10.4).

• The liquid/vapour line stops at the critical point: there is no continuation.
There is no equivalent point for the solid/liquid line; solids and liquids appear 
to be intrinsically different and there is no way to make a smooth transition 
between them.

• The solid/vapour transition is called sublimation; iodine gives a nice example of
this, subliming as a purple gas when heated in its solid form.

• The three lines meet at the triple point.

10.3.1 P–V–T Surfaces

By adding a third axis, volume, to a P–T phase diagram we end up with a P–V-T
surface. This is combining the phase diagram with a P–V indicator diagram. A
simplified version of the P-V–T surface for water is shown in Fig. 10.5 on the next
page.

10.4 Summary

The point of this chapter is that while classical thermodynamics can explain some
of the features of phase diagrams, to understand the existence of phases we need
to delve down to the microscopic level with the inclusion of interactions amongst
atoms and molecules. The van der Waals equations shows how even the simplest
inclusion of the effects of interactions introduces features that can be identified with
phase changes. Nowadays computer models of great sophistication are run in an
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Figure 10.5 P–V–T surface for water. Image from http://hyperphysics.phy-astr.gsu.edu
(Georgia State University, USA)

effort to explain the properties of matter. Liquids in particular remain a challenge.
The van der Waals equation is one of several approximations to the behaviour of
real gases, and makes the point that real gases are not ideal! The physics of phase
changes has fascinated many of the greatest physicists and continues to be an area
of great activity today.
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A
Appendix

The material in this Appendix is not examinable.

A.1 Carathéodory’s derivation of Entropy

The key consequence of the Second Law is the existence of the new function of
state, entropy. However its derivation via heat engines seems convoluted and once it
has been accomplished, heat engines hardly come into it. A different approach was
developed by the Greek mathematician, Carathéodory. It is a more abstract method,
and still not widely known, which is why I have adopted the traditional approach,
which is still perfectly valid, and something that every physicist should have en-
countered. However, the more mathematical may prefer Carathéodory’s approach
which I outline in this appendix; elements of this approach may give everyone more
insight into entropy, particularly the initial proof from the Second Law that there is
a function of state that is constant on reversible adiabatics.

I first summarise the steps involved. I will begin by using the Second Law to es-
tablish the existence of a function of state which is constant on reversible adiabatics,
which I call σ. From this one can show that d̄QR = λ dσ, where d̄QR is the amount of
heat added to a system during a reversible change, and λ is another function of state.
Next, one shows that λ is of the form T (θ) f (σ), where θ is the empirical temperature
and T is a universal function of θ, i.e. the same function for every system. Identify-
ing dS = f (σ) dσ, and calling the function T the thermodynamic temperature, one
finally has d̄QR = T dS , as derived from heat engines.

A.1.1 Reversible Adiabatics

Fig. A.1 shows the track of a reversible adiabatic through a point A in a plot of
internal energy U versus volume V (solid line). I will now show that there is only
one such reversible adiabatic through any point. To see this, let the dashed line A to
B be a hypothetical second adiabatic through A in addition to the one running from
A to C. If this is the case, then starting from B, we can move to A and then to C
along adiabatics. In the process ∆U < 0, but since the change is adiabatic, Q = 0,
so W = ∆U < 0. Since W is the work done on the system, we have extracted work
from the system. From point C we can return to B simply by adding heat Q = −∆U.
We have then managed to return the system to its original state, and in the process
we have converted heat completely into work. But this is impossible by the Kelvin-
Planck statement of the second law, from which we deduce that the hypothetical

89
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U

V

A
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B

Figure A.1 The solid line represents the path of an adiabatic on a plot of internal energy U
against the volume V. The dashed line shows a hypothetical adiabatic through point A

second adiabatic is impossible. This argument applies equally to the case of several
state variables, e.g. magnetisation as well as volume (in which case the adiabatic
becomes a surface rather than a line, but the same arguments apply).

This means that every state of the system can be uniquely labelled by the re-
versible adiabatic that it lies upon. There is therefore some function of state which
is constant along reversible adiabatics. Let this be called σ, the empirical entropy.
Since σ is a function of state, we can write U = U(σ,V), and therefore

dU =
(

∂U
∂σ

)

V
dσ +

(

∂U
∂V

)

σ

dV, (A.1)

Now when dσ = 0, then by the definition of σ, the change is adiabatic and reversible,
so Q = 0 and

dU = d̄WR =

(

∂U
∂V

)

σ

dV, (A.2)

and so substituting back in Eq. A.1, and writing

λ =

(

∂U
∂σ

)

V
, (A.3)

for short, we have
dU = λ dσ + d̄WR. (A.4)

Therefore comparing with the first law, dU = d̄Q + d̄W , we have

d̄QR = λ dσ. (A.5)

That is, amount of heat added in a reversible change equals a function of state,
λ, times the change in the empirical entropy (λ is a function of state because any
derivative of a function of state is also a function of state).

A.1.2 Thermodynamic Temperature

Now consider two systems, A and B, in thermal equilibrium with each other, and
consider adding heat reversibly to each. If we add d̄QA and d̄QB, then considering
the two systems as a single large system, we have added

d̄Q = d̄QA + d̄QB, (A.6)

to the combined system. Each of these terms obeys a relation of the form d̄Q = λ dσ
so that

λ dσ = λA dσA + λB dσB, (A.7)
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and so
dσ = λA

λ
dσA +

λB
λ

dσB. (A.8)

But σ is a function of state so we can write σ = σ(σA, σB). Now we look at the λ
ratios which must also be functions of σA and σB. In general we can write

λA = λA(θ, σA, X1, X2, . . .), (A.9)
λB = λB(θ, σB,Y1,Y2, . . .), (A.10)
λ = λ(θ, σA, σB, X1, X2, . . . ,Y1,Y2, . . .), (A.11)

where X1, X2 etc are whatever state variables are needed to define the state of system
A, Y1 etc define the state of system B, and θ is the common empirical temperature
(the systems are in thermal equilibrium). However we have shown that the ratio
λA/λ is a function of σA and σB only. Therefore λ cannot in fact depend upon Y1, Y2
etc because these do not enter into λA. Similarly we can use the other ratio to show
that λ cannot depend upon X1 etc, and therefore λA cannot depend upon X1, X2, etc,
and λB cannot depend upon the Y values. Therefore the ratio λA/λ can be written

λA
λ
=
λA(θ, σA)
λ(θ, σA, σB)

. (A.12)

Again, we know that this ratio depends upon σA and σB only, so the dependence on
the empirical temperature must factorise. We can therefore write

λA = T (θ) fA(σA), (A.13)
λB = T (θ) fB(σB), (A.14)

(A.15)

where fA and fB are functions, which can be different for each system, but T (θ) is a
universal function of temperature. “Universal” means it is the same for every system
(at least subject to a constant multiplying factor which can be swept into the function
f ). If it was not, the dependence of θ would not drop out of the ratio.

We have now therefore learnt that

d̄QR = T (θ) f (σ) dσ. (A.16)

Now defining two new functions, the entropy S such that dS = f (σ) dσ, and the
“thermodynamic temperature” as T , we have

d̄QR = T dS . (A.17)

Thus a key result from the heat engine approach can be derived without recourse
to heat engines. It is however a somewhat abstract approach, which is why I only
include it for reference; it is not an examinable part of the course.

A.2 Maxwell Relations

Anyone giving a course on thermodynamics has to make a decision at some point:
do I teach the Maxwell relations? These are the subject of innumerable rather tricky
exam questions where it is quite easy to end up proving that 0 = 0, resulting in
blind panic. They offer no special new physical insight and therefore I have elected
to make them non-examinable. Having said that, no-one can say that he or she has
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“done” thermodynamics, or even call her- or himself a physicist without having seen
some Maxwell relations at least once, and seen a little of why they are useful.

Consider again the relation, equation 8.36, from section 8.4 on page 73,

dG = −S dT + V dP, (A.18)

and the consequent identities,

S = −
(

∂G
∂T

)

P
, (A.19)

and
V =

(

∂G
∂P

)

T
. (A.20)

Now for any function f (x, y), it is the case that

∂2 f
∂x∂y =

∂2 f
∂y∂x . (A.21)

It is therefore the case that

∂

∂P

)

T

(

∂G
∂T

)

P
=
∂

∂T

)

P

(

∂G
∂P

)

T
, (A.22)

and therefore, that
−

(

∂S
∂P

)

T
=

(

∂V
∂T

)

P
. (A.23)

This is a “Maxwell relation”.What it does for us is convert a rather nasty quantity
on the left hand side, to one that is easily measured on the right, since (∂V/∂T )P
depends directly upon the expansivity of a substance.

There are equivalent Maxwell relations for the expressions for dU, dF and dH.
If you get the hang of it, they are easy to derive; please do not try to remember them
by rote. Although there are ways of trying to do so, I consider them to be an utter
waste of brain power. In any case, as I said above, they are not examinable in this
course.

I finish my discussion of them, with a classic illustration of their use, which will
probably give you an idea of why I am not going to ask any questions on them. Still,
read it through as it is good for your soul. Consider the heat capacity at constant
volume, CV . Since d̄Q = T dS for reversible heat transfer, we can write

CV = T
(

∂S
∂T

)

V
. (A.24)

Similarly

CP = T
(

∂S
∂T

)

P
. (A.25)

We know that CV is directly related to the internal energy via

CV =

(

∂U
∂T

)

V
, (A.26)

so that by measuring it at a series of temperatures one could integrate to get U.
Unfortunately, it is much easier to measure the heat capacity at constant pressure
(imagine trying to keep the volume of a block of copper constant as you heated it).
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Therefore it is useful to find a means of getting from CP to CV using other easily-
measured quantities. We already saw the simple CP = CV + R for one mole of ideal
gas, but now we want a more general relation.

If we take S = S (T,V), then

dS =
(

∂S
∂T

)

V
dT +

(

∂S
∂V

)

T
dV, (A.27)

so that

CP = T
(

∂S
∂T

)

P
= T

(

∂S
∂T

)

V
+ T

(

∂S
∂V

)

T

(

∂V
∂T

)

P
,

= CV + T
(

∂S
∂V

)

T

(

∂V
∂T

)

P
.

The second of the two derivatives is measurable because the volume expansivity
β, which is the fractional rate of increase in volume with temperature at constant
pressure can be written as

β =
1
V

(

∂V
∂T

)

P
. (A.28)

The first derivative is less obvious; we need to employ a Maxwell relation. Looking
at the quantities on the bottom, we need a relation in which the independent variables
are V and T . This is the one for dF:

dF = −S dT − P dV. (A.29)

Going through the same process as before, we can immediately write the Maxwell
relation

(

∂S
∂V

)

T
=

(

∂P
∂T

)

V
, (A.30)

so therefore we have
CP = CV + VTβ

(

∂P
∂T

)

V
. (A.31)

The new derivative is the rate at which pressure increases with temperature at con-
stant volume. Hmmm, still not very easy: just how do you keep the volume of a solid
constant? Instead, let’s see if we can’t re-express the new derivative as something
simpler, but we won’t use a Maxwell relation or we will end up where we started.
We know from the equation of state that P = P(T,V), so

dP =
(

∂P
∂T

)

V
dT +

(

∂P
∂V

)

T
dV, (A.32)

therefore on taking the derivative with respect to temperature at constant pressure,
we get

0 =
(

∂P
∂T

)

V
+

(

∂P
∂V

)

T

(

∂V
∂T

)

P
, (A.33)

so
(

∂P
∂T

)

V
= −

(

∂P
∂V

)

T

(

∂V
∂T

)

P
= −Vβ

(

∂P
∂V

)

T
. (A.34)

This is an example of something called the “cyclical rule”; like the Maxwell relations
it is mathematical rather than physical. Therefore

CP = CV − V2Tβ2
(

∂P
∂V

)

T
. (A.35)
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The final derivative now is experimentally accessible because we can write
(

∂P
∂V

)

T
=

1
(∂V/∂P)T

, (A.36)

(the usual rule for inverting derivatives), and the quantity on the bottom is related to
the compressibility κ where

κ = − 1
V

(

∂V
∂P

)

T
, (A.37)

being the fractional decrease in volume as pressure is raised at constant temperature.
Therefore, finally we have

CP = CV +
VTβ2

κ
. (A.38)

This is the desired connection between the two heat capacities and other measurable
quantities.



B
Constants and Numerical Data

Boltzmann’s constant k = 1.38 × 10−23 J K−1

Gas constant R = 8.314 J K−1 mol−1

Avogadro’s number NA = 6.02 × 1023 mol−1

Atomic mass unit u = 1.661 × 10−27 kg
Water triple-point temperature TTP = 273.16 K
Standard temperature and pressure (STP)

temperature Tstp = 273.15 K
pressure Pstp = 1.01 × 105 Pa = 1 atm

Density of air at STP ρair,STP = 1.293 kg m−3

Heat of fusion of H2O (0◦C, 1 atm) Lfus = 333.5 kJ kg−1

Heat of vaporisation of H2O (100◦C, 1 atm) Lvap = 2.257 MJ kg−1
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