Week 2 Key Concepts

- Ideal gases: large number of molecules; they are small; positions and velocities evenly distributed; Newton's laws; eleastic collisions with each other and walls.
- $P=\frac{1}{3} m n \overline{v^{2}}$
- $P V=\frac{1}{3} m N \overline{v^{2}}=\frac{2}{3} U$ (where U is the internal (kinetic) energy)
- Temperature is a measure of internal energy: equipartition theorem says $U / d o f=\frac{1}{2} k T$
- Molar heat capacity: $C=\frac{d U}{d T}=\frac{R}{2} \times d o f$
- Boltzmann probability: $P(E) \propto e^{-E / k t}$

Tutorial problems

1. We have seen the Boltzman factor $\mathrm{P}(\mathrm{E}) \propto e^{-E / k T}$ in lectures. Discuss with your tutor the general form of an expression for the mean speed of N molecules in a gas.

Also give an expression for the fraction of molecules with a speed between v_{1} and v_{2}.
2. The mean speed of a H_{2} molecule at room temperature is about $2,000 \mathrm{~m} / \mathrm{s}$, while it is $500 \mathrm{~m} / \mathrm{s}$ for O_{2}. Explain how these numbers relate to the near absence of H_{2} in the earth atmosphere.
3. We have derived the equation

$$
P=\frac{1}{3} m n\left\langle v^{2}\right\rangle
$$

expressing the pressure exerted by an ideal gas in terms of the number density of molecules, the mass of one molecule, and the mean-squared speed of molecules. The derivation made the assumption that molecules bounce elastically off solid surfaces. In reality, a molecule may well stick to the surface for a while, until it is "joggled" off - or knocked off by another molecule. Does this invalidate our result?

Problem Class Questions

1. Consider a $1 \mathrm{~m}^{3}$ of nitrogen molecules at standard temperature and pressure. If you treat it as an Ideal gas:

- how many molecules are there?
- What is the average speed of a molecule?
- What is the average kinetic energy of a molecule?
- Why in reality do the molecules carry a larger amount of energy than this?

2. Consider water vapour at 100 C and constant volume. The three vibrational modes of a water molecule have inverse wavelengths (a measure of frequency) $3656.7,1594.8$ and $3755.8 \mathrm{~cm}^{-1}$, while the rotational ones are $27.9,14.5$ and $9.3 \mathrm{~cm}^{-1}$.

- Write down the translational mode contribution to the molar heat capacity (at constant volume).
- Are the vibrational modes active?
- Are the rotational modes active?
- Estimate the molar heat capacity (at constant volume).
- How does this value compare to the experimental one of $C_{V}=26.1 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$? Suggest a reason for any discrepancy.

3. Cryopumping is the use of very low temperatures to produce a vacuum in an enclosed space. The inner chamber of a helium cryostat (a container that maintains the low temperature) is surrounded by a space to be evacuated. Under these conditions, the number of gas atoms, in the space to be evacuated, hitting the walls per second is given by $\frac{1}{4} n<v>A$, where n is the number of molecules per unit volume, $\langle v\rangle$ the mean speed of the molecules and A the area of the walls. The chamber is pre-cooled with liquid nitrogen ($\mathrm{T}=77 \mathrm{~K}$) before some liquid helium ($\mathrm{T}=4.2 \mathrm{~K}$) is transferred to the inner chamber. Once the inner chamber becomes sufficiently cold, every time a gas molecule in the vacuum space hits the chamber wall, it sticks permanently - until the cryostat warms up.

- Show that if the vacuum space is sealed off, cryopumping will cause its pressure to decrease exponentially with time.
- Estimate the time constant for the cryopumping process, assuming that the mean speed of a gas molecule in the vacuum space is around $130 \mathrm{~ms}^{-1}$. Assume that the volume of the vacuum space is $10^{-2} \mathrm{~m}^{3}$ and that the area of the chamber wall is $0.1 \mathrm{~m}^{2}$.

