PHYS1013 Energy and Matter

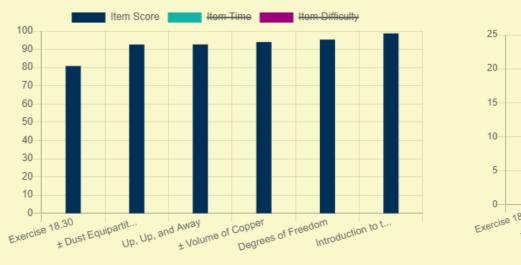
$$\begin{aligned} &U_{i}(n_{i}, p_{i}, v_{i}, \dots) \\ &U_{i}(n_{i}, p_{i}, y_{i}, \dots) \\ &U_{i}(n_{i}, y_{i}, y_{i}, y_{i}, \dots) \\ &U_{i}(n_{i}, y_{i}, y_{i}$$

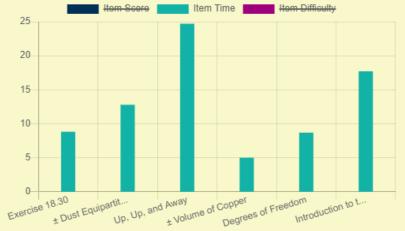
Week 3 Module Survey: on Blackboard:

We hugely appreciate comments on the course at this stage when we can make changes

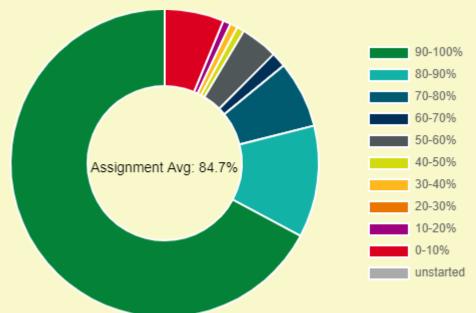
https://forms.office.com/e/ ALn7gQ0Pya

by 17:00 on Friday 16/02/2024


PHYS1013 Week 3 Survey



Recommend some good music - thank you to those avoiding Rick Astley


MP Week 1 - average score 90%

Average time 78 min

MP2 is due in this Sunday...

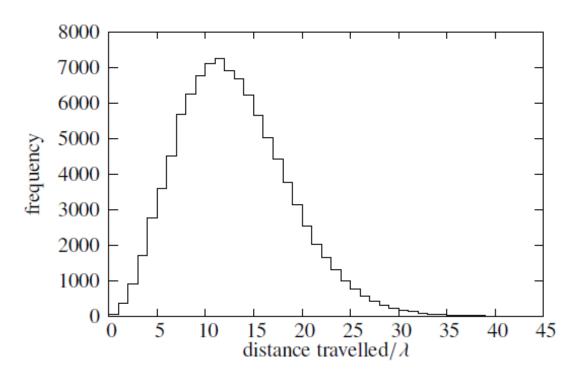
The particle is constantly scattered randomly

25

As we saw begore in a random environment $(\cos \theta_{12}) = 0$ $\vec{s}_1 \cdot \vec{s}_2 = 0$

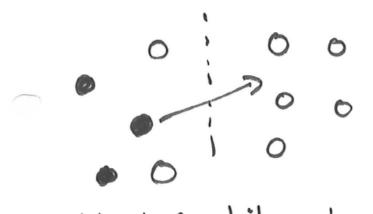
$$\Rightarrow r^2 = \sum_{i=1}^{N} s_i^2 \simeq N \lambda^2$$

1 assume got each step.


Note that since Nat (more collisions in montine)

トメセル

Is one were to simulate a sinite step walk particle by particle then $(\cos \theta_{12}) \neq 0$ precisely... one gets a distribution of distances travelled



As Now the Gaussian like peak narrows

Figure 3.4 Frequency distribution of the distance travelled in 100 000 random walks, each of 100 steps, with the step-lengths themselves distributed according to an exponential distribution with mean λ . The mean distance travelled is 12.99 λ , while the rms distance is 14.15 λ and the maximum is 44.30 λ .

Modelling Transport

black & white mix over time movement os:

identity -> discusión

energy -> thermal

conductivity

momentum -> viscosity

We can do simple models as all these... assume particles move in tx, ty, tz only.

16th do each motion.

Ignore collisions - work in small set where pts cross line unimpeded

Diegusion

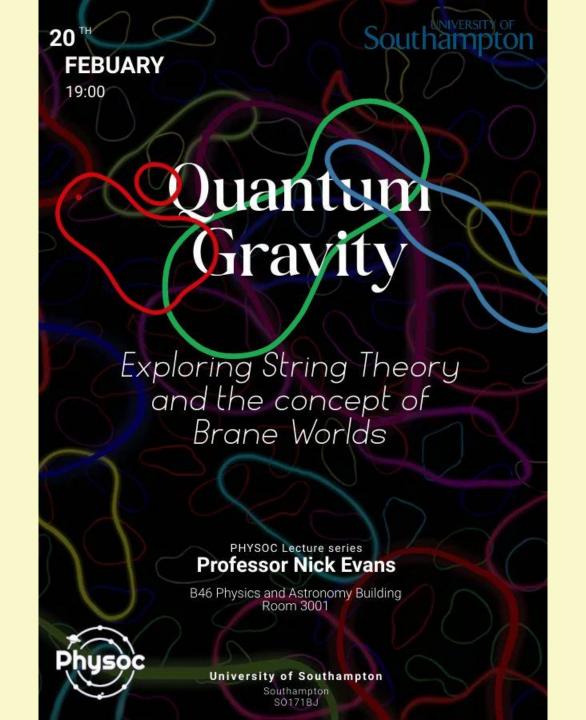
This decines Diegusion

Coessicient mis

This decines Diegusion

Thi

Let's use kinetic theory to study the same process. Number slowing = 1 n(x-x) A J Dt LAR lin 6 go I density volume that right way by I can cross in Otsec. = 1 n(x+x) A JOE Number glowing RAL so Here's a net glow if the density is bigger on one side. Not slow du = = [(x-x) = n(x+x)] A V $n(x) - \frac{dn}{dx} \lambda$ $n(x) + \frac{dn}{dx} \lambda$ = ミンマA st D= 13 X V


EG Evaporation grom a test tube

Flow rate = - 1/3 D J A dn 2 dN/at

Assume saturation density as just above sugace; and zero at top

$$\frac{dn}{dx} = \frac{ns}{h}$$

=> 0.24 mm/day

