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Calculus

Differentiation

Q1: Show, from first principles, that

d sinx

dx
= cosx

Q2: Find and identify the nature of the turning points
of

y =
1

3
x3 − 3x2 + 8x+ 4

What is the minimum of the function?

Q3: Show how Newton’s gravitation force law follows
from the gravitational potential

φg =
−GMm

r

Similarly show that Coulomb’s law follows from

φe = − Qq

4πε0r

Taylor Expansion

Q4: Find the Taylor expansion for sinx, cosx and ex.
Find the first three non-zero terms and the nth term in
the series in each case.

Check that your expansions are consistent with
d sin x
dx = cosx; d cos x

dx = − sinx; dex

dx = ex;

Q5: Use your expansions from Q4 to prove Euler’s for-
mula

eix = cosx+ i sinx

where i2 = −1.

Integration

Q6: There is another way to formulate mechanics that
is equivalent to Newton’s laws. One gives a particular
number to any trajectory that a particle might travel by
(here we really allow any motion to begin with - speed is
not connected to position!) - the path with the smallest
value of that number is the path taken. The way to define

the number that works is through the Action

S =

∫
(T − V )dt

T = kinetic energy, V = potential energy

let’s do a very simple one dimensional example where

T =
1

2
mẋ2. V = V (x)

Write out the Action. Imagine that you expand the paths
around the true minimum

x = xm + δx ẋ = ẋm + δẋ

Write out the leading order change in the action ∆S.

Now use Integration by Parts to make the δẋ piece look
like just δx. You will get a term evaluated at the ends
of the path. We will assume that these ends points are
held fixed.

If we were at the minimum then the leading order ∆S =
0. Show that this condition is equivalent to Newton’s
second law.

Classical Physics

Q7: Show that the classical energy of an electron in a
circular orbit in a hydrogen atom is given by

E = − Q2

8πε0r

The Semi-classical Period

Q8: The photoelectric effect is described by the key
equation for the energy of the electron

1

2
mev

2
e +Wf = hν

where the first term is the kinetic energy of the emerging
electron, Wf is the work function - the energy needed to
liberate an electron from the material - ν is the frequency
of the incident light and h = 6.6 × 10−34Js is Planck’s
constant.



The table below shows four different metals and their
corresponding work functions.

Metal Work function ( ×10−19J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four
metals listed above.

b) When radiation of frequency 8 × 1014Hz is applied to
Calcium, calculate the speed of the photoelectrons leav-
ing the Calcium.

Q9: Neutrons may be used to study the atomic structure
of matter. Diffraction effects are noticeable when the de
Broglie wavelength of the neutrons is comparable to the
spacing between the atoms. This spacing is typically 2.6
×10−10 m.

i) Suggest why using neutrons may be preferable to using
electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie
wavelength of 2.6 ×10−10 m. The mass of a neutron is
1.7 ×10−27 kg.

Q10: Find the real and imaginary parts of the complex
wave function (here A is a complex number)

ψ = Aei
2π
λ (x−vt)

Exponentials are easier to differentiate than sine waves
so people use the trick of writing the solution like this
and then take either just the real or imaginary part.

Show that in quantum mechanics

Eψ = i
h

2π

dψ

dt

pψ = −i h
2π

dψ

dx

The Schroedinger equation

Q11: Derive the solutions for an infinite quantum square
well. Start from the Schroedinger equation

1

2m

(
− h2

(2π)2

)
d2

dx2
ψ + V ψ = i

h

2π

d

dt
ψ

The well has zero potential between x = 0 and L - else-
where V is infinite.

In time independent solutions you can always find a so-
lution of the form

ψ = u(x)e−i2πE/h

Find an equation for u(x) and then try a solution of the
form

u(x) = A sin kx+B cos kx

Make sure your solution vanishes at x = 0, L. Now sub-
stitute your guess into your differential equation for u(x).

To fix the overall normalization make sure the probability
that the particle is somewhere in the box is one. That is
require ∫ L

0

ψ∗ψdx = 1

Hydrogen Atom Solutions

Q12: In three dimensions and with spherical symmetry
the Schroedinger equation takes the form

1

2m

(
− h2

(2π)2

)
1

r2

(
d

dr
r2
d

dr

)
ψ + V ψ = i

h

2π

d

dt
ψ

Show, by substitution, that there is a solution of the form

u1 = Ae−r/a0e−i2πE1/h

where A is a constant and a0 = ε0h
2

mee2π
. This is the ground

state solution.

There are then excited, spherically symmetric states

u2 = Ae−r/2a0
(

1 − r

2a0

)
e−i2πE2/h

u3 = Ae−r/2a0
(

1 − 2r

3a0
+

2r2

27a20

)
e−i2πE3/h

and so on. They have energy

En =
E0

n2
E0 =

(2π)2mee
4

32π2ε20h
2

What colour is the emission line corresponding to the
transition from the n = 3 to n = 2 state?


