
Calculus Summary

Derivative = Gradient

Locally any curve is a straight line and we can compute 
it’s gradient as 
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"Euler's number" redirects here. For other uses, see List of things named after Leonhard Euler § Numbers.
"E (number)" redirects here. For the codes representing food additives, see E number.

The number e, also known as Euler's number, is a mathematical constant approximately equal to 2.71828, and can be characterized in many ways. It is the
base of the natural logarithm.[1][2][3] It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also
be calculated as the sum of the infinite series[4][5]

It is also the unique positive number a such that the graph of the function y = ax has a slope of 1 at x = 0.[6]

The (natural) exponential function f(x) = ex is the unique function which is equal to its own derivative, with the initial value f(0) = 1 (and hence one may define
e as f(1)). The natural logarithm, or logarithm to base e, is the inverse function to the natural exponential function. The natural logarithm of a number k > 1
can be defined directly as the area under the curve y = 1/x between x = 1 and x = k, in which case e is the value of k for which this area equals one (see
image). There are various other characterizations.

e is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler (not to be confused with γ, the Euler–Mascheroni constant, sometimes
called simply Euler's constant), or Napier's constant.[5] However, Euler's choice of the symbol e is said to have been retained in his honor.[7] The constant
was discovered by the Swiss mathematician Jacob Bernoulli while studying compound interest.[8][9]

The number e has eminent importance in mathematics,[10] alongside 0, 1, π, and i. All five of these numbers play important and recurring roles across
mathematics, and these five constants appear in one formulation of Euler's identity. Like the constant π, e is irrational (that is, it cannot be represented as a
ratio of integers) and transcendental (that is, it is not a root of any non-zero polynomial with rational coefficients).[5] To 50 decimal places the value of e is:

2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995... (sequence A001113  in the OEIS).
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History [ edit ]

The first references to the constant were published in 1618 in the table of an appendix of a work on logarithms by John Napier.[9] However, this did not contain the constant itself, but simply a list of
logarithms calculated from the constant. It is assumed that the table was written by William Oughtred.

The discovery of the constant itself is credited to Jacob Bernoulli in 1683,[11][12] who attempted to find the value of the following expression (which is equal to e):

The first known use of the constant, represented by the letter b, was in correspondence from Gottfried Leibniz to Christiaan Huygens in 1690 and 1691. Leonhard Euler introduced the letter e as the
base for natural logarithms, writing in a letter to Christian Goldbach on 25 November 1731.[13][14] Euler started to use the letter e for the constant in 1727 or 1728, in an unpublished paper on explosive
forces in cannons,[15] while the first appearance of e in a publication was in Euler's Mechanica (1736).[16] Although some researchers used the letter c in the subsequent years, the letter e was more
common and eventually became standard.[citation needed]

In mathematics, the standard is to typeset the constant as "e", in italics; the ISO 80000-2:2009 standard recommends typesetting constants in an upright style, but this has not been validated by the
scientific community.[citation needed]

Applications [ edit ]

Compound interest [ edit ]

Jacob Bernoulli discovered this constant in 1683, while studying a question about compound interest:[9]

An account starts with $1.00 and pays 100 percent interest per year. If the interest is credited once, at the end of the year, the
value of the account at year-end will be $2.00. What happens if the interest is computed and credited more frequently during
the year?

If the interest is credited twice in the year, the interest rate for each 6 months will be 50%, so the initial $1 is multiplied by 1.5 twice, yielding
$1.00 × 1.52 = $2.25 at the end of the year. Compounding quarterly yields $1.00 × 1.254 = $2.4414..., and compounding monthly yields
$1.00 × (1 + 1/12)12 = $2.613035… If there are n compounding intervals, the interest for each interval will be 100%/n and the value at the
end of the year will be $1.00 × (1 + 1/n)n.

Bernoulli noticed that this sequence approaches a limit (the force of interest) with larger n and, thus, smaller compounding intervals.
Compounding weekly (n = 52) yields $2.692597..., while compounding daily (n = 365) yields $2.714567... (approximately two cents more).
The limit as n grows large is the number that came to be known as e. That is, with continuous compounding, the account value will reach
$2.7182818...

More generally, an account that starts at $1 and offers an annual interest rate of R will, after t years, yield eRt dollars with continuous compounding.

(Note here that R is the decimal equivalent of the rate of interest expressed as a percentage, so for 5% interest, R = 5/100 = 0.05.)

Bernoulli trials [ edit ]

The number e itself also has applications in probability theory, in a way that is not obviously related to exponential growth. Suppose that a gambler
plays a slot machine that pays out with a probability of one in n and plays it n times. Then, for large n, the probability that the gambler will lose every
bet is approximately 1/e. For n = 20, this is already approximately 1/2.79.

This is an example of a Bernoulli trial process. Each time the gambler plays the slots, there is a one in n chance of winning. Playing n times is
modeled by the binomial distribution, which is closely related to the binomial theorem and Pascal's triangle. The probability of winning k times out of
n trials is:

In particular, the probability of winning zero times (k = 0) is

The limit of the above expression, as n tends to infinity, is precisely 1/e.

Standard normal distribution [ edit ]

Main article: Normal distribution

The normal distribution with zero mean and unit standard deviation is known as the standard normal distribution, given by the probability density
function

The constraint of unit variance (and thus also unit standard deviation) results in the 12 in the exponent, and the constraint of unit total area under the curve  results in the factor .[proof] This
function is symmetric around x = 0, where it attains its maximum value , and has inflection points at x = ±1.

Derangements [ edit ]

Main article: Derangement

Another application of e, also discovered in part by Jacob Bernoulli along with Pierre Raymond de Montmort, is in the problem of derangements, also known as the hat check problem:[17] n guests are
invited to a party, and at the door, the guests all check their hats with the butler, who in turn places the hats into n boxes, each labelled with the name of one guest. But the butler has not asked the
identities of the guests, and so he puts the hats into boxes selected at random. The problem of de Montmort is to find the probability that none of the hats gets put into the right box. This probability,
denoted by , is:

As the number n of guests tends to infinity, pn approaches 1/e. Furthermore, the number of ways the hats can be placed into the boxes so that none of the hats are in the right box is n!/e (rounded to
the nearest integer for every positive n).[18]

Optimal planning problems [ edit ]

A stick of length L is broken into n equal parts. The value of n that maximizes the product of the lengths is then either[19]

 or 

The stated result follows because the maximum value of  occurs at  (Steiner's problem, discussed below). The quantity  is a measure of information gleaned from an event
occurring with probability , so that essentially the same optimal division appears in optimal planning problems like the secretary problem.

Asymptotics [ edit ]

The number e occurs naturally in connection with many problems involving asymptotics. An example is Stirling's formula for the asymptotics of the factorial function, in which both the numbers e and π
appear:

As a consequence,

In calculus [ edit ]

The principal motivation for introducing the number e, particularly in calculus, is to perform differential and integral calculus with exponential functions and
logarithms.[20] A general exponential function y = ax has a derivative, given by a limit:

The parenthesized limit on the right is independent of the variable x. Its value turns out to be the logarithm of a to base e. Thus, when the value of a is set to e,
this limit is equal to 1, and so one arrives at the following simple identity:

Consequently, the exponential function with base e is particularly suited to doing calculus. Choosing e (as opposed to some other number as the base of the
exponential function) makes calculations involving the derivatives much simpler.

Another motivation comes from considering the derivative of the base-a logarithm (i.e., loga x),[21] for x > 0:

where the substitution u = h/x was made. The base-a logarithm of e is 1, if a equals e. So symbolically,

The logarithm with this special base is called the natural logarithm, and is denoted as ln; it behaves well under differentiation since there is no undetermined limit
to carry through the calculations.

Thus, there are two ways of selecting such special numbers a. One way is to set the derivative of the exponential function ax equal to ax, and solve for a. The other way is to set the derivative of the
base a logarithm to 1/x and solve for a. In each case, one arrives at a convenient choice of base for doing calculus. It turns out that these two solutions for a are actually the same: the number e.

Alternative characterizations [ edit ]

See also: § Representations, and Characterizations of the exponential function

Other characterizations of e are also possible: one is as the limit of a sequence, another is as the sum of an infinite series, and still others rely on integral
calculus. So far, the following two (equivalent) properties have been introduced:

1. The number e is the unique positive real number such that .

2. The number e is the unique positive real number such that .

The following four characterizations can be proven to be equivalent:

3. The number e is the limit

Similarly:

4. The number e is the sum of the infinite series

where n! is the factorial of n. (By convention .)
5. The number e is the unique positive real number such that

6. If f(t) is an exponential function, then the quantity  is a constant, sometimes called the time constant (it is the reciprocal of the exponential growth constant or decay constant).
The time constant is the time it takes for the exponential function to increase by a factor of e: .

Properties [ edit ]

Calculus [ edit ]

As in the motivation, the exponential function ex is important in part because it is the unique nontrivial function that is its own derivative (up to multiplication by a constant):

and therefore its own antiderivative as well:

Inequalities [ edit ]

The number e is the unique real number such that

for all positive x.[22]

Also, we have the inequality

for all real x, with equality if and only if x = 0. Furthermore, e is the unique base of the exponential for which the inequality ax ≥ x + 1 holds for all x.[23] This is a
limiting case of Bernoulli's inequality.

Exponential-like functions [ edit ]

Steiner's problem asks to find the global maximum for the function

This maximum occurs precisely at x = e.

The value of this maximum is 1.4446 6786 1009 7661 3365... (accurate to 20 decimal places).

For proof, the inequality , from above, evaluated at  and simplifying gives . So  for all positive x.[24]

Similarly, x = 1/e is where the global minimum occurs for the function

defined for positive x. More generally, for the function

the global maximum for positive x occurs at x = 1/e for any n < 0; and the global minimum occurs at x = e−1/n for any n > 0.

The infinite tetration

 or 

converges if and only if e−e ≤ x ≤ e1/e (or approximately between 0.0660 and 1.4447), due to a theorem of Leonhard Euler.[25]

Number theory [ edit ]

The real number e is irrational. Euler proved this by showing that its simple continued fraction expansion is infinite.[26] (See also Fourier's proof that e is irrational.)

Furthermore, by the Lindemann–Weierstrass theorem, e is transcendental, meaning that it is not a solution of any non-constant polynomial equation with rational coefficients. It was the first number to be
proved transcendental without having been specifically constructed for this purpose (compare with Liouville number); the proof was given by Charles Hermite in 1873.

It is conjectured that e is normal, meaning that when e is expressed in any base the possible digits in that base are uniformly distributed (occur with equal probability in any sequence of given length).

Complex numbers [ edit ]

The exponential function ex may be written as a Taylor series

Because this series is convergent for every complex value of x, it is commonly used to extend the definition of ex to the complex numbers. This, with the Taylor series for sin and cos x, allows one to
derive Euler's formula:

which holds for every complex x. The special case with x = π is Euler's identity:

from which it follows that, in the principal branch of the logarithm,

Furthermore, using the laws for exponentiation,

which is de Moivre's formula.

The expression

is sometimes referred to as cis(x).

The expressions of sin x and cos x in terms of the exponential function can be deduced:

Differential equations [ edit ]

The family of functions

where C is any real number, is the solution to the differential equation

Representations [ edit ]

Main article: List of representations of e

The number e can be represented in a variety of ways: as an infinite series, an infinite product, a continued fraction, or a limit of a sequence. Two of these representations, often used in introductory
calculus courses, are the limit

given above, and the series

obtained by evaluating at x = 1 the above power series representation of ex.

Less common is the continued fraction
[27][28]

which written out looks like

This continued fraction for e converges three times as quickly:[citation needed]

Many other series, sequence, continued fraction, and infinite product representations of e have been proved.

Stochastic representations [ edit ]

In addition to exact analytical expressions for representation of e, there are stochastic techniques for estimating e. One such approach begins with an infinite sequence of independent random variables
X1, X2..., drawn from the uniform distribution on [0, 1]. Let V be the least number n such that the sum of the first n observations exceeds 1:

Then the expected value of V is e: E(V) = e.[29][30]

Known digits [ edit ]

The number of known digits of e has increased substantially during the last decades. This is due both to the increased performance of computers and to algorithmic improvements.[31][32]

Number of known decimal digits of e
Date Decimal digits Computation performed by

1690 1 Jacob Bernoulli[11]

1714 13 Roger Cotes[33]

1748 23 Leonhard Euler[34]

1853 137 William Shanks[35]

1871 205 William Shanks[36]

1884 346 J. Marcus Boorman[37]

1949 2,010 John von Neumann (on the ENIAC)

1961 100,265 Daniel Shanks and John Wrench[38]

1978 116,000 Steve Wozniak on the Apple II[39]

Since around 2010, the proliferation of modern high-speed desktop computers has made it feasible for most amateurs to compute trillions of digits of e within acceptable amounts of time. It currently has
been calculated to 8 trillion digits.[40]

In computer culture [ edit ]

During the emergence of internet culture, individuals and organizations sometimes paid homage to the number e.

In an early example, the computer scientist Donald Knuth let the version numbers of his program Metafont approach e. The versions are 2, 2.7, 2.71, 2.718, and so forth.[41]

In another instance, the IPO filing for Google in 2004, rather than a typical round-number amount of money, the company announced its intention to raise 2,718,281,828 USD, which is e billion dollars
rounded to the nearest dollar.

Google was also responsible for a billboard[42] that appeared in the heart of Silicon Valley, and later in Cambridge, Massachusetts; Seattle, Washington; and Austin, Texas. It read "{first 10-digit prime
found in consecutive digits of e}.com". The first 10-digit prime in e is 7427466391, which starts at the 99th digit.[43] Solving this problem and visiting the advertised (now defunct) website led to an even
more difficult problem to solve, which consisted in finding the fifth term in the sequence 7182818284, 8182845904, 8747135266, 7427466391. It turned out that the sequence consisted of 10-digit
numbers found in consecutive digits of e whose digits summed to 49. The fifth term in the sequence is 5966290435, which starts at the 127th digit.[44] Solving this second problem finally led to a Google
Labs webpage where the visitor was invited to submit a résumé.[45]

Notes [ edit ]

Further reading [ edit ]

Maor, Eli; e: The Story of a Number, ISBN 0-691-05854-7
Commentary on Endnote 10  of the book Prime Obsession for another stochastic representation
McCartin, Brian J. (2006). "e: The Master of All"  (PDF). The Mathematical Intelligencer. 28 (2): 10–21. doi:10.1007/bf02987150 .

External links [ edit ]

The number e to 1 million places  and 2 and 5 million places
e Approximations  – Wolfram MathWorld
Earliest Uses of Symbols for Constants  Jan. 13, 2008
"The story of e" , by Robin Wilson at Gresham College, 28 February 2007 (available for audio and video download)
e Search Engine  2 billion searchable digits of e, π and √2
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Erdős–Borwein (E) · Golden ratio (φ) · Square root of 3 · Square root of 5 · Silver ratio (δS) · Euler's (e) · Pi (π) · Universality probability (PU)

Schizophrenic · Transcendental · Trigonometric

Categories: E (mathematical constant) Transcendental numbers Mathematical constants Real transcendental numbers Leonhard Euler
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6. Derivative of the Exponential Function
by M. Bourne

The derivative of ex is quite remarkable. The expression for the derivative is the same as the expression that we
started with; that is, ex!

What does this mean? It means the slope is the same as the function value (the y-value) for all points on the graph.

Example: Let's take the example when x = 2. At this point, the y-value is e2 ≈ 7.39.

Since the derivative of ex is ex, then the slope of the tangent line at x = 2 is also e2 ≈ 7.39.

We can see that it is true on the graph:

The graph of  showing the tangent at 

Let's now see if it is true at some other values of x.
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We can see that in each case, the slope of the curve  is the same as the function value at that point.

Other Formulas for Derivatives of Exponential Functions

If u is a function of x, we can obtain the derivative of an expression in the form eu:

If we have an exponential function with some base b, we have the following derivative:

[These formulas are derived using first principles concepts. See the chapter on Exponential and Logarithmic
Functions if you need a refresher on exponential functions before starting this section.]

Example 1

Find the derivative of y = 103x.

Example 2

Find the derivative of y = ex2

.

Example 3

Find the derivative of y = sin(e3x).

Example 4

Find the derivative of y = esin x.

Example 5

Find the derivative of

Exercises

1. Find the derivative of y = 10x2

.

2. Find the derivative of

3. Find the derivative of

4. Show that

satisfies the (second order differential) equation

This last exercise is important in electronics, since the funtion  represents a decaying signal.
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We'll see more of these curves in Second Order Differential Equations, in the later calculus section.
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An Introduction to Quantum Physics:

When common sense broke!

Prof Nick Evans
University of Southampton

Where did quantum mechanics come from? What is it? 

Why is it weird and should we do anything about it?



Physics in the 
1900s

Materials were 
classified into 
groups in the 
periodic table of 
Chemistry based 
on their like 
interactions..



Electrons
You can strip electrons out of 
atoms quite easily and gather 
them together and make them 
flow – electricity (upto 1880s).

In 1909 Millikan had worked out the 
smallest charge you could add to an 
oil drop – one electron.. He knew it’s 
charge and mass. 



Rutherford’s Solar Systems

1911



Electric Fields
The forces between charges were well understood (Maxwell’s 
Equations)….

A charge fills space around it with an electric field

Originally a note keeping device –
“what force would another charge 
here feel”…

They became real since energy is 
transferred through them 

Light is an electromagnetic wave 
that can exist independently of 
charges…



Technical Hitches There is nothing new 
to be discovered in 
physics now. All that 
remains is more and 
more precise 
measurement.
Lord Kelvin (never 
said this!) 

Planets can be moved to 
orbits closer and closer to the 
sun..

Electrons in hydrogen atoms 
can’t be moved arbitrarily 
close to the proton… 

In principle it seemed you 
could get an infinite amount 
of energy out of an atom this 
way…

In fact you get discrete 
spectra out (and a maximum 
energy)… Balmer Spectrum of H  1880s



… and breath…

Q7 for 10 minutes…



Light and Matter
The Photo-Electric Effect

Light can provide energy to kick electrons out of a metal

If light intensity is lowered so there is less energy, we expect the 
evicted electrons to have less energy… but they don’t… we just see 
fewer electrons of the same energy…

The energy in light comes in lumps!

Light e-

MetalMetal

1905





Light Quanta
The energy in light comes in lumps

We can think of light as 
particles in our detector –
photons

The wave describes the photons 
probability distribution!



Black Body Radiation

What is a black body?             

Something that absorbs and emits all light at all wave lengths

At low temperatures it looks black…

At high T it looks like the sun!....



An Infinite Number of Modes
Any number of oscillations 
provided vanishes at the 
edge…

In classical physics at a
temperature T each ”degree 
of freedom” has equal 
energy    kT…

Planck proposed E = n h f so if      k T < h f     the state 
doesn’t contribute… 



De Broglie (1924)  guessed if light was particulate that electrons 

were wave-like                                    l = h / p

Davisson & Germer 
(1927) displayed this 
behaviour



All Particles Behave As Waves - Buckyballs
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Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real part of the complex wave function

(here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take the real part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

p =
h

�
, E = h⌫ = h

v

�

y = A sin

✓
2⇡h

p
x� 2⇡E

h
t+ �

◆
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Fermions vs Bosons
Why do some materials seem wave like (light)

& others particle like (electrons)?

We’ve come to learn that bosons can have any number of 
quanta in a particular state… so you can build up the wave…

For fermions there can 
only be one quanta in a 
given state so they always 
look bitty… 



… and breath…

Q8, Q9 for 20 
minutes….



The Schroedinger Equation
Schroedinger wrote down an equation which 
for a sine wave gives…



Deriving it (kind of)…
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We used the photon energy 
relation… 

But magically this is right!

An Introduction to Quantum Mechanics

Nick Evans

Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

J/s is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

1

2
mv2 + V = E

1

2

p2

m
+ V = E

1

2m

✓
� h2

(2⇡)2

◆
d2

dx2
 + V  = i

h

2⇡

d

dt
 



Let’s find a very simple solution 

Let’s consider a particle trapped in a 
box by an  infinite potential wall on 
either side…

We solve the Schroedinger equation 
with V=0

We require the wave to vanish at the 
edges x=0,L



The solution is

Substitute it in to 
check
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circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

J/s is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

1

2
mv2 + V = E

1

2

p2

m
+ V = E

� h2

(2⇡)2
d2

dx2
 = i

h

2⇡

d 

dt

 =

r
2

a
sin

⇣n⇡x
L

⌘
e�i2⇡Ent/h

An Introduction to Quantum Mechanics

Nick Evans

Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

J/s is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

1

2
mv2 + V = E

1

2

p2

m
+ V = E

✓
� h2

(2⇡)22m

◆✓
�n2⇡2

L2
= En

En =
h2n2

8mL2

An Introduction to Quantum Mechanics

Nick Evans

Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

J/s is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

1

2
mv2 + V = E

1

2

p2

m
+ V = E

✓
� h2

(2⇡)22m

◆✓
�n2⇡2

L2

◆
 = En 

En =
h2n2

8mL2

An Introduction to Quantum Mechanics

Nick Evans

Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

J/s is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

1

2
mv2 + V = E

1

2

p2

m
+ V = E

1

2m

✓
� h2

(2⇡)2

◆
d2

dx2
 = i

h

2⇡

d

dt
 



So these are our solutions plotted at t=0….

The big problem is that they are complex… the magnitude 
though is real..

y*y = (a-ib) (a+ib) = a2 + b2



We interpret the second plot as showing us the probability of 
the particle being at each point in space when we make an 
observation….

The theory predicts probabilities… and we’ll return to this oddity 
next time…



Quantum Dots, Quantum Corrals

These days we can 
make quantum 
wells… and 
photograph the 
wave function using 
electron microscopy!

People engineer 
quantum wells (dots) 
to control the 
frequency/colour of 
light they emit….



… and breath…

Try Q10 & Q11…


