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Where did quantum mechanics come from? What is it? 

Why is it weird and should we do anything about it?



Where were we?

Light and electrons show both particle and wave like properties.
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Classical Physics

Q1: Show that the classical energy of an electron in a

circular orbit in a hydrogen atom is given by

E = � Q2

8⇡✏0r

The Semi-classical Period

Q2: The photoelectric e↵ect is described by the key

equation for the energy of the electron

1

2
mev

2
e +Wf = h⌫

where the first term is the kinetic energy of the emerging

electron, Wf is the work function - the energy needed to

liberate an electron from the material - ⌫ is the frequency

of the incident light and h = 6.6 ⇥ 10
�34

is Planck’s

constant.

The table below shows four di↵erent metals and their

corresponding work functions.

Metal Work function ( ⇥10
�19

J)

Gold 7.8

Zinc 6.9

Calcium 4.3

Potassium 3.2

a) Calculate the threshold frequencies for each of the four

metals listed above.

b) When radiation of frequency 8 ⇥ 10
14
Hz is applied to

Calcium, Calculate or find:

i) Energy of a photon.

ii) Kinetic energy of the photoelectrons leaving the Cal-

cium.

iii) Speed of the photoelectrons leaving the Calcium.

Q3: Neutrons may be used to study the atomic structure

of matter. Di↵raction e↵ects are noticeable when the de

Broglie wavelength of the neutrons is comparable to the

spacing between the atoms. This spacing is typically 2.6

⇥10
�10

m.

i) Suggest why using neutrons may be preferable to using

electrons when investigating matter.

ii) Calculate the speed v of a neutron having a de Broglie

wavelength of 2.6 ⇥10
�10

m. The mass of a neutron is

1.7 ⇥10
�27

kg.

Q4: Find the real and imaginary parts of the complex

wave function (here A is a complex number)

 = Aei
2⇡
� (x�vt)

Exponentials are easier to di↵erentiate than sine waves

so people use the trick of writing the solution like this

and then take either just the real or imaginary part.

Show that in quantum mechanics

E = i
h

2⇡

d 

dt

p = �i
h

2⇡

d 

dx

y = A sin
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Square well solutions….

We interpret the second plot as showing us the probability of 
the particle being at each point in space when we make an 
observation….



Fermions vs Bosons
Why do some materials seem wave like (light)

& others particle like (electrons)?

We’ve come to learn that bosons can have any number of 
quanta in a particular state… so you can build up the wave…

For fermions there can 
only be one quanta in a 
given state so they always 
look bitty… 



The Hydrogen Atom
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V (r) =
Q2

4⇡✏0r

r2 =
1

r2
d

dr

✓
r2

d

dr

◆
+ angles

Calculus

Di↵erentiation

Q1: Show, from first principles, that

d sinx

dx
= cosx

Q2: Find and identify the nature of the turning points
of

y = x3 � 6x2 + 32x+ 4

What is the minimum of the function?

Q3: Show how Newton’s gravitation force law follows
from the gravitational potential

�g =
�GMm

r

Similarly show that Coulomb’s law follows from

�e = � Qq

4⇡✏0r

Taylor Expansion

Q4: Find the Taylor expansion for sinx, cosx and ex.
Find the first three non-zero terms and the nth term in
the series in each case.

Check that your expansions are consistent with
d sin x
dx = cosx; d cos x

dx = � sinx; dex

dx = ex;

Q5: Use your expansions from Q4 to prove Euler’s for-
mula

eix = cosx+ i sinx

where i2 = �1.

Integration

Q6: There is another way to formulate mechanics that
is equivalent to Newton’s laws. One gives a particular
number to any trajectory that a particle might travel by
(here we really allow any motion to begin with - speed is
not connected to position!) - the path with the smallest
value of that number is the path taken. The way to define
the number that works is through the Action

S =

Z
(T � V )dt

T = kinetic energy, V = potential energy

let’s do a very simple one dimensional example where

T =
1

2
mẋ2. V = V (x)

Write out the Action. Imagine that you expand the paths
around the true minimum

x = xm + �x ẋ = ẋm + �ẋ

Write out the leading order change in the action �S.

Now use Integration by Parts to make the �ẋ piece look
like just �x. You will get a term evaluated at the ends
of the path. We will assume that these ends points are
held fixed.

If we were at the minimum then the leading order �S =
0. Show that this condition is equivalent to Newton’s
second law.
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If you look for solutions for a negative charge in orbit around a 
very heavy positive charge you find these possible states:

S  1

P  3

D  5

F 7



We beautifully explain the periodic table 
pattern by stacking fermions in orbitals… 
except we need an extra 2 fold 
degeneracy… intrinsic spin…

Beautifully predicts the Balmer spectrum



… and breath…



Weird & Wonderful Quantum I 



Wave Function Collapse
Our quantum theory describes the evolution of Schroedinger’s 
wave.. perfectly sensibly….

But when we do a measurement it describes the probability of 
finding a particle somewhere… but how does nature decide?

Don’t ask (Copenhagen 
Interpretation)

All things happen in a 
multiverse (Many Worlds)

We’re missing something 
(Hidden variables)



Schroedinger’s Cat
The question becomes what is a measurement that collapses 
the wave function?

You? Me? A Cat? An Atom?  

If a probabilistic quantum 
process controls a real life 
event then a cat can become 
50% alive and 50% dead….

In a quantum lottery every ticket wins in some part of the wave 
function (is that better?)



Weird
The truly odd thing here is that no one has ever thought of 
an experiment that probes this (and wow have people 
tried!)… or done an experiment where QM doesn’t work.

When you do an experiment the wave function collapses and 
the theory predicts the probabilities perfectly… end of.



Entanglement
An atom can emit two photons

It’s equally likely to swap the polarizations… the photon is 50%  
spinning left, 50% spinning right… an observer “collapses the 
wave function” to one or the other…

BUT when it does so the spin of the other guy is fixed also.. that 
collapse has happened potentially very far away… this leads to 
faster than light “communication”…

Except that you can’t send information this way…. So again 
nothing quite breaks…



… and breath…



Damn Your Waves – Give Me Particles! 

Heisenberg’s Uncertainty Principle x      p  > h
t       E  > hOr equally



Feynman’s Sum Over Histories
Feynman incorporated the Uncertainty Principle into a 
description of classical particle paths…

The classical path becomes 
smeared by other paths that the 
Uncertainty Principle allows 

These are very wild on short time 
scales but much less so over day 
to day time intervals…

You can have multiple destination points also… and then the 
theory returns probabilities for the final position… doh.. Wave 
function collapse is back…



Decoherence
There is an understanding that larger systems become more 
classical – the DE you can borrow in some time gets spread 
more thinly between many particles in a system so each lies a 
bit closer to a classical configuration…

This includes the idea of particles making constant 
measurements on each other… and may explain why the large 
scale world looks rather classical…

It doesn’t solve the Schroedinger cat type set ups though!



… and relax…



Weird & Wonderful Quantum II 



Tunnelling

Apparently magic things can happen on short distance scales 
due to the wave nature of particles…



We’ve 
seen 
solutions 
in a well

We’ve 
seen  
solutions 
in free 
space

In the central region assume V= constant which is greater 
than the E of the particle (classically it can’t pass)
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The Schroedinger equation

Q5: Derive the solutions for an infinite quantum square
well. Start from the Schroedinger equation
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The well has zero potential between x = 0 and L - else-
where V is infinite.

In time independent solutions you can always find a so-
lution of the form

 = u(x)e�i2⇡E/h

Find an equation for u(x) and then try a solution of the
form

u(x) = A sin kx+B cos kx

Make sure your solution vanishes at x = 0, L. Now sub-
stitute your guess into your di↵erential equation for u(x).

To fix the overall normalization make sure the probability
that the particle is somewhere in the box is one. That is
require

Z L

0
 ⇤ dx = 1
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Q6: There is another way to formulate mechanics that
is equivalent to Newton’s laws. One gives a particular
number to any trajectory that a particle might travel by
(here we really allow any motion to begin with - speed is
not connected to position!) - the path with the smallest
value of that number is the path taken. The way to define
the number that works is through the Action

S =

Z
(T � V )dt

T = kinetic energy, V = potential energy

let’s do a very simple one dimensional example where

T =
1

2
mẋ2. V = V (x)

Write out the Action. Imagine that you expand the paths
around the true minimum

x = xm + �x ẋ = ẋm + �ẋ

Write out the leading order change in the action �S.

Now use Integration by Parts to make the �ẋ piece look
like just �x. You will get a term evaluated at the ends
of the path. We will assume that these ends points are
held fixed.

If we were at the minimum then the leading order �S =
0. Show that this condition is equivalent to Newton’s
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� 1

2m

h2

(2⇡)2
d2u

dx2
= �(V � E)u

u = Ae�
p
2m(2⇡)/h

p
V�Ex

It’s an 
exponential 
decay but not 
zero…



Tunnelling

This is how radioactive alpha-decay happens….

Protons wouldn’t fuse in the sun without tunnelling through the 
Coulomb repulsion… 

…. And its used by some electronics components now…


