
28/07/2008 13:44Mercurial

Page 1 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Mercurial

Author: Hans Fangohr <fangohr@soton.ac.uk>
Date: 2008-05-21
Version: 033c85b22987
Id: talk.txt,v 033c85b22987 2008/05/21

08:42:42 fangohr
Series: SESA2006 2008, last lecture

Hint

Adjust font-size in browser to make slides fill screen.
Often, this can be done with CTRL+PLUS or CTRL-MINUS,
or pressing the CTRL key and scrolling the mouse wheel
(on Mac OS X: use Apple key instead of CTRL)

Outline: Why version control?, Mercurial (Hg), Examples

Hans Fangohr is a Senior Lecturer in Computational Methods in the
School of Engineering Sciences at the University of Southampton.

This is a very basic introduction to the use of version control systems,
and in particular Mercurial. No advanced features such as merging will
be discussed (see Mercurial Tutorial for this).

Why version control (Single users)
often we work on documents (or a set of files) for a long time
(days, weeks, months)

we (should) have backup copies in other places

need to know:

regularly: what is the most recent version

sometimes: how did the project look like some time ago (say
two weeks)

Common approach:

file-1.doc
file-2.doc
file-2a.doc

mailto:fangohr@soton.ac.uk
http://hgbook.red-bean.com/

28/07/2008 13:44Mercurial

Page 2 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

file-3.doc
...

Why version control (in team work)
multiple people working on code

may work on one file simultaneously

need

tracking of versions

merging of changes from different people

Impossible to do manually -> Need version control

Mercurial
will introduce idea of version control together with

Mercurial which is a particular version control package

Homepage: http://www.selenic.com/mercurial

Mercurial is abbreviated hg (from the chemical element)

Installation

Download binary from
http://www.selenic.com/mercurial/wiki/index.cgi/BinaryPackages

Linux: usually standard package of distribution
MacOS: compile from source or download binary
Windows: recommend TortoiseHg at TortoiseHg

http://www.selenic.com/mercurial/wiki/index.cgi/TortoiseHg

Terminology
Repository: something keeping track of all changes to the

project for all the past (hidden in .hg)

You can think of this as a (hidden) collection of the
files file-1.doc, file-2.doc, file-3.doc,
file-4.doc.

Working copy: the set (visible) files (in the working directory), i.e.

http://www.selenic.com/mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/BinaryPackages
http://www.selenic.com/mercurial/wiki/index.cgi/TortoiseHg

28/07/2008 13:44Mercurial

Page 3 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

one copy of the project.

Typically, this will contain the most recent version
(i.e. file-4.doc)

Getting started with hg
Suppose we need to write a Python program in a directory
project1

Create directory and change into directory:

$> mkdir project1
$> cd project1
$project1>

Initialise hg repository

Need to do this only once for a given repository:

$project1> hg init

Checking the status of files
Suppose our first file is hello.py in the project1 directory:

def hello(msg):
 print "Hello World: %s" % msg

We can ask hg whether it knows about the file:

$project1> hg status hello.py
? hello.py

We could also have used:

$project1> hg status
? hello.py

and hg will report the status of all files in the directory.

? means: unknown.

In-built help function
Mercurial has a fairly comprehensive help command:

$> hg help

28/07/2008 13:44Mercurial

Page 4 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Or to get help for a particular command:

$> hg help add
hg add [OPTION]... [FILE]...

add the specified files on the next commit

 Schedule files to be version controlled and added to the
 repository.

 The files will be added to the repository at the next
 commit. To undo an add before that, see hg revert.

 If no names are given, add all files in the repository.
...

First steps 1: Adding files
Add this file to the repository (i.e. tell hg to track it):

$project1> hg add hello.py
$project1>

At this stage, hg knows that it should add the file. Let's check
this (via the status command):

$project1> hg status
A hello.py

A stands for Added.

Commit changes (ask hg to take snapshot):

$project1> hg commit -m "Added my first file"
$project1>

First steps 2: checking status
Check status:

$project1> hg status
$project1>

no news is good news, i.e. all files in the directory are up-to-date
(=identical to last snap-shot)

Study history of repository (the log):

$project1> hg log
changeset: 0:f8087bdd8fc8
tag: tip

28/07/2008 13:44Mercurial

Page 5 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:24:31 2008 +0100
summary: Added my first file

First steps 3: modifying the file
extend programm hello.py to read:

def hello(msg):
 print "Hello World: %s" % msg

hello("from hello.py")

Has hg realised we have changed the file?:

$project1> hg status
M hello.py

Yes, M stands for Modified.

First steps 4: Review the change
What is the difference (in comparison to the last snapshot):

$project1> hg diff
diff -r f8087bdd8fc8 hello.py
--- a/hello.py Thu May 15 23:24:31 2008 +0100
+++ b/hello.py Thu May 15 23:29:32 2008 +0100
@@ -1,2 +1,4 @@
 def hello(msg):
 print "Hello World: %s" % msg
+
+hello("from hello.py")

Suppose we are happy with this change, and want to take a
snap-shot: (i.e. commit the change):

$project1> hg commit -m "Adding main program"
$project1>

First steps 5: The history (again)
Check out the history of the project:

$project1> hg log
changeset: 1:7bcacdc541fb
tag: tip
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:35:53 2008 +0100

28/07/2008 13:44Mercurial

Page 6 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

summary: Adding main program

changeset: 0:f8087bdd8fc8
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:24:31 2008 +0100
summary: Added my first file

First steps 6: Adding another file
We create a new file README.txt which contains this line:

The hello.py program prints a friendly message.

Let's check the status, add, commit and check:

$project1> hg status
? README.txt
$project1> hg add README.txt
$project1> hg status
A README.txt
$project1> hg commit -m "Adding RENAME file"
$project1> hg status
$project1>

First steps 7: Study the history
$project1> hg log
changeset: 2:7a6262cf0acf
tag: tip
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:53:41 2008 +0100
summary: Adding REAME file

changeset: 1:7bcacdc541fb
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:35:53 2008 +0100
summary: Adding main program

changeset: 0:f8087bdd8fc8
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:24:31 2008 +0100
summary: Added my first file

Other ways of reading the history
Graphical interface

$project1> hg view

28/07/2008 13:44Mercurial

Page 7 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Using webserver
$project1> hg serve

and point webbrowser to http://localhost:8000

See which line was written when (and by whom!)
$project1> hg blame hello.py
0: def hello(msg):
0: print "Hello World: %s" % msg
1:
1: hello("from hello.py")

$project1> hg blame -u hello.py
fangohr: def hello(msg):
fangohr: print "Hello World: %s" % msg
fangohr:
fangohr: hello("from hello.py")

Typical cycle
While programming (or writing a report, creating a web page, etc),
we tend to follow this cycle:

1. do the work (i.e. modify files)

2. commit changes with commit message

3. back to 1.

Only occasionally, we need to do special things:

examine the history (partly shown)

go back to an older snap shot

-> this is next

The update command
update refers to the files in the working directory (not the repository),
and allows 'time travel'.

To go back to revision 0, use:

$project1> hg update -r 0
1 files updated, 0 files merged, 1 files removed, 0 files unresolved

http://localhost:8000/

28/07/2008 13:44Mercurial

Page 8 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

(Similarly, can use hg update -r 1, hg update -r 2 etc)

What files are in the working directory?:

$project1> ls
hello.py

The update command (part 2)
What is the content?:

$project1> cat hello.py
def hello(msg):
 print "Hello World: %s" % msg

To check the version of the files in the working directory, use the
parent command:

$project1> hg parent
changeset: 0:f8087bdd8fc8
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:24:31 2008 +0100
summary: Added my first file

The update command (part 3)
To go to the most recent version in the repository (the tip) use:

$project1> hg update tip

or simply hg update.

Can also request the latest snap shot taken before 23:50 on 15
May 2008:

$project1> hg update --date "<2008-05-15 23:45"
Found revision 1 from Thu May 15 23:35:53 2008 +0100
0 files updated, 0 files merged, 1 files removed, 0 files unresolved

Check status of working directory:

$project1> hg parents
changeset: 1:7bcacdc541fb
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:35:53 2008 +0100
summary: Adding main program

Useful if you happen to know that at a certain date something
worked.

28/07/2008 13:44Mercurial

Page 9 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Adding user-defined tags
Version control is particularly important when maintaining
software that is released to users.

Also useful if we need to remember particular revisions (such as
interim report, Masters thesis, ...)

User-defined tag examples

Suppose we have released revision 2 as version 1.0 of the software:

$project1> hg tag -r 2 "release 1.0"
$project1> hg tags
tip 3:691317be5f4b
release 1.0 2:7a6262cf0acf

Adding user-defined tags (part 2)
the tags command lists all defined tags

can also see tags in log:

$project1> hg log

changeset: 3:691317be5f4b
tag: tip
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Fri May 16 16:26:41 2008 +0100
summary: Added tag release 1.0 for changeset 7a6262cf0acf

changeset: 2:7a6262cf0acf
tag: release 1.0
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:53:41 2008 +0100
summary: Adding REAME file

changeset: 1:7bcacdc541fb
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:35:53 2008 +0100
summary: Adding main program

changeset: 0:f8087bdd8fc8
user: Hans Fangohr [phi] <fangohr@soton.ac.uk>
date: Thu May 15 23:24:31 2008 +0100
summary: Added my first file

Adding user-defined tags (part 3)

28/07/2008 13:44Mercurial

Page 10 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Can now use the tag "release 1.0" instead of the revision number
if, say, we need to go back to that version:

$project1> hg update -r "release 1.0"

It can also make sense to tag particular versions of your work,
i.e. use tags like:

interim_report

final_as_submitted

has bug

What are revision specifiers
Revisions (=snap-shots) are identified by

hashes (such as 7a6262cf0acf) and

integers (such as 2)

user-defined tags (see Adding user-defined tags)

The integers are easier to use.

Caution!

If you use the push, pull or merge commands, the
integers may change. See Mercurial tutorial for details.

Removing files from the repository
To remove a file from the repository (say README.txt), you can
use:

$project1> hg remove README.txt

Mercurial will tag the file for removal, and will delete it with the
next commit.

Note that the history of the file is not changed: we can always go
back to earlier revisions and the file will be there.

Renaming files and directories

file:///Users/fangohr/work/talks/Mercurial/talk.html#adding-user-defined-tags
http://hgbook.red-bean.com/

28/07/2008 13:44Mercurial

Page 11 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

You can easily rename a file with hg. Suppose we need to rename
README.txt to readme.txt:

$project1> hg rename README.txt readme.txt

This (i) renames the file in the working directory and (ii) include the
change in the repository the next time we commit.

A bad way of renaming

You could rename a file as follows:
copy README.txt to readme.txt without hg

tell hg to remove README.txt from the repository and

tell hg to add readme.txt.

This his two disadvantages: (i) hg cannot know that this is the same
file and (ii) this will take much more disk space than using hg
rename.

Where is all the history stored?
The whole repository lives in a hidden directory with name .hg.
(it is hidden due to the leading dot.

On Linux/Unix/Mac OS X, you can display hidden directories with
the -a switch:

$project1> ls -a
.hg README.txt hello.py

Reverting changes
Suppose you are working on file hello.py. You start with the
most recent version from the repository:

$project1> hg update

You make some changes to hello.py, and then realise that your
changes were not useful, and you want to go back the last
version from the repository.

There are two options:

1. You delete the file manually and run hg update.

2. You use the revert command: hg revert hello.py.

28/07/2008 13:44Mercurial

Page 12 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Uncommitting the commit
If you have committed something that you didn't want to commit,
you can undo the last commit (but only the last commit!) with:

$project1> hg rollback

Making copies (backups?) of the
repository
You can either

just copy the whole project1 folder (which includes the hidden
.hg directory) to another place

or (recommended): you can ask hg to make the copy:

$project1> cd ..
$> hg clone project1 my-backup-project1

Now you have an identical copy of the repository in directory
my-backup-project1.

-> See also using multiple repositories (pull, push, merge)

Note

To propagate changes from the original repository
(project1) to the cloned copy (my-backup-project),
do this:

$> cd my-backup-project1
$my-backup-project1> hg pull

Multiple repositories
When working with several people, one can have multiple
repositories in different places:

Developer A may be working on the graphical userinterface
while developer B is improving the numerical part of the
code.

In a Group Design Project report student A might be working
on the introduction, student B on results chapter 1 and

file:///Users/fangohr/work/talks/Mercurial/talk.html#multiple-repositories

28/07/2008 13:44Mercurial

Page 13 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

student C on the appendix of a large (LaTeX) document.

Ocasionally (maybe quite frequently), the changes in these
repositories (or some of these) need to be combined (merged)

We will cover this advanced topic only superficially for one
particular setup (with one central master repository).

There are many other ways in which (distributed) version control
systems can be used. See Mercurial tutorial for details.

Multiple repositories: one master
repository
1. Create the master repository, say:

$> mkdir master
$> cd master
$master> hg init .

2. Add any files that you have already, and commit.

3. Now indivduals can clone from the master to carry out their
work:

$> hg clone master my-copy-A
$> cd my-copy-A

Do the work here, and and modify files, commit as many
times as you like (may need pull; see below).

When you have completed your work, commit everything and
push your changes to the master (may need pull first):

$my-copy-A> hg push

Multiple repositories: one master (2)
4. To import changes from the master repository (others could have

done some work in the mean time) into my-copy-A, use the pull
command:

$my-copy-A> hg commit #commit all our changes first
$my-copy-A> hg pull

This will update the repository (not the working directory). To bring
changes into the working directory, we have to update:

$my-copy-A> hg update

http://hgbook.red-bean.com/

28/07/2008 13:44Mercurial

Page 14 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

If there have been changes on files that we have worked on as
well, a merge has to take place (command is hg merge)

This is usually automatic and hg will tell us if required.

Rarely, one needs to edit a file manually during the merge.

After a merge, we need to commit, typically like this:

$my-copy-A> hg commit -m "merge"

Multiple repositories: one master (3)
The cloning, pulling and pushing between repositories can happen

on the same file system (computer)

between computers using either

ssh or

the web server

This is an advanced topic (see Mercurial Tutorial).

Scientific truth and reproducibility
we tend to believe the 'results' or 'findings' of a research group
(or individual), if other individuals and groups can reproduce them

this implies that individuals should be able to reproduce all of
their (earlier) results

if these results include computer simulations, then we need to
know

which version of the simulation programme/code was used

what input parameters (configuration files?) were used

Important

When using computer simulations, we should use version
control to be able to reproduce any earlier results at any
point in the future.

http://hgbook.red-bean.com/

28/07/2008 13:44Mercurial

Page 15 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

Summary of important commands
hg add (add files)

hg commit (commit changes)

hg status (show modified/missing/added/removed files)

hg log (show log)

hg diff (show diff to version of working directory)

hg parents (show version of working directory)

hg update (updated working directory)

hg clone (copy repository)

hg tag (add tag)

hg tags (list tags)

Abbreviating commands
Most commands can be abbreviated, such as:

status -> st

commit -> ci

diff -> di

update -> up

rename -> mv

Odd bits of information
Mercurial (hg) is written in Python

Advanced functionality
Read more about these topics in the (inofficial) manual at
http://hgbook.red-bean.com

keyword expansion

sending emails when revisions are committed, or repositories

http://hgbook.red-bean.com/

28/07/2008 13:44Mercurial

Page 16 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

pushed

access control (beyond ssh)

Useful entries in user hg
configuration file
On a Linux/Mac OS X user account, this is (an optional) file .hgrc in
the home directory:

[ui]
#tell Mercurial what user information to use in commit messages
username = Hans Fangohr [phi] <fangohr@soton.ac.uk>

[extensions]
#this enables the 'hg view' command
hgk=

[web]
#this makes for a nicer layout of the web interface (which is started
#with 'hg serve'
style=gitweb

Use Mercurial without access to
server
Suppose we have developer A and B that need to work on the same
project, but cannot access any mercurial servers jointly (typically due
to firewalls, restrictions imposed by employer, etc). Suppose A hold
the repository THEREPO from which the work is meant to start.
Somehow, A needs to give B a copy of the repository (mail, email,
usbstick, ftp server, ...). Suppose the current tip of that repository is
4f45839f613c:

if A makes a change to the repository, he needs to create a
bundle:

$> cd THEREPO
$THEREPO> hg bundle --base 4f45839f613c changes.bundle

and email the bundle changes.bundle to B. This bundle contains all
changes since the specified base version.

B can simply pull from that file (and update afterwards):

$> cd THEREPO_at_B
$THEREPO_at_B> hg pull changes.bundle

28/07/2008 13:44Mercurial

Page 17 of 17file:///Users/fangohr/work/talks/Mercurial/talk.html

If the bundle contains changes that are already present in B's version
of THEREPO, then these will be ignored when pulling.

If B wants to communicate changes to A, he needs to follow the
same instructions (to create a bundle and email it to A).

Summary
Nowadays, some version control software (such as hg) is

easy to install

very easy to use (in single user mode), but sufficiently
sophisticated to support very complex projects

well documented (start with Mercurial Tutorial and other links
on Mercurial home page).

An effective way to:

keep track of the history of a project

retrieve from errors (such as accidental deletion of files,
inability to retrieve working version)

always find the most recent version of a document and

reliably retrieve earlier versions if required.

(end of hand outs)

http://www.selenic.com/mercurial
http://hgbook.red-bean.com/

