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Motivation

The electrodeposition from lead salt solutions onto graphite sub-
strates allows for the fabrication of Pb mesostructures with few
defects and smoothly faceted
faces [1]. Another striking feature
Is that many different morpho-
logies can be grown just by ad-
justing the potential between the
electrodes ( see Figure 1) . The
dimensions of those mesostruc-
tures ( 100 — 1000 nm ) lie in the
range of different characteristic
length scales for ferromagnets
(e. g. the ferromagnetic domain
size). As a consequence one
expects the physical properties
of ferromagnetic mesostructures
to be very sensitive to their size
and shape. Therefore the exten-
sion of the method to the growth
of ferromagnetic metals and
alloys seems to be a very
promising research direction. duced with the electrodeposition method.
Finite element simulations based The length of the scale bar is 500 nm.

on the theory of micromagnetism Top: decahedron, Bottom: nanowires
are a standard tool for a theoretical description of ferromagnetic
nanostructures. In order to be able to do corresponding simulations
on the relatively large mesostructures one needs to modify this
approach.
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Figure 1: Novel Pb mesostructures pro-

Numerical Approach

In micromagnetism the scalar magnetic potential ¢ needs to be
1

regular at infinity, sothat &(r)—= for [r|—-« applies.
Consequently a pure finite element solution requires a mesh over a
region which goes far beyond the magnetic domain. This can be
avoided by using the hybrid finite element-boundary element method
[2]. The main trick of the method is to split ¢ into a sum of two
auxiliary potentials ¢, and'&., which can be solved on a finite
element mesh within the magnetic region. However, in order to obtain
the boundary conditions for ¢, one needs to calculate a surface

integral of the form
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D, (F)=9,, @1(T")V=—=5n(r')dS (1)

®,(r) is equal to the surface integral over the product of @, (")
and the normal derivative of the Green's function. The discretization
on a surface mesh yields:

ggzzéq_% (2)
The boundary element matrix B is generally dense and just depends
on the geometry of the problem.

Hierarchical matrices

The size of the boundary element matrix b Is of the order O <m2),
where M is the number of surface nodes. In order to investigate
mesostructures with a large surface, one needs to compress b .

For this compression we use the library hlib [3], which is based on
hierarchical matrices. A hierarchical matrix is usually represented in
a quad tree structure, i.e. each matrix block is subdivided into four
sons until the block itself is a leaf. The set of all leaves represents the
approximation of our matrix. There are admissible and non-

admissible leaves.

Admissible leaves are the white-green blocks of Figure 2. They can
be stored in the data-sparse
representation of Figure 3. Non-
admissible leaves are the red
blocks of Figure 2. They are stored
in the full matrix format. Whether a
block is admissible or not is
determined by geometrical
arguments. The row and column
indices of a certain block of B
represent the interaction between
®, and ¢, for two regions in the
integration regime of equation (1).
In case the regions are well chical matrix taken from the 1D standard
separated the kernel in equation (1) example of the hlib tutorial [3]. The red
Wl” be SUfflClently SmOOth, 30 bIOCkS dare Uncompressed. The green-

_ white blocks are compressed in the way
that one can expand it. Such an shown in Figure 3. The numbers denote
expansion makes the approximation the rank of each block.
of matrix blocks by a data-sparse format of Figure 3 possible.
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Figure 2: Simple example of an hierar-

Figure 3: Low rank approximation
of an admissible block. Since

K << m and k <<n applies, the
amount of storage is significantly
reduced.
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Example: Sphere

coarseness is to start from an octahedron
and recursively add nodes to the middle of
the edges. The new nodes have to be
rescaled to the correct radius of the sphere.
This technique has been used to compare the
storage requirements between the full
boundary element matrix and its hierarchical
sphere with 4098 nodes matrix approximation with an increasing
number of surface nodes. The results are shown in Figure 5. While
the amount of memory of the full matrix scales quadratically, the
behavior of the approximation is nearly linear. In theory [3] it should
behave according to m-log(m).

Figure 4: Surface grid of a

Figure 5: Comparison ., [
between the storage
requirements for the
boundary element
matrix of different
spherical surface grids
andits hierarchical
matrix approximation.
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so called hybrid cross
approximation has been used
(see the hlib tutorial [3]). (internal hlib parameters: p=3, g=4, n=2.0, eps=0.0001 )

As a conclusion we can state that hierarchical matrices seem to be an
appropriate mean for the study of mesostructures in micromagnetics.
A next step in the project will be to use the library hlib in connection
with the micromagnetic simulation package nmag [4] for the simulation
on corresponding structures.

1] Xiao et al., J. Am. Chem. Soc.

2] DR Fredkin and TR Koenhler, IEEE Trans. Magn. 26, (1990), 415
3] http://www.hlib.org

4] http://nmag.soton.ac.uk



http://www.hlib.org/

