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Summary Demagnetising tensor

The magnetostatic energy of a uniformly magnetised cuboid cell 7 due to the field of
a uniformly magnetised cuboid cell 77 is a bilinear function (i.e. a rank 2 tensor) of the
cell magnetisations M and M':

e In finite difference micromagnetic simulations, the demagnetis-
ing field is computed as a convolution of magnetisation with
the demagnetising tensor

e The demagnetising tensor is the multidimensional integral of FE = —% ot M - N - M’ (1)

the potential function 1/|r| over the interacting cells
where N is the demagnetising tensor
e Usually computed using an analytical formula

1 1
e At distances far from the originating cell, the analytical for- N = - dr / / Vrvr'mdrl (2)
mula is inaccurate ' '

The demagnetising tensor is dimensionless, and if the cells are congruent, symmetric. In
finite difference micromagnetic simulations, the values of N are precomputed for each
possible offset between the interacting cells 7 and 7" of the mesh.

e We compute the demagnetising tensor using numerical inte-
gration

e Compare the accuracy and performance to the explicit formula
and to an asymptotic expansion for large R

Smolyak quadrature Accuracy of analytical and asymptotic computation

The demagnetising tensor integral (2) can be computed analytically [1]. 1x1x1 cell 1% 1x5 cell
However, if the distance between the cells is large, numerical computation
using the analytical formula loses precision [2]. As shown on the right, if a
mesh has more than ~ 100 divisions in a certain dimension, the computed
result may be inaccurate even in the most significant digit.

In this work we compute the demagnetising tensor numerically using Smolyak
quadrature [3] and compare the result with the analytical calculation. The 6d
multidimensional integral can either be computed directly or first converted to
a 4d integral using the Gauss formula.

Smolyak quadrature computes the multidimensional integral
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Kronrod-Patterson quadrature with full delay
using a family of quadrature rules Q¢ derived from a family of one-dimensional

quadrature rules (),, according to: digits 1 x1x1cel | digits 1 x1x5cel
7 asymptotic 7
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Aj=Qi — Qi (5) ,
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For a certain number of integrand evaluation points, Smolyak quadrature ob-

tains a good (and in some sense optimal) order of approximation for the desired
multidimensional integral.

Several options are available for the choice of the one-dimensional quadra-
ture rule sequence (),,. The currently popular choice is the so-called delayed
Kronrod-Patterson sequence described in [4].

The best results are obtained when the 4d integral is used in conjuction
with the quadrature formula based on the delayed Kronrod-Patterson rule.
The accuracy in the intermediate range of intercell distances is significantly digits 1% 1x 1 cell digits 1x1 x5 cell
higher compared to the analytical formula or the asymptotic expansion. asymptotic
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Future work
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e Devise an error estimation scheme that can be used to select the appro- ol

priate algorithm (analytical, numerical, asymptotic) : asymptotic
e Investigate how the added accuracy influences the calculation of the de- ) 5T
magnetising field as well as the precision of micromagnetic simulations in analytical analytical
general _
o o _ . I 05 10 15 2.0 2. 3.0 = e
e Perform the measurements in single precision floating point (commonly : _ /s 10 L5 20 25 \/‘0
. I log R I log R
used for GPU calculations) -
Kronrod-Patterson quadrature, no delay
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